Chalcogen and Pnicogen Bonds in Complexes of Neutral Icosahedral and Bicapped Square-Antiprismatic Heteroboranes

Adam Pecina,¹ Martin Lepšík,¹ Drahomír Hnyk,*² Pavel Hobza,^{1,3} and Jindřich Fanfrlík*¹

¹Gilead Sciences and IOCB Research Center and Institute of Organic Chemistry and Biochemistry (IOCB), Academy of Sciences of the Czech Republic, v.v.i.; Flemingovo nám. 2, 16610 Prague 6 (Czech Republic)

²Institute of Inorganic Chemistry, Academy of Sciences of the Czech Republic, v.v.i.; 250 68 Řež (Czech Republic)

³ Regional Center of Advanced Technologies and Materials Department of Physical Chemistry, Palacký University, 77146 Olomouc (Czech Republic)

Table S1. The structural and energetic characteristics of **CI-SB**₁₁ and **SB**₉ complexes. The B12-chalcogenchalcogen-bond acceptor angle (α) in degrees. The chalcogen...chalcogen-bond acceptor distance (d) in Å. The interaction energy (Δ E) and its decomposition into electrostatic (E_1^{Pol}), exchange-repulsion (E_1^{Ex}), dispersion (E_2^{D}) and induction (E^{Ind}) terms; energy in kcal mol⁻¹.

			DFD-D3	DFT-SAPT				
Complex	α	d	ΔΕ	E_1^{Pol}	$E_1^{\ Ex}$	$E_2^{\ D}$	E ^{Ind[a}	ΔΕ
]	
Cl-SB ₁₁								
Cl-SB ₁₁ BEN	180	3.11	-6.2	-5.4	9.2	-8.4	-2.1	-6.7
	165	3.13	-6.3	-5.4	9.3	-8.6	-2.0	-6.7
Cl-SB ₁₁ TMA	180	3.24	-4.2	-4.0	5.6	-4.8	-1.1	-4.3
	140	3.03	-6.3	-7.5	11.5	-7.8	-2.2	-6.1
Cl-SB ₁₁ DME	180	3.18	-3.2	-2.8	3.7	-3.4	-0.7	-3.2
	135	3.07	-4.9	-4.5	5.8	-5.2	-1.1	-5.0
Cl-	180	3.21	-3.7	-3.4	3.7	-3.2	-0.9	-3.9
SB ₁₁ DMK	135	3.04	-5.4	-5.8	7.1	-5.5	-1.6	-5.9
Cl-SB ₁₁ FA	180	3.15	-3.7	-3.8	3.8	-2.8	-1.0	-3.8
	130	3.01	-5.9	-6.6	7.6	-5.3	-1.8	-6.1
SB9								
SB9BEN	180	3.13	-5.0	-4.8	8.4	-7.2	-1.8	-5.5
	150	3.19	-5.3	-4.6	8.2	-7.8	-1.6	-5.8
SB9TMA	180	3.19	-3.6	-4.2	6.0	-4.4	-1.1	-3.7
	125	2.98	-6.1	-8.3	13.1	-8.4	-2.4	-6.0
SB ₉ DME	180	3.23	-2.8	-2.2	3.3	-3.4	-0.6	-2.8
	125	3.08	-4.5	-4.3	6.0	-5.3	-1.1	-4.6
SB ₉ DMK	180	3.20	-3.1	-3.2	4.2	-3.3	-0.9	-3.3
	120	3.11	-5.7	-5.2	6.6	-5.6	-1.4	-5.6
SB9FA	180	3.17	-3.2	-3.3	3.4	-2.4	-1.0	-3.4
	115	3.14	-5.3	-3.3	3.4	-2.4	-1.1	-3.6
$[a] E^{Ind} = E_2^{Ind} + E_2^{Ex-Ind} + \delta HF$								

Figure S1. Interaction energy (ΔE) plotted against B12-S-chalcogen bond acceptor angle. Structures of complexes at an optimal angle (right) and at 180 degrees (left) are shown. Energy in kcal mol⁻¹, angle in degrees and Color coding as follows: black, C; light-pink, B; yellow, S; white, H.

Figure S2. Interaction energy (ΔE) plotted against the centre of B9 and B12 -the centre of P1 and P2 -pnictogenbond acceptor angle. Energy in kcal mol⁻¹, angle in degrees

