Supporting Information

Chalcogen and Pnicogen Bonds in Complexes of Neutral Icosahedral and Bicapped SquareAntiprismatic Heteroboranes

Adam Pecina, ${ }^{1}$ Martin Lepšik, ${ }^{l}$ Drahomir Hnyk, * ${ }^{2}$ Pavel Hobza, ${ }^{1,3}$ and Jindřich Fanfrlik ${ }^{*}{ }^{l}$

${ }^{1}$ Gilead Sciences and IOCB Research Center and Institute of Organic Chemistry and Biochemistry (IOCB), Academy of Sciences of the Czech Republic, v.v.i.; Flemingovo nám. 2, 16610 Prague 6 (Czech Republic)
${ }^{2}$ Institute of Inorganic Chemistry, Academy of Sciences of the Czech Republic, v.v.i.; 25068 Řež (Czech Republic)
${ }^{3}$ Regional Center of Advanced Technologies and Materials Department of Physical Chemistry, Palacký University, 77146 Olomouc (Czech Republic)

Table S1. The structural and energetic characteristics of $\mathbf{C l}^{-} \mathbf{S B}_{11}$ and $\mathbf{S B}_{\mathbf{9}}$ complexes. The B12-chalcogen-chalcogen-bond acceptor angle (α) in degrees. The chalcogen...chalcogen-bond acceptor distance (d) in \AA. The interaction energy ($\Delta \mathrm{E}$) and its decomposition into electrostatic $\left(\mathrm{E}_{1}{ }^{\mathrm{Pol}}\right.$), exchange-repulsion $\left(\mathrm{E}_{1}{ }^{\mathrm{Ex}}\right)$, dispersion $\left(E_{2}{ }^{\mathrm{D}}\right.$) and induction ($\mathrm{E}^{\text {Ind }}$) terms; energy in kcal mol^{-1}.

Complex	α	d	DFD-D3	DFT-SAPT				
			$\Delta \mathrm{E}$	$\mathrm{E}_{1}{ }^{\text {Pol }}$	$\mathrm{E}_{1}{ }^{\text {Ex }}$	$\mathrm{E}_{2}{ }^{\text {D }}$	$\mathrm{E}^{\operatorname{lnd}[a}$	$\Delta \mathrm{E}$
Cl-SB ${ }_{11}$								
Cl-SB ${ }_{11} \ldots$ BEN	180	3.11	-6.2	-5.4	9.2	-8.4	-2.1	-6.7
	165	3.13	-6.3	-5.4	9.3	-8.6	-2.0	-6.7
Cl-SB ${ }_{11} \ldots$ TMA	180	3.24	-4.2	-4.0	5.6	-4.8	-1.1	-4.3
	140	3.03	-6.3	-7.5	11.5	-7.8	-2.2	-6.1
$\mathrm{Cl}^{\text {-SB }} 11 \ldots$ DME	180	3.18	-3.2	-2.8	3.7	-3.4	-0.7	-3.2
	135	3.07	-4.9	-4.5	5.8	-5.2	-1.1	-5.0
$\begin{aligned} & \mathrm{Cl}- \\ & \mathrm{SB}_{11} \ldots \mathrm{DMK} \end{aligned}$	180	3.21	-3.7	-3.4	3.7	-3.2	-0.9	-3.9
	135	3.04	-5.4	-5.8	7.1	-5.5	-1.6	-5.9
Cl-SB ${ }_{11} \ldots \mathrm{FA}$	180	3.15	-3.7	-3.8	3.8	-2.8	-1.0	-3.8
	130	3.01	-5.9	-6.6	7.6	-5.3	-1.8	-6.1
SB9								
SB9...BEN	180	3.13	-5.0	-4.8	8.4	-7.2	-1.8	-5.5
	150	3.19	-5.3	-4.6	8.2	-7.8	-1.6	-5.8
SB ${ }_{9} \ldots$.. ${ }^{\text {TMA }}$	180	3.19	-3.6	-4.2	6.0	-4.4	-1.1	-3.7
	125	2.98	-6.1	-8.3	13.1	-8.4	-2.4	-6.0
SB9...DME	180	3.23	-2.8	-2.2	3.3	-3.4	-0.6	-2.8
	125	3.08	-4.5	-4.3	6.0	-5.3	-1.1	-4.6
SB9...DMK	180	3.20	-3.1	-3.2	4.2	-3.3	-0.9	-3.3
	120	3.11	-5.7	-5.2	6.6	-5.6	-1.4	-5.6
$\mathbf{S B}_{9} \ldots$..FA	180	3.17	-3.2	-3.3	3.4	-2.4	-1.0	-3.4
	115	3.14	-5.3	-3.3	3.4	-2.4	-1.1	-3.6

$[\mathrm{a}] \mathrm{E}^{\mathrm{Ind}}=\mathrm{E}_{2}^{\mathrm{Ind}}+\mathrm{E}_{2}^{\mathrm{Ex}-\mathrm{Ind}}+\delta \mathrm{HF}$

Figure S1. Interaction energy ($\Delta \mathrm{E}$) plotted against B12-S-chalcogen bond acceptor angle. Structures of complexes at an optimal angle (right) and at 180 degrees (left) are shown. Energy in $\mathrm{kcal} \mathrm{mol}^{-1}$, angle in degrees and Color coding as follows: black, C; light-pink, B; yellow, S; white, H.

Figure S2. Interaction energy ($\Delta \mathrm{E}$) plotted against the centre of B9 and B12 -the centre of P1 and P2 -pnictogenbond acceptor angle. Energy in $\mathrm{kcal} \mathrm{mol}^{-1}$, angle in degrees

