Supporting Information

Role of Chemical Potential in Flake Shape and Edge Properties of Monolayer MoS₂

Dan Cao,[†] Tao Shen,[‡] Pei Liang,[‡] Xiaoshuang Chen,[§] and Haibo Shu^{*,[‡],§}

[†]College of Science, China Jiliang University, 310018 Hangzhou, China

[‡]College of Optical and Electronic Technology, China Jiliang University, 310018 Hangzhou, China

[§]National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Science, 200083 Shanghai, China

* Correspondence should be addressed to Haibo Shu, shu123hb@gmail.com,

The computational models of armchair and zigzag MoS₂ edges

Figure S1 Atomic structures of (a) armchair (AC) and (b) zigzag (ZZ) MoS₂ nanoribbons. W_A and W_Z represent the width of armchair and zigzag nanoribbons respectively, and L_A and L_Z denote the length of armchair and zigzag nanoribbons along their periodic direction, respectively.

The zero-point energies of various MoS₂ edges

	, 0	
Edge type	Edge structure	E _{ZPE} (eV/Å)
Armchair	AC	0.018
Zigzag-perfect	ZZ-Mo	0.035
	ZZ-S	0.029
	ZZ-Mo2	0.052
	ZZ-S2	0.034
Zigzag-defect	ZZ-57-S	0.995
	ZZ-57-Mo	0.114

Table S1. Zero-point energies (E_{ZPE}) of various MoS₂ edges, including of armchair (AC), perfect (ZZ-perfect) and deficient zigzag (ZZ-defect) edges.

The spin-density distribution of hexagonal MoS₂ cluster

Figure S2 (a) Top and (b) side views of the spin-density isosurface distribution of a hexagonal MoS_2 cluster. In the cluster, three ZZ-S edges are spin-polarized and three ZZ-S2 edges are spin-unpolarized.

The DOS of triangular MoS₂ cluster

Figure S3 Total DOS and local DOS of Mo and S atoms of the triangle MoS_2 cluster presented in Figure 5b. The red and blue lines denote the DOS of Mo and S atoms, respectively. The Fermi level is set to energy zero.