Supporting Information

Eosin Y covalently anchored on reduced graphene oxide as an efficient and recyclable photocatalyst for the aerobic oxidation of α -aryl halogen derivatives

Zhen Li, Wenfeng Zhang, Qingshan Zhao, Hanying Gu, Yang Li, Guoliang Zhang, Fengbao Zhang, and Xiaobin Fan*

State Key Laboratory of Chemical Engineering, School of Chemical Engineering and

Technology, Collaborative Innovation Center of Chemical Science and Engineering,

Tianjin University, Tianjin 300072, China

Tel./Fax: +86 22-27408778; E-mail: xiaobinfan@tju.edu.cn

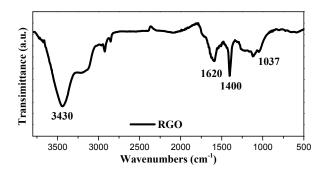


Figure S1. Fourier transform infrared (FTIR) spectrum of reduced graphene oxide (RGO)

Figure S2. Fourier transform infrared (FTIR) spectrum of Eosin Y (EY)

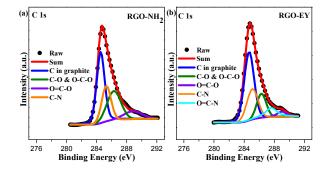


Figure S3. C 1s XPS spectra of (a) RGO-NH2 and (b) RGO-EY

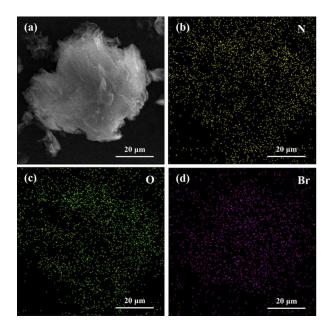


Figure S4. (a) SEM image of RGO-EY and corresponding quantitative EDS mapping of (b) N,

(c) O and (d) Br

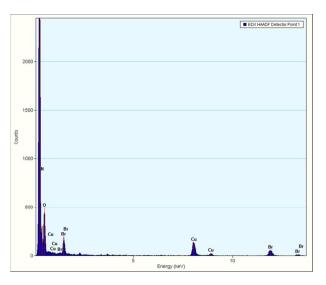


Figure S5. EDS spectrum of RGO-EY.

Note that the GO sample was placed on a copper grid in the testing process. As a result, signals of Cu could also be detected.

Tuble 51. ED5 Quantification Results of Reso E1							
Entry	Element	Weight %	Atomic %				
1	C(K)	75.91	81.63				
2	N(K)	10.99	10.13				
3	O(K)	9.47	7.65				
4	Br(K)	3.63	0.59				

 Table S1. EDS Quantification Results of RGO-EY

The element atomic ratio of Br in the final RGO–EY is 0.59%, presenting an EY loading content of 0.12 mmol \cdot g⁻¹.

Figure S6. Tyndall effect exhibited by a RGO-EY dispersion in DMA.

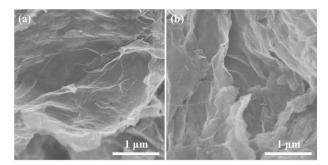


Figure S7. SEM images of (a) RGO-EY and (b) RGO-EY after recyclable testing

Entry	1		Product (2)		Yield[%] ^b	Selectivity[%]
1	Br CO ₂ Et	1a	CO ₂ Et	2a	42	66
2	Br CO ₂ Me	1b	CO ₂ Me	2b	37	68
3	Br	1c		2c	76	78
4		1d		2c	15	49

Table S2. Synthesis of α -Aryl Carbonyl Compounds 2 from 1 by Eosin Y^a

^a Standard conditions: 1a-d (1.0 mmol), Li₂CO₃ (1.0 mmol), 4-methoxypyridine (0.2 mmol) and catalyst (20 mg) were added in DMA (15 mL) under air at 25 °C. Irradiation time using a 24 W compact fluorescent bulb at 20 cm was 24 h. ^b Calibrated yields determined by GC.

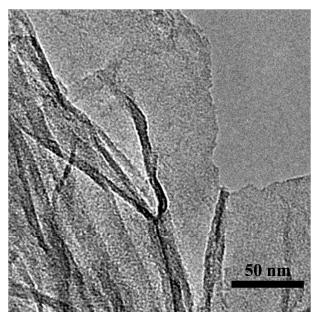


Figure S8. The TEM image of RGO-EY