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S1 MODEL COMPONENTS

S1 Model components

Modeling system comprises GTAP-BIO-ADV and the Agro-ecological zone Emission Factor (AEZ-EF)
model.

S1.1 GTAP-BIO-ADV

The computable general equilibrium (CGE) framework used in this study1 is an extension of GTAP-BIO-
ADV documented in Tyner et al. (2010).2. First, the data base employed in this study is further disaggregated
to explicitly introduce various vegetable oils (soy, palm, rape and other vegetable oils), and to include
vegetable oil-specific biodiesels; sorghum is separated from coarse grains and ethanol from sorghum is a
separate biofuel (Taheripour and Tyner, 2014). Second, non-CO2 emissions are incorporated into the model
(Golub, 2013).

Each model’s region land endowment is disaggregated into agro-ecological zones (AEZs; figure S1) in
the effort to reduce land heterogeneity. In each region of the model, there may be as many as 18 AEZs
which differ along two dimensions: growing period (6 categories of 60-day growing period intervals), and
climatic zones (3 categories: tropical, temperate and boreal). Even after introduction of AEZs, there is still
considerable heterogeneity within these units, and this, in turn, is likely to limit the mobility of land across
uses within an AEZ.

To further limit land mobility within each AEZ, in the model land mobility across uses is further restricted
by a Constant Elasticity of Transformation (CET) frontier. The elasticity of land transformation parameter
is meant to reflect how easy or difficult to transform land from one use to another (e.g. from pasture to
cropland) due to: biophysical land heterogeneity within AEZ; region-specific infrastructure, socioeconomic
factors, ownership of land; costs of conversion, managerial inertia, unmeasured benefits from crop rotation,
etc. The parameter, together with land rents share of a given land use in total AEZ land rents, determines
the land supply elasticity to the given land use.

S1.1.1 Land-cover changes

The GTAP TABLO code (gtap.tab) was modified to write out land cover changes (in hectares) for forestry,
pastureland, and cropland, as well as breaking out separately changes in cropland-pasture, sugar crops, and
oil palm. These data are required by the AEZ-EF model, which computes the total greenhouse gas (GHG)
emissions associated with these land-cover changes. The AEZ-EF model is described further in section 1.2,
and elsewhere (Plevin et al., 2014).

S1.1.2 Armington elasticities

The default values for the Armington elasticities follow the “rule of 2” which states that the substitution
elasticities among domestic and imported goods (ESBD) are half of their corresponding substitution elastic-
ities among imported goods (ESBM) (Keeney and Hertel, 2005). To maintain this relationship in the Monte
Carlo simulation, we assign a random variable to ESBM and compute ESBD = 0.5 * ESBM.

S1.1.3 Land net displacement factor

The land net displacement factor (NDF) is the ratio of the total increase in cropland area globally resulting
from a biofuel shock to the land area required to produce the increased amount of biofuel, at nominal yields,

1The model, data, and and parameters are available at https://www.gtap.agecon.purdue.edu/resources/res_display.

asp?RecordID=4347
2See http://www.transportation.anl.gov/pdfs/MC/625.PDF
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S1.2 Agro-ecological zone emission factor (AEZ-EF) model S1 MODEL COMPONENTS

Figure S1: Distribution of agro-ecological zones (AEZs 1-18) and regions used in GTAP (Monfreda et al.,
2009)

before accounting for co-products. This metric was first defined in the reduced-form model of ILUC (RFMI)
by (Plevin, 2010) and subsequently computed by Laborde and Valin (2012) using the MIRAGE model to
estimate LUC for EU biofuel policies.

We modified the GTAP model code (gtap.tab) to compute areal fuel yield (gal/ha). The AEZ-EF model
retrieves this result and computes the nominal land requirement (ha) as areal fuel yield divided by shock
gallons. The total change in cropland area (ha) is divided by nominal land requirement to produce NDF for
each trial. A distribution for NDF is then produced from the MCS results.

S1.2 Agro-ecological zone emission factor (AEZ-EF) model

The agro-ecological zone emission factor (AEZ-EF) model estimates the total CO2-equivalent emissions from
land use changes, e.g., from an analysis of biofuels impacts or policy analyses such as estimating the effect
of changes in agricultural productivity on emissions from land use. The model combines matrices of carbon
fluxes (Mg CO2 ha−1 y−1) with matrices of changes in land use (ha) according to land-use category as
projected by GTAP or similar AEZ-oriented models.

The AEZ-EF model contains separate carbon stock estimates (Mg C ha−1) for biomass and soil carbon,
indexed by GTAP region and AEZ (Gibbs et al., 2014). The model combines these carbon stock data with
assumptions about carbon loss from soils and biomass, mode of conversion (i.e., whether fire is used), quan-
tity and species of carbonaceous and other GHG emissions resulting from conversion, carbon remaining in
harvested wood products and char, and foregone sequestration. The model relies heavily on IPCC green-
house gas inventory methods and default values (IPCC, 2006), augmented with more detailed and recent
data where available. We refer the reader to the model documentation for complete details (Plevin et al.,
2014).
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S2 Model Parameters

S2.1 GTAP-BIO-ADV behavioral parameters

The GTAP-BIO-ADV behavioral parameters file contains 44 named parameters, 38 of which are appropriate
for manipulation in an MCS.3 The parameters relevant to this study are listed in table S1. Most parameters
are vectors or matrices; together they represent 18,319 values that can be manipulated independently. Owing
to a paucity of supporting data, however, several of these named parameters consist of one or a few values
that are repeated across all regions, AEZs, or sectors. In effect, the model implements these parameters as a
single (or few) parameter(s) applied to a range of circumstances. We take advantage of this to simplify the
definition of parameter distributions.

The general approach taken here is to allow vectors or matrices of parameters to be manipulated using
a single random variable, e.g., by selecting a value from a range and adding this to, or multiplying this by,
each element of the matrix. In a few cases, parameters are manipulated by row, column, or specific cell.
These approaches can be used in combination: it is possible to define a random factor that is applied to all
values except for those singled out for different treatment. The syntax for specifying parameter distributions
is described in section S3.3.

We did not include distributions for consumer demand behavioral parameters. These are calibrated to
mimic certain income and price elasticities (Hertel et al., 2008), so estimating distributions for them would
ideally be done in the calibration stage by varying inputs to that process (target income and price elasticities).

S2.1.1 Additional issues

The rapid increase in corn-based ethanol led to an equally large increase in dried distillers grains with solubles
(DDGS), however estimates of the substitution between this feed and coarse grains (corn) were nonexistent
before Taheripour et al. (2010). We utilize their estimate as the upper bound and the estimate from Beckman
et al. (2011) as the lower bound. The two estimates result from different calibration procedures.

The GTAP-BIO-ADV model allocates land among the three land use categories crops, pasture land, and
forest (with cropland-pasture considered part of cropland). The ease of transformation of land from one use
to another is modeled by the elasticity of transformation (ETL1). Among crops (including cropland-pasture),
the ease of land transformation is determined by a second elasticity of transformation (ETL2). For these
parameters, we use of default values and ranges suggested in modeling done for the CARB Low Carbon Fuel
Standard (LCFS) (Taheripour and Tyner, 2014). CARB modeling includes regionalized default values for
ETL1 and ETL2 found in Taheripour and Tyner (2013), updating an earlier model with a single value for
each of these parameters, both applied in every Region-AEZ. Though the parameter is same across regions
and AEZs, the actual region and AEZ land supply elasticities in the model are not uniform because they are
endogenous to the model and determined not only by the chosen transformation elasticity but also by land
rent share of the given land use in total land rents (Golub and Hertel, 2012). Default values were determined
by examining recent historical evidence on land use change, categorizing regions based on their patterns
of deforestation and expansion of agricultural area or crop switching (based on maize and oilseeds vis--vis
other crops), and assigning elasticity values ranked according to land use change category. The approach
differs from the prior approach, which derived a global ETL1 from an econometric determination of land
supply elasticity in the US controlling for factors such as exogenous time trend, and used expert judgment
about crop switching, again grounded in US data, for a global ETL2. Lack of sufficient data prevents broad
replication of US-based econometrics in other model regions and for all relevant land use categories. The
trend analysis applied to derive these new parameters should be subject to additional analysis to assess how

3Other parameters contain metadata, are not referred to in the model code, are structural parameters (e.g., identifying
sluggish commodities), or are not relevant to our study (e.g., emission factors).
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S2.1 GTAP-BIO-ADV behavioral parameters S2 MODEL PARAMETERS

uncontrolled-for elements inherent in the empirical data trends used affect assigned elasticity values (and
model results). While we maintained the regionalized values as in the model for consistency with existing
regulatory modeling, we emphasize a need to undertake an exercise along these lines (outside our scope
here), and note that applying uncertainty analysis along the lines undertaken here (MCS) can investigate
the importance of the choice of the parameter to ILUC emission intensity (within bounds set by the parameter
ranges and distributions). Only ETL1 emerged as an important parameter in the primary analysis, and only
for sugarcane ethanol, food not fixed, with less than 10% contribution to ILUC emission intensity variance).
Lacking additional analysis, we state a modeling preference for using as defaults the prior global values, or
implementing strategies employed in other CGE-based ILUC emission studies that have regionalized land
transformation elasticities in empirical data, more isolated from trends exogenous to the model.

For example, Golub et al. (2012) constructed a heterogeneity index based on biophysical characteris-
tics and derived regionalized ETL1 values for GTAP based on this index, reasoning that heterogeneity of
biophysical characteristics critical to productivity would capture much of the factors that hinder land trans-
formation in a given Region-AEZ. Laborde and Valin (2012) derived model parameters roughly analogous
to ETL2 in GTAP-BIO-ADV that is, capturing ease of crop switching – for the MIRAGE model (using a
modified GTAP database), calibrated to approximate crop-based land supply elasticities determined for key
region/crop combinations in the international agricultural commodity and trade model FAPRI.

GTAP-BIO-ADV model parameter specifications lacking empirical justification (likely because few or no
estimates of values were available in the literature) might be important in our MCS and have to be reviewed.
In particular, the elasticity of substitution in vegetable oils sub-consumption is specified in our analysis
(and the CARB model) as less elastic for developed countries due to an assumption (expert judgment) that
consumers base their decisions on nutrition, while in developing countries it is based on price (and likely to be
more elastic). Because this parameter has emerged as particularly important in the assessment of biodiesel
ILUC emissions from policy especially for the EU (Laborde and Valin, 2012), it is worthy of additional
investigation.

Table S1: GTAP model parameters. The first column shows the unique header name used to reference the
parameter; the second column shows the parameters dimensions; the third column shows the number of
distinct values for each parameter.

Name Dimensions Values Description

CDDG ALL INDS*REG 817 Elasticity of substitution in CDDGC and CDDGS feed subproduction
CDGC ALL INDS*REG 817 Elasticity of substitution in Oth CrGr and DDGS feed subproduction
CDGS ALL INDS*REG 817 Elasticity of substitution in Sorghum and DDGSS feed subproduction
CRFD ALL INDS*REG 817 Elasticity of substitution in crop-based feed subproduction
EAEZ ALL INDS 43 Elasticity of substitution in AEZ nest
EFED ALL INDS*REG 817 Elasticity of substitution in feed subproduction
ELBO ALL INDS*REG 817 Elasticity of subst. in bio-oil subproduction
ELEG REG 19 Elasticity of substitution in energy consumption
ELEN ALL INDS*REG 817 Substitution elasticity in energy sub-production
ELHB REG 19 Elasticity of substitution in biofuel subconsumption
ELHL REG 19 Elasticity of substitution in veg. oils subconsumption
ELKE ALL INDS*REG 817 Elasticity of substitution in capital-energy subproduction
ELNC ALL INDS*REG 817 Substitution elasticity in non-coal energy subproduction
ELNE ALL INDS*REG 817 Substitution elasticity in non-electr.energy subproduction
ELVL ALL INDS*REG 817 Elasticity of substitution between oils in production
EPSR ALL INDS*REG 817 Elasticity of substitution in pasturecrop and pasturecover
ESBD TRAD COMM 48 Armington CES for domestic/imported allocation
ESBM TRAD COMM 48 Armington CES for regional allocation of imports
ESBT ALL INDS 43 Elasticity of intermediate input substitution
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Table S1 GTAP model parameters (cont.)

Name Dimensions Values Description

ESBV ALL INDS*REG 817 Elasticity of substitution in value-added-en. subproduction
ETA AEZ18*REG 342 Elasticity of effective hectares with respect to harvested area
ETBD 6 6 Elasticity of transformation among outputs
ETL1 REG 19 Elasticity of transformation among land cover categories
ETL2 REG 19 Elasticity of transformation for crop land in supply tree
ETL3 1 1 Elasticity of transformation for land between beef and milk
ETRE ENDW COMM 22 CET between sectors for sluggish primary factors
INCP CDE COMM*REG 646 CDE expansion parameter
LVFD ALL INDS*REG 817 Elasticity of substitution in livestock-based feed subproduction
OBCD ALL INDS*REG 817 Elasticity of substitution between soy-based and corn-based feed
OBDB ALL INDS*REG 817 Elasticity of subst. in OBDBS, OBDBO, OBDBO in feed subproduc-

tion
OBDO ALL INDS*REG 817 Elasticity of subst. in Oth Oilseed and OBDBO feed subproduction
OBDP ALL INDS*REG 817 Elasticity of substitution in palmf and OBDBP feed subproduction
OBDR ALL INDS*REG 817 Elasticity of substitution in Rapeseed and OBDBR feed subproduction
OBDS ALL INDS*REG 817 Elasticity of substitution in soybeans and OBDBS feed subproduction
PAEL REG 19 Scalar yield elasticity target for cropland pasture
SUBP CDE COMM*REG 646 CDE substitution parameter
YDEL 1 1 Scalar yield elasticity target
YDRS REG 19 Scale of yield elasticity target relative to base value for given region

Table S2 lists the 19 regions used in GTAP-BIO-ADV.

Table S2: Region definitions used in the GTAP-BIO-ADV model

Region ID Description

USA United States
EU27 European Union 27
Brazil Brazil
Canada Canada
Japan Japan
ChiHkg China and Hong Kong
India India
C C Amer Central and Caribbean Americas
S O Amer South and Other Americas
E Asia East Asia
Mala Indo Malaysia and Indonesia
R SE Asia Rest of South East Asia
R S Asia Rest of South Asia
Russia Russia
Oth CEE CIS East Europe and Rest of Former Soviet Union
Oth Europe Rest of European Countries
ME N Afr Middle Eastern and North Africa
S S Afr Sub Saharan Africa
Oceania Oceania

S2.2 AEZ-EF model parameters
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Table S3: AEZ-EF model parameters. The first column shows the unique header name used to reference
the parameter; the second column shows the parameters dimensions; the third column shows the number
of distinct values for each parameter. In the “dimensions” column, AEZ refers to the 18 agro-ecological
zones shown in figure S1; REG refers to the 19 regions used in GTAP-BIO-ADV, described in table S2;
LATITUDE refers to the 3 major climate zones: boreal, temperate, and tropical; SPECIES refers to 5
combustion emissions: CO2, CO, CH4, N2O, and non-methane hydrocarbons.

Name Dimensions Values Description

GWP CO2 scalar 1 CO2 global warming potential
GWP CH4 scalar 1 CH4 global warming potential
GWP N2O scalar 1 N2O global warming potential
MalaIndoPeatEF scalar 1 Emissions from peatland conversion (Mg C

ha−1)
MalaIndoPeatFraction scalar 1 The faction of conversion to oil palm oc-

curring on peatland
N2O N EF scalar 1 Fraction of N in applied fertilizer that is

released as N2O
carbonNitrogenRatio scalar 1 Represents the mass ratio of carbon to ni-

trogen loss
cropCarbonAnnualizationFactor scalar 1 Ratio of annual average to maximum crop

carbon
croplandLandUseFactor AEZ 18 IPCC land use factor for cropland
croplandPastureEmissionRatio scalar 1 The ratio of emissions from converting

cropland-pasture to cropland to those from
converting pasture to cropland

croplandSoil C AEZ*REG 342 Cropland soil carbon density (Mg C ha−1)
to 30 cm depth

croplandSubsoil C AEZ*REG 342 Cropland soil carbon density (Mg C ha−1)
from 30 to 100 cm depth

deadwoodByLatitude C LATITUDE 3 Deadwood carbon density (Mg C ha−1) by
latitude

deadwoodByRegion C REG 19 Deadwood carbon density (Mg C ha−1) by
region

deforestedFraction REG 19 Fraction of forest cover change that is de-
forestation rather than afforestation

excludedLitterFraction scalar 1 Litter fraction not included in regrowth
fireClearingFraction REG 19 Fraction of land-cover cleared using fire
foregoneGrowthRate AEZ*REG 342 Foregone sequestration rate (Mg C ha−1

y−1)
forestBurningEF LATITUDE*SPECIES 15 Emissions of 5 species for forest burning

(kg per Mg dry matter)
forestCombustionFactor LATITUDE 3 Fraction of fuel biomass combusted when

clearing forests with fire
forestDefaultRootShootRatio scalar 1 Default ratio of live root biomass to above-

ground live biomass for forests
forestLandUseFactor AEZ 18 IPCC land use factor for forest land
forestLitter C AEZ 18 Forest litter carbon density (Mg C ha−1)
forestRegrowthRate AEZ*LATITUDE 54 Forest regrowth rate (Mg C ha−1 y−1)
forestRootShootRatio AEZ*REG 342 Ratio of live root biomass to above-ground

live biomass for forests
forestSoilLossFraction LATITUDE 3 Fraction of forest soil (to 30 cm) lost during

conversion to cropland

8
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Table S3 AEZ-EF model parameters (cont.)

Name Dimensions Values Description

forestSoil C AEZ*REG 342 Forest soil carbon density (Mg C ha−1) to
30 cm depth

forestSubsoilLossFraction LATITUDE 3 Fraction of forest soil (30 to 100 cm) lost
during conversion to cropland

forestSubsoil C AEZ*REG 342 Forest soil carbon density (Mg C ha−1)
from 30 to 100 cm depth

grassCarbonFraction scalar 1 Fraction of herbaceous biomass composed
of carbon

hwpFraction REG 19 Fraction of above-ground biomass removed
in harvested wood products

oilPalmBiomass C scalar 1 Carbon density (Mg C ha−1) of oil palm
trees

pastureAgb AEZ 18 Carbon density (Mg C ha−1) of above-
ground pasture biomass

pastureBgb AEZ 18 Carbon density (Mg C ha−1) of below-
ground pasture biomass

pastureBurningEF LATITUDE*SPECIES 15 Emissions of 5 species for pasture burning
(kg per Mg dry matter)

pastureCombustionFactor LATITUDE 3 Fraction of fuel biomass combusted when
clearing pastures with fire

pastureLitter C scalar 1 Pasture litter carbon density (Mg C ha−1)
pastureSoil C AEZ*REG 342 Pasture soil carbon density (Mg C ha−1)

to 30 cm depth
pastureSoilLossFraction LATITUDE 3 Fraction of forest soil (to 30 cm) lost during

conversion to cropland
pastureSubsoilLossFraction LATITUDE 3 Fraction of forest soil (30 to 100 cm) lost

during conversion to cropland
pastureSubsoil C AEZ*REG 342 Pasture soil carbon density (Mg C ha−1)

from 30 to 100 cm depth
regrowth C AEZ*REG 342 Estimated C stored in afforestation over 30

years (Mg C ha−1)
totalTree C AEZ*REG 342 Carbon density (Mg C ha−1) of total tree

(above- plus below-ground)
tropicalForestRootShootRatio scalar 1 Ratio of live root biomass to above-ground

live biomass for tropical forests
understory C LATITUDE 3 Understory soil carbon density (Mg C

ha−1) to 30 cm depth
woodyCarbonFraction scalar 1 Fraction of woody biomass composed of

carbon

S3 Monte Carlo framework

One challenge to performing Monte Carlo simulation with models such as GTAP is the length of time the
models require to complete a single simulation. The GTAP model used in this analysis typically required 5-15
minutes per solution on a desktop computer. Thus, a Monte Carlo analysis using 1000 trials could require
over a week of continuous computation. To address this, our analysis was performed on a high-performance
parallel computing cluster at the National Energy Research Scientific Computing (www.nersc.gov) facility,
managed by the US Department of Energys Lawrence Berkeley National Lab. The ILUC-MCS model is
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based on a new software framework called Distributed MCS, or DMCS, developed in the Python language.
DMCS will be made freely available as under an open-source license. Please contact the authors for more
information.

S3.1 What is represented by parameter distributions

The Monte Carlo approach produces a joint output frequency distribution by executing the model numerous
times with alternative parameter values drawn from defined input distributions. Although this correctly
represents the joint probability, the semantics of this distribution depends critically on what exactly is
represented by the input parameter distributions.

In many cases, there are inadequate data to draw parameter distributions, or in many cases, to distinguish
values by region or industry. We treat values that are constant across regions or industries in the GTAP
database as single parameters rather than individual parameters.

There is disagreement among experts as to the best value for many parameters. Elliott et al. (2011)
compared values from GTAP and MITs EPPA model and fail to distinguish any pattern to the disagreement,
with GTAP values sometimes the highest and sometimes the lowest. So one setting for sensitivity analysis is
to examine the sensitivity to different expert opinion, which can vary quite widely for any single parameter.
In our analysis, we have examples of DDGS substitution elasticities of Taheripour versus those of Beckman,
and disagreement over the most appropriate value for YDEL.

Another setting examines the sensitivity to the uncertainty around a value that is treated as reasonably
well-characterized, i.e., there is strong data or expert agreement supporting the approximate value, but there
is still measurement or approximation uncertainty. Yet another setting—the one we focus on here—is to
understand the sensitivity of the model and the range of plausible output values that result from all of the
above, regardless of the source.

Its important to note that our output distributions indicate the uncertainty in the final result based on
the described uncertainty in parameters—treating the model structure and underlying base data as certain.
Thus our results should not be treated as characterizing probabilities of any real-world outcome; rather, they
represent the distribution of results for this model, as implemented, given our choice of distributions.

Tables S5 and S6 list the parameter distributions used in the Monte Carlo simulation. Table S4 shows
the values from the IPCC’s Guidelines for National Greenhouse Gas Inventories (IPCC, 2006) which were
used to define distributions for the AEZ-EF model parameter “croplandUseFactor”.

S3.2 Correlations

Frey et al. (2006, p 3.25) note that dependencies among inputs matter only if the parameters are important
contributors to variance and the dependency (correlation or covariance) is strong. Otherwise, modeling this
dependence is unimportant to the resulting uncertainty.

The modeling framework used in this study supports the implementation of rank correlations among
random variables based on the method of Iman and Davenport (1982). We used this to impose rank
correlations in only one situation: we assigned a rank correlation coefficient of 0.9 to the elasticities of
substitution between (i) other coarse grains (predominantly corn) and distillers dried grains with solubles
(DDGS) and (ii) sorghum and DDGS given the similarity of these products.

S3.3 Distribution definition file format

Many of the parameters to these models are matrices of values with a common purpose, e.g., the carbon
density of soil in each region represented in the model, or the elasticities of substitution among a set of
industrial sectors, by region. These parameter groups can be manipulated stochastically in various ways:
using a single random variable (RV) assigned to the entire group, or by RVs for each row, column, cell in a
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matrix. One goal of the analysis is to identify important parameter groups affected by one or more RV, as
well as individual RVs.

• Values drawn from the distributions can be used either to substitute directly for the default value for
that parameter, or as a factor multiplied by the default value to produce a value to which is then
substituted for the default value.

• Distributions can be applied to scalar values, entire matrices, or individual rows, columns, or cells of
a matrix.

• The distributions currently supported include: Uniform, Normal, Lognormal, Triangle, Binary, and
Discrete. The system is design to allow additional distributions to be added fairly easily.

• Scalar parameters are equivalent to 1 ∗ 1 matrices, so whenever matrix parameters are mentioned, this
includes scalar and vector (1 ∗N) parameters.

• It is possible to declare (rank) correlations between pairs of model parameters, as long as they have the
identical dimensions, and the distribution must be assigned to the same dimensions for both parameters
(see more on this below). In the matrix case, the cells at the same location within the matrix are treated
as correlated.

• Also possible to declare that random variables associated with a matrix are correlated, but use with
caution: this can generate hundreds of random variables. Most practical to use with small distribution
dimensions.

S3.3.1 Defining distributions

Here we describe the assignment of distributions to model parameters using the Distributed-MCS framework.
Note that this framework will be released as an open-source project; please contact the authors for more
information.

• Blank lines are ignored

• Text after # are treated as comments and ignored

• Two types of entries are processed: distribution declarations and correlation declarations

• A single distribution declaration can produce multiple random variables (RV).

The general format for a distribution declaration is:

parameter target distro arg1=value arg2=value ...

Parameter Specifies the model parameter to which this distribution applies.

Target One of: None, Single, Rows, Cols, Cells, [row ] or [row, col ]

None The parameter is treated as constant using the value given in the parameter file.

Single A single random variable (RV) is created, the value of which is applied to all non-zero
elements of the matrix (unless the modifier updateZero=1 is specified, in which case all
matrix elements are updated). Note that “applying” a value can mean either assigning
the value directly, or using it as a multiplier, in which case the parameter value used in
the trial is the product of the RV value and the default parameter value.

11
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Rows Similar to “single” except that an RV is created for each row of the matrix.

Cols Similar to “single” except that an RV is created for each column of the matrix.

Cells Similar to “single” except that an RV is created for each individual cell of the matrix.

[row ] The row value specifies a row index by name or numeric value. A separate RV is generated
for this row. If declared after a matrix that includes this row, the subsequent definition
overrides the prior one.

[row, col ] The row and col values specify the row and column indices by name (e.g., regions, indus-
tries) or numeric value. or are an asterisk (*) to indicate an entire row or column. For
example, to specify column 3 only, you would write [*,3], meaning “all rows of column 3”.

Distro One of: UniformFactor, LogFactor, TriangleFactor, Normal, Lognormal, Uniform, Trian-
gle, Binary.

UniformFactor Args: min=arg1, max=arg2 or factor=arg1
Adds random noise factor of [arg1, arg2 ] by multiplying all values indicated by the noise
factor selected from this range. If only one value is given, it must be a fraction between 0
and 1, which defines a range of ±arg1, i.e., the range is [1-arg1, 1+arg1 ]

LogFactor Args: factor=arg1
Similar to UniformFactor but multipliers are chosen from lognormal with a 95% confidence
interval of [1/arg1, arg1 ]. For example, a value of 3 means that multiplier values are
selected from a lognormal distribution with 95% CI = [1/3, 3].

TriangleFactor Args: width=arg1 or min=arg1, mode=arg2, max=arg3
Similar to UniformFactor but multipliers are chosen from a triangular distribution with
the given min, mode, and max, or centered on zero with min and max set to ±width.

Normal Args: mean=arg1, std=arg2
Set values to a random choice from normal distribution with mean of arg1 and standard
deviation of arg2.

Lognormal Args: mean=arg1, std=arg2 or low95=arg1, high95=arg2
Set values to a random choice from a lognormal distribution, either with (i) mean value
(of the lognormal, not the underlying normal distribution) of arg1 and standard deviation
(of the lognormal) of arg2, or (ii) 95% confidence interval of [arg1, arg2 ]

Uniform Args: min=arg1, max=arg2
Set values to a random choice from interval [arg1, arg2]

Triangle Args: min=arg1, mode=arg2, max=arg3
Set values from triangular distribution with minimum value arg1, mode arg2, and maximum
value of arg3.

Binary Args: none.
Choose randomly from the set {0, 1}

parameter[row ,col] value1:prob1 val2=prob2 ...
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S3.3.2 Modifiers

Some distributions accept modifiers, which are like arguments but the names must being with an underscore).

• Random values are directly assigned by default. Alternative specifications are apply=mult and
apply=add, which cause the random value to be multiplied by, or added to (respectively) the de-

fault value for the parameter.

• In conjunction with apply=mult, distributions can specify lowBound=arg1 and/or highBound=arg2 ,
in which case after multiplying the default value by the value drawn from the random variable, the
new value is set to arg1 if lowBound is specified and the value is less than arg1, and the value is set
to arg2 if highBound is specified and the value is greater than arg2. This is useful when dealing with
parameters representing values that must be between 0 and 1.

• Any distribution can also specify updateZero=1 to indicate that zero default values should be updated;
otherwise zero values are left unchanged. That is, by default a value of zero will not be replaced by
the random value, nor (in the case of apply=add) have the random value added to it.

• Discrete distributions can specify tolerance=arg1 and/or precision=arg1 . The tolerance mod-
ifier set the amount by which the sum of the probabilities can differ from 1. The default tolerance is
0.01. The precision modifier sets the number of bins into which the discrete values are sorted, thus
the resulting probability values will be accurate within 1/precision. The default precision is 100.

S3.3.3 Correlations

Correlations within a single matrix parameter, or between two parameters can be specified as:

Correlation Param1 [Param2] value

If only 1 parameter is named, this defines a correlation among the RVs for the vector or matrix defined
for the named parameter. If 2 parameters are named, both must matrices with identical dimensions, in
which case each cell of the first matrix is correlated with the cell at the same address in the second matrix.

S3.4 Parameter distributions used in simulations

For the Cropland Land Use Factor, the IPCC suggests the following uncertainty values shown in table S4.

Table S4: IPCC uncertainty (±2σ) ranges for cropland land-use factors.

Regime Factor Error (95% CI)

Dry temp/boreal 0.80 ±9%
Moist temp/boreal 0.69 ±12%
Dry tropical 0.58 ±61%
Moist tropical 0.48 ±46%
Tropical montane 0.64 ±50%

Table S5: Parameter distributions for the AEZ-EF model.

Parameter name Target Distribution Parameters

croplandLandUseFactor [AEZ-1] UniformFactor factor=0.61
croplandLandUseFactor [AEZ-2] UniformFactor factor=0.61
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Table S5 Continued:

Parameter name Target Distribution Parameters

croplandLandUseFactor [AEZ-3] UniformFactor factor=0.61
croplandLandUseFactor [AEZ-4] UniformFactor factor=0.46
croplandLandUseFactor [AEZ-5] UniformFactor factor=0.46
croplandLandUseFactor [AEZ-6] UniformFactor factor=0.46
croplandLandUseFactor [AEZ-7] UniformFactor factor=0.09
croplandLandUseFactor [AEZ-8] UniformFactor factor=0.09
croplandLandUseFactor [AEZ-9] UniformFactor factor=0.09
croplandLandUseFactor [AEZ-10] UniformFactor factor=0.12
croplandLandUseFactor [AEZ-11] UniformFactor factor=0.12
croplandLandUseFactor [AEZ-12] UniformFactor factor=0.12
croplandLandUseFactor [AEZ-13] UniformFactor factor=0.09
croplandLandUseFactor [AEZ-14] UniformFactor factor=0.09
croplandLandUseFactor [AEZ-15] UniformFactor factor=0.09
croplandLandUseFactor [AEZ-16] UniformFactor factor=0.12
croplandLandUseFactor [AEZ-17] UniformFactor factor=0.12
croplandLandUseFactor [AEZ-18] UniformFactor factor=0.12
grassCarbonFraction Single UniformFactor factor=0.05
woodyCarbonFraction Single UniformFactor factor=0.05
oilPalmBiomassC Single Normal mean=35 std=5.5
N2O-N-EF Single Lognormal low95=0.004 high95=0.04
carbonNitrogenRatio Single Lognormal mean=15 std=5.8
cropCarbonAnnualizationFactor Single Triangle min=0.45 mode=0.5 max=0.55
croplandPastureEmissionRatio Single Triangle min=0.0 mode=0.5 max=1.0
croplandSoil-C Single UniformFactor factor=0.50
croplandSubsoil-C Single UniformFactor factor=0.50
deadwoodByLatitude-C Single UniformFactor factor=0.75
deadwoodByRegion-C Single UniformFactor factor=0.75
deforestedFraction Single UniformFactor factor=0.50 highBound=1
deforestedFraction [Mala-Indo] UniformFactor min=0.55 max=1.00
excludedLitterFraction Single UniformFactor factor=0.25 highBound=1
ipccCroplandLandUseFactor Single UniformFactor factor=0.25
ipccForestLandUseFactor Single UniformFactor factor=0.25
fireClearingFraction Single UniformFactor factor=0.50 highBound=1
foregoneGrowthRate Single UniformFactor factor=0.50
forestBurningEF Single UniformFactor factor=0.25
forestCombustionFactor Single UniformFactor factor=0.50 highBound=1
forestDefaultRootShootRatio Single Triangle min=0.20 mode=0.25 max=0.30
forestLandUseFactor Single UniformFactor factor=0.25
forestLitter-C Single UniformFactor factor=0.50
forestRootShootRatio Single UniformFactor factor=0.23
forestSoilLossFraction Single UniformFactor factor=0.25 highBound=1
forestSubsoilLossFraction Single UniformFactor factor=0.50 highBound=1
forestSoil-C Single UniformFactor factor=0.50
forestSubsoil-C Single UniformFactor factor=0.50
GWP-CH4 Single Normal mean=25 std=4.35
GWP-N2O Single Normal mean=298 std=52.15
hwpFraction Single UniformFactor factor=0.25
MalaIndoPeatEF Single UniformFactor factor=0.25
MalaIndoPeatFraction Single UniformFactor factor=0.25 highBound=1
pastureAgb Single UniformFactor factor=0.80
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Table S5 Continued:

Parameter name Target Distribution Parameters

pastureLitter-C Single Triangle min=0.05 mode=0.40 max=0.50
pastureBurningEF Single UniformFactor factor=0.25
pastureCombustionFactor Single UniformFactor factor=0.75 highBound=1
pastureSubsoilLossFraction Single UniformFactor factor=0.25 highBound=1
pastureSoil-C Single UniformFactor factor=0.25
pastureSubsoil-C Single UniformFactor factor=0.50
totalTree-C Single UniformFactor factor=0.25
totalTree-C [*,Canada] UniformFactor factor=0.80
totalTree-C [*,ME-N-Afr] UniformFactor factor=0.80
totalTree-C [*,EU27] UniformFactor factor=0.80
totalTree-C [*,ChiHkg] UniformFactor factor=0.80
tropicalForestRootShootRatio Single UniformFactor factor=0.25
regrowth-C Single UniformFactor factor=0.50

Correlation foregoneGrowthRate
regrowth-C

0.75

Table S6: Parameter distributions for the GTAP model.

Parameter name Target Distribution Parameters

CDDG Single Uniform min=10 max=20
CDGC Single Uniform min=10 max=30
CDGS Single Uniform min=10 max=30
CRFD Single LogFactor factor=1.5
EFED Single Triangle min=0.15 mode=0.50 max=0.85
ELEG Rows UniformFactor factor=0.5
ELEN Rows LogFactor factor=2
ELHB Single UniformFactor factor=0.50
ELHL Single LogFactor factor=2
ELKE Rows LogFactor factor=1.5
ELNC Rows LogFactor factor=1.5
ELNE Rows LogFactor factor=1.5
ELVL Single LogFactor factor=1.5
EPSR Single UniformFactor factor=0.5
ESBM Single LogFactor factor=2
ESBV Rows LogFactor factor=1.5
ETA Single UniformFactor factor=0.20 highBound=1.0
ETL1 Single TriangleFactor width=0.2
ETL2 Single TriangleFactor width=0.2
LVFD Single LogFactor factor=1.5
OBCD Single Uniform min=0.14 max=0.3
OBDO Single Uniform min=10 max=20
OBDP Single Uniform min=10 max=20
OBDR Single Uniform min=10 max=20
OBDS Single Uniform min=10 max=20
PAEL [USA] Uniform min=0.1 max=0.6
PAEL [Brazil] Uniform min=0.1 max=0.3
YDEL Single Uniform min=0.03 max=0.25
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S4 Model Results

Figure S2 shows the frequency distributions for 3 model outputs: ILUC Emission Factor, Non-CO2 Emission
Factor, and Total Emission Factor, which is the sum of the prior two quantities on a trial-by-trial basis.
For each model output, 2 distributions are shown for each of the three fuel pathways examined. The items
labeled “FF” (food fixed) were simulated with food consumption fixed in non-Annex-I countries; those
labeled “FNF” (food not fixed) were run without this constraint. Constraining food consumption removes
a degree of freedom for the model, causing other modeled behavior (e.g., extensification) to take up the
slack, and resulting in ILUC emissions that were consistently about 10 g CO2 MJ−1 higher than without
the constraint.

S4.1 Non-CO2 emissions

The GTAP non-CO2 version 7 database (Rose et al., 2010) includes nitrous oxide (N2O), methane (CH4)
and fourteen fluorinated gases (F-gases). In each region, non-CO2 emissions are provided for each economic
sector and driver, and regional household. To track changes in non-CO2 emissions within the GTAP-BIO-
ADV model, emissions are tied to specific drivers within each sector: factor inputs, intermediate inputs, or
output. For example, emissions from fertilizer application in crop production are proportional to fertilizer use
in crops. In livestock sectors, emissions from enteric fermentation and manure management are proportional
to livestock capital. Household non-CO2 emissions are tied to energy use.

Tables S7 and S8 show the mean and bounds of the central 95% of the distribution for simulations with
the three fuels, with food consumption fixed in non-Annex I countries (FF) and not fixed (FNF), both
excluding (table S7) and including (table S8) NonCO2 emissions. Note that for cane ethanol, including
non-CO2 emissions reduces the total emissions.

Table S7: Summary of results for ILUC emissions (g CO2e MJ−1), not including changes in emissions of
methane (CH4) or nitrous oxide (N2O). FNF=food consumption not fixed anywhere; FF=food consumption
is fixed in non-Annex I countries.

Experiment Mean 2.5 percentile 97.5 percentile

Corn ethanol, FNF 25 13 42
Corn ethanol, FF 33 18 55
Cane ethanol, FNF 25 10 43
Cane ethanol, FF 36 17 59
Soybean biodiesel, FNF 25 13 43
Soybean biodiesel, FF 38 21 62

Table S8: As described in Table S7, except including changes in emissions of methane (CH4) and nitrous
oxide (N2O).

Experiment Mean 2.5 percentile 97.5 percentile

Corn ethanol, FNF 36 26 52
Corn ethanol, FF 46 33 68
Cane ethanol, FNF 18 4 35
Cane ethanol, FF 33 15 56
Soybean biodiesel, FNF 32 21 49
Soybean biodiesel, FF 48 32 71

16



S4.1 Non-CO2 emissions S4 MODEL RESULTS

Corn ethanol FNF

Corn ethanol FF

Sugarcane ethanol FNF

Sugarcane ethanol FF

Soybean biodiesel FNF

Soybean biodiesel FF

g CO2e MJ-1
0 10 20 30 40 50 60 70 80 90

ILUC Emission Factor

(a) ILUC emission factor

Corn ethanol FNF

Corn ethanol FF

Sugarcane ethanol FNF

Sugarcane ethanol FF

Soybean biodiesel FNF

Soybean biodiesel FF

g CO2e MJ-1
−10 −5 0 5 10 15

Non-CO2 Emission Factor

(b) Non-CO2 emission factor, i.e., N2O emissions from changes in fertilizer
and manure application and in CH4 emissions from changes in rice cultivation
and livestock production

Corn ethanol FNF

Corn ethanol FF

Sugarcane ethanol FNF

Sugarcane ethanol FF

Soybean biodiesel FNF

Soybean biodiesel FF

g CO2e MJ-1
0 20 40 60 80 100

ILUC + Non-CO2 Emission Factor

(c) Total emission factor (ILUC emissions + Non-CO2 emissions)

Figure S2: Comparison of ILUC, nonCO2 and total emission factors for three fuel systems, both with food
fixed (FF) and food not fixed (FNF).
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Figures S3 through S5 show the frequency distributions for corn ethanol, sugarcane ethanol, and soybean
biodiesel, for 3 model outputs: ILUC emissions, non-CO2 emissions, and total emissions, which is simply the
sum of the first two. In these model runs, food consumption has been held fixed in non-Annex I countries.

Figures S6 through S8 show the same results but for model runs in which food consumption was not held
fixed anywhere.
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(b) Corn ethanol Non-CO2 Factor (food fixed)
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(c) Corn ethanol Total (ILUC+Non-CO2) Factor, (food fixed)
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Figure S3: Key model output distributions for corn ethanol, holding food consumption fixed in developing
countries.
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(a) Sugarcane ethanol ILUC factor (food fixed)
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(b) Sugarcane ethanol Non-CO2 Factor (food fixed)
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(c) Sugarcane ethanol Total (ILUC+Non-CO2) Factor,
(food fixed)
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Figure S4: Key model output distributions for sugarcane ethanol, holding food consumption fixed in devel-
oping countries.
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(a) Soybean biodiesel ILUC factor (food fixed)
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(b) Soybean biodiesel Non-CO2 Factor (food fixed)
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(c) Soybean biodiesel Total (ILUC+Non-CO2) Factor,
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Figure S5: Key model output distributions for soybean biodiesel, holding food consumption fixed in devel-
oping countries.
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(a) Corn ethanol ILUC factor (food not fixed)
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(b) Corn ethanol Non-CO2 Factor (food not fixed)
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(c) Corn ethanol Total (ILUC+Non-CO2) Factor,
(food not fixed)
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(d) Corn ethanol land Net Displacement Factor (food not fixed)

Figure S6: Key model output distributions for corn ethanol, without holding food consumption fixed.
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(a) Sugarcane ethanol ILUC factor (food not fixed)
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(b) Sugarcane ethanol Non-CO2 Factor (food not fixed)
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(c) Sugarcane ethanol Total (ILUC+Non-CO2) Factor,
(food not fixed)
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(d) Sugarcane ethanol land Net Displacement Factor (food not
fixed)

Figure S7: Key model output distributions for sugarcane ethanol, without holding food consumption fixed.
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(a) Soybean biodiesel ILUC factor (food not fixed)
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(b) Soybean biodiesel Non-CO2 Factor (food not fixed)
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(c) Soybean biodiesel Total (ILUC+Non-CO2) Factor,
(food not fixed)
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(d) Soybean biodiesel land Net Displacement Factor (food not
fixed)

Figure S8: Key model output distributions for soybean biodiesel, without holding food consumption fixed.
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S4.2 Statistical Convergence

Figures S9a and S9b show that the mean value for ILUC emissions intensity for corn ethanol converges
within about 500 trials, and standard deviation by about 1,500 trials. The corresponding plots for other
output variables and biofuel pathways are quite similar.
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(a) Convergence of the mean value for ILUC emissions,
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(b) Convergence of the standard deviation for ILUC emissions,
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Figure S9: Convergence plots for the mean and standard deviation for the ILUC emissions associated with
corn ethanol (food not fixed).
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(a) Convergence of contribution to variance for corn ethanol over 6,000 trials (food not fixed).
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(b) Convergence of contribution to variance for sugarcane ethanol over 6,000 trials (food not fixed).

Figure S10: Convergence of contribution to variance as a function of the number of trials examined.
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S4.3 Contribution to variance

We estimate contribution to variance using normalized rank (Spearman) correlations. For each input param-
eter, we compute the rank correlation with various output parameters across all trials. The rank correlations
are squared and normalized to a percentage by dividing each by the sum of the squared correlation val-
ues. We restore the original sign to indicate directionality. Figures S12 through S17 show the percentage
contribution to variance of the most influential input parameters to ILUC emissions.

Parameters contributing 1% or more to total variance (Table S9) were included; others were considered
unimportant contributors individually, though they together accounted for 20% of the total variance. Re-
ducing the number of parameters to the “most important” 16 results in a reduction in the number of random
variables from 538 in the “broader” stochastic scenarios to 37. (Several matrix or vector parameters have
individual random value for rows and/or columns, thus the larger number of random variables than model
parameters.) Simulation with this reduced number of parameters does not change results much. Predictably,
the right tail is slightly less extreme, but for the purposes of, say, identifying parameters to include in an
SSA, or for running numerous alternative MC simulations with fewer trials, this is a good approximation.
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Figure S11: Frequency distributions for ILUC emission intensity showing the relative contributions to vari-
ance of the GTAP-BIO-ADV and AEZ-EF models for corn ethanol (a), sugarcane ethanol (b), and soybean
biodiesel (c), in all cases with food consumption not fixed. In each plot, the bottom boxplot shows the
results when GTAP-BIO-ADV parameters were fixed and AEZ-EF parameters varying. The middle boxplot
shows the results with parameters from GTAP-BIO-ADV varying and those from AEZ-EF fixed. The top
boxplot shows the results with all parameters varying. The simulations each used 3000 trials.
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Table S9: Parameters (in alphabetical order) contributing at least 1% of the variance in ILUC emissions for
the CornFNF or CaneFNF experiments.

Parameter Name Description

GTAP-BIO-ADV model
ELHB Elasticity of substitution in biofuel subcon-

sumption
EPSR Elasticity of substitution in pasturecrop

and pasturecover
ESBM Armington elasticity of substitution within

composite import bundle
ESBV Elasticity of substitution in value-added-

energy sub-production
ETA Relative productivity of newly converted

cropland, by Region-AEZ
ETL1 Elasticity of transformation between for-

est, cropland, and pasture
PAEL Scalar yield elasticity target for cropland

pasture
YDEL Elasticity of yield with respect to price

AEZ-EF model
Cropland land use factor A parameter used in IPCCs method to

compute soil carbon change
Cropland-pasture emission ratio The fraction of emissions from pasture con-

version assumed to be emitted upon con-
version of cropland-pasture

Deadwood by latitude C Carbon content of deadwood in boreal,
temperate, and tropical AEZs

Foregone growth rate The rate of tree growth (Mg C ha−1 y−1)
that would have occurred absent land use
change

N2O-N emission rate The fraction of applied N released in the
form of N2O

Pasture soil C The carbon content of pasture soil to 30
cm

Regrowth C Tree growth for reforestation over 30
years (correlation with Foregone growth
rate=.75)

Total tree C The total amount of carbon in trees
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(b) Uncertainty importance for non-CO2 emissions, corn ethanol (food not fixed).

Figure S12: Contribution to variance in ILUC factor and non-CO2 emissions (corn ethanol; food not fixed).
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(b) Uncertainty importance for non-CO2 emissions, corn ethanol (food fixed).

Figure S13: Contribution to variance in ILUC factor and non-CO2 emissions (corn ethanol; food fixed).
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(b) Uncertainty importance for non-CO2 emissions, sugarcane ethanol (food not fixed).

Figure S14: Contribution to variance in ILUC factor and non-CO2 emissions (sugarcane ethanol; food not
fixed).

31



S4.3 Contribution to variance S4 MODEL RESULTS

0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8

Contribution to variance

croplandSoil_C

forestBurningEF

ELHB

carbonNitrogenRatio

forestSoil_C

N2O_N_EF

EPSR

ESBV

ESBM

ETL1

pastureSoil_C

foregoneGrowthRate

regrowth_C

deadwoodByLatitude_C

croplandLandUseFactor

totalTree_C

PAEL

croplandPastureEmissionRatio

ETA

YDEL

Sensitivity of ilucFactor

SimId=28, Exp=Cane2FF, Trials=6000
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(b) Uncertainty importance for non-CO2 emissions, sugarcane ethanol (food fixed).

Figure S15: Contribution to variance in ILUC factor and non-CO2 emissions (sugarcane ethanol; food fixed).
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(a) Uncertainty importance for ILUC emissions, soybean biodiesel (food not fixed).
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(b) Uncertainty importance for non-CO2 emissions, soybean biodiesel (food not fixed).

Figure S16: Contribution to variance in ILUC factor and non-CO2 emissions (soybean biodiesel; food not
fixed).
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(b) Uncertainty importance for non-CO2 emissions, soybean biodiesel (food fixed).

Figure S17: Contribution to variance in ILUC factor and non-CO2 emissions (soybean biodiesel; food fixed).
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S5 Comparison with other studies

Table 1 compares results for corn ethanol uncertainty analysis from this paper and with those from other
studies, indicating which type of model parameters (economic or GHG accounting) were incorporated in the
uncertainty analysis.

Below, we briefly discuss uncertainty analysis for the two studies less described in the main text (USEPA,
2010; Laborde and Valin, 2011). For the Plevin (2010) entry, the values presented are those generated using
uniform distributions on all parameters. The values shown for Hertel et al. (2010) were generated using the
RunGTAP Systematic Sensitivity Analysis feature, which is based on a Gaussian Quadrature approach. The
remaining analyses used Monte Carlo simulation. The values from Laborde and Valin (2011) were multiplied
by 2/3 to convert from 20-year to 30-year amortization as was used in the other studies listed. ILUC-MCS
(A) shows results without fixing food consumption in developing countries, while (B) shows results with
fixing food consumption. ILUC-MCS (C) shows results varying only GTAP parameters, while (D) shows
results varying only AEZ-EF parameters. Note that the evaluation years for USEPA and Laborde studies
were hypothetical worlds in 2022 and 2020, respectively, whereas the Hertel et al. study and ILUC-MCS
assumed medium-term adjustment to a shock imposed on the global economy in 2001 and 2004, respectively.
All studies targeted US corn ethanol shocks, except for Laborde and Valin (2011), where the amount and
location of corn production to satisfy the EU RED policy was endogenously determined (alongside the rest
of the biofuel mix, given an exogenously determined ethanol/biodiesel ratio).

Table S10: Uncertainty ranges estimated for indirect land-use change emission intensity from
expanding corn ethanol production. See text for detailed explanation.

Parameters varied ILUC emission factor (g CO2e MJ−1)
Model Economic GHG Accounting 2.5% value Mean 97.5% value

ILUC-MCS (A) � � 13 25 42
ILUC-MCS (B) � � 18 33 55
Hertel et al. (2010)a � � 2 27 52

Plevin (2010)b � � 21 62 142
ILUC-MCS (C) � – 15 25 41

Laborde and Valin (2011) � – 4d 7 8.8e

ILUC-MCS (D) – � 18 23 29
USEPA (2010)c – � 22 30 40

a Examining the variation of the most controversial yield parameters yielded a range of 15 to 90 g CO2e
MJ−1.
b Based on the results using uniform distributions.
c International (outside US) LUC emissions only, for year 2022.
d 5% value
e 95% value

S5.1 Laborde (2011)

This study included a Monte Carlo analysis on seven economic parameters, over 1000 trials, assuming a
log-uniform distribution centered on the default value. The approach assumes perfect correlation across
sectors/countries or regions for a given parameter, but independent draws for each parameter. To establish
parameter ranges, they extended initial parameter ranges drawn from studies in the literature, dividing the
lower bound by 2 and multiplying the upper bound by 2, except as noted below.
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Economic factors incorporated in this analysis overlapped partially with our analysis, although the pa-
rameter list differed somewhat because of the differences between the GTAP-BIO-ADV and MIRAGE-Biof
model structures and assumptions. Overlapping factors included (default values and ranges for developed
and developing countries —sometimes different—are in the report):

• Endogenous yield response (YDEL in GTAP). In MIRAGE-BIof, this effect is incorporated in two
separate parameters, due to that models splitting out of key production inputs (feedstuff, fertilizer)
from primary factors (e.g., capital).

• Land substitution among crops (ETL2 in GTAP). In MIRAGE-Biof, the land use nesting structure
includes a different nest (and elasticity) for substitution among highly substitutable crops (e.g., grains
and oilseeds), and between other crops.

• Land expansion into other covers (ETL1 in GTAP). In MIRAGE-Biof, this parameter is used to
characterize ease of land transformation between used and available land for cropping. Thus, new
pasture and forest land are both considered potentially available for cropping. Although they were not
distinguished from one another in the MCS analysis, a shifter to a variable indicating the share of new
land coming from primary forest (based on work by Winrock International for the US EPA), was also
included in the Monte Carlo analysis.4

• Marginal yield return on new cultivated land (ETA in GTAP). For this parameter, the lower bound and
upper bound were set (at 0.5 and 1, respectively), rather than determined by dividing and multiplying
identified ranges by a factor of 2.

• Shifter in demand elasticity for use of agricultural commodities as intermediate inputs (changes how
easily processing sectors substitute away from biofuel crops and oils, in response to the modeled shock)
(not in our MCS analysis using GTAP).

Several findings are worthy of note. The MCS found that the amount of newly converted land due to the
biofuel shock was more uncertain (widely dispersed) than changes in land already in production, highlighting
the impact of uncertainty about competition among forest, pasture, and cropland. The study also used MCS
results to analyze correlations of LUC effects across feedstocks, with a preliminary recommendation to
consider diversification of feedstock portfolio between tropical and non-tropical sources (as feedstocks within
these geographical areas were correlated with each other).

S5.2 US EPA (2010)

The study applied Monte Carlo analysis only to international (not domestic) land use change emissions,
based on output from the FAPRI-CARD international trade economic model on changes in area in particular
crops by region. The analysis first applied heuristic rules to translate economic model output into changes
in several land cover types “agriculture”—annual, perennial, and pasture—or “natural (unmanaged) land.
The CI analysis required estimating emission consequences of conversion of various types of unmanaged
land—savanna, forest, shrubland, wetlands, and mixed (cropland and natural vegetation). In contrast to
the GTAP treatment of forest land (accessible for economic activity, in particular forestry), all forest for the
EPA analysis was considered “natural.” The method was to apply proportional conversion rates of natural
land estimated from historical satellite imagery.

The uncertainty analysis then focused on estimates of types of unmanaged land that would be likely to
undergo conversion, and their associated emissions, using:

4Other assumptions on competition between productively used noncrop land were examined in sensitivity analysis supple-
mental to the MCS analysis.
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(a) classification of land covers from satellite imagery that were used to derive proportional allocations for
expansion of cropland into unmanaged territory (MODISv5 images for 2001and 2007); and

(b) errors in parameters used to estimate emission factors for conversion from one land cover type to
another.

For (a), a stochastic model based on estimated standard errors for the process used to adjust land cover
classifications relying on number of sampled validation training sites and the aggregation of land cover classes
to categories used by the EPA, and generated 95% confidence intervals for each of 54 international regions.
The stochastic model assumed normally distributed classification errors, and generated 300 alternative re-
alities of land covers based on the standard errors, each of which was used to calculate the pool of land
conversion shares for each region.

For (b), the uncertainty in emission factors, Monte Carlo analysis was performed to generate 95% con-
fidence intervals for administrative units/countries, combining uncertainty in sources of emissions (input
parameters) derived from data or expert opinion, assuming normality in parameter distributions, and im-
posing perfect cross-variable correlation in cases using common data source, geographic location, or data
interpolation process.

A Monte Carlo analysis was run combining uncertainty from (a) and (b), generating 300 land use change
trials by the method used in (a), and 50 emission factor draws by the method used in (b) for each of these
300 trials, for a total of 15,000 iterations. Mean and 95% CI of emissions were calculated for each region
and across regions using weighted average emissions across the iterations. The EPA emphasized that the
uncertainty surrounding the use of historical patterns to predict future land use change share allocations for
unmanaged land was not part of the MCS.

S6 Model limitations

This analysis examined only a small subset of the uncertainties associated with the GTAP-BIO-ADV and
AEZ-EF models. Out of necessity, most model parameter probability distributions were based on our
subjective judgment. In addition to parameter uncertainty, both GTAP-BIO-ADV and AEZ-EF involve
model uncertainties that are difficult to quantify, such as choices of functional forms for production and
demand functions and for soil carbon loss, uncertainties in base year data, biases or inaccuracies introduced
by aggregating sectors and regions, and omissions such as irrigation constraints on agricultural expansion
and the inability to convert non-commercial land into commercial use.

Like all models, the two models used here gain tractability by simplifying a more complex reality. Al-
though the models are useful for illuminating relationships among key parameters and sub-systems, as noted
at the outset of the paper, their results should not be interpreted as a prediction of real world outcomes. We
discuss model uncertainties and limitations in more detail below.

S6.1 GTAP

Some GTAP parameters are econometrically estimated, however many are based on expert opinion, i.e.,
educated guesses. Even where parameters are estimated, owing to a paucity of data, many regions and
sectors are assigned a single value based on literature describing a small number of regions. Given the lack
of data for point estimates, it is not surprising that there is generally inadequate information from which to
develop distributions for model inputs. For this reason, some studies assign a simple stylized distribution
to all or most parameters such as normal distributions with a coefficient of variation of 20% (Elliott et al.,
2011), or uniform distributions from 50% to 200% of the parameters point estimate (Laborde and Valin,
2012).
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The GTAP-BIO-ADV model employed in this paper is a static rather than dynamic model; the experi-
ments presented in this paper do not capture changes in population, labor force, preferences and technology
over time. Thus, the model results therefore portray the effects of an instantaneous increase in biofuel
production in the assumed circumstances and year. This version of the GTAP model represents only land
in current economic use for forestry, livestock grazing, and cropping. Unlike some other CGE models (e.g.,
MITs EPPA and IFPRIs MIRAGE) and partial equilibrium models (e.g., GCAM), this version of GTAP can-
not project conversion to economic use of land not currently in economic use. For the purposes of estimating
ILUC emissions, it would be helpful if GTAP were modified to include this capability.

In addition to parameter uncertainty, CGE models involve model uncertainties stemming from modeling
choices that are difficult to quantify, such as the effects of the choice of functional forms for production
and demand functions, the level of sectoral and regional aggregation, the choice of baseline year, and the
calibration of model parameters to that year. In addition, the national input-output data used to produce
the core social accounting matrix (SAM) is of varying accuracy and the SAM must be manipulated into an
initial equilibrium state that didn’t exist in the real world. The procedure for adjusting the SAM is inevitably
somewhat subjective. These uncertainties are not generally included in uncertainty analyses of CGE models,
yet these choices can substantively affect model outcomes (Jansen, 1994; Roberts, 1994; McKitrick, 1998;
Abler et al., 1999). Model uncertainty is particularly challenging to quantify because we cannot compare
results to the real world to gauge the models accuracy. Though, with respect to the GTAP model, several
studies did validate the model (Liu et al., 2004; Valenzuela et al., 2007; Beckman et al., 2011). More generally,
all complex, open systems (including CGE and ecosystem carbon accounting models) in which processes are
incompletely understood, and input data incompletely known, are fundamentally unverifiable (Oreskes et al.,
1994).

With time, as more data become available, additional aspects of the modeling exercise (behavioral pa-
rameters, expected correlations, outcomes) may be verifiable empirically using statistical analyses.

Similar uncertainties arise with respect to ecosystem carbon accounting models: functional forms, choice
of the parameters, and assumptions required to fill in missing values. These are discussed further in section
S6.2.

Beyond uncertainties associated with model construction and data manipulation, estimating ILUC emis-
sions requires several additional assumptions or modeling choices that substantively affect model results,
including:

• Assumption that ILUC can be estimated through economic modeling alone, i.e., that economic model
parameters—primarily elasticities—and constraints can be adjusted to reflect important economic or
non-economic factors, e.g., if land that is not used productively is subject to expropriation

• Choice of model type: CGE vs PE (trading off the strength of capturing complex economy-wide
feedback effects (in CGE) against important sectoral bottom-up detail)

• Choice of, and consistency in timeframe examined

• Policy choices about which features to include in the model (e.g., whether reduction in food con-
sumption should receive GHG reduction credit), and which real-world factors are important enough to
include (e.g., irrigation constraints)

Other limitations particular to the version of GTAP we’ve used include:

• Disagreement among experts about correct values for model parameters

• Forest that is not currently in economic use cannot be brought into production.
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S6.1.1 Estimating ETA: the relative productivity of newly converted cropland

The GTAP-BIO-ADV model estimates the relative productivity of land converted to cropland using the ratio
of (i) the average net primary productivity (NPP) of land not in crop production at in the initial equilibrium
state, to (ii) the average NPP of land in crop production in the initial equilibrium (Taheripour and Tyner,
2012). These values are computed per Region-AEZ combination using the Terrestrial Ecosystem Model by
modeling the NPP of a C4 crop (calibrated to corn grown in Iowa in 1996).

To account for the increased productivity resulting from irrigation of currently cropped land, the ratios
are reduced by 10%. Based on the assumption that new cropland would not be more productive than existing
cropland, on average, the ratios are then truncated to 1. While this approach is a conceptual improvement
over applying a single value for ETA globally (e.g., Hertel et al., 2010), the method used requires several
critical assumptions:

1. TEMs estimates of NPP are reasonably accurate.
Pan et al. (1996) performed a sensitivity analysis on the TEM model (version 4.0), showing that
estimated NPP is sensitive to different assumptions about soil texture, temperature, precipitation, and
radiation. These factors vary over space and time.

2. The ratio of average NPP of non-cropped land to cropped land is a good proxy for the
relative yield of land actually brought into production.
For this to be true, either the variance around yield values in a given region must be small, or the
selection of land must be random. If land selection is based on assumed yield potential, using the
average would underestimate the yield, whereas if land is selected by proximity to existing cropland, its
unclear whether the average under- or overestimates the yield. As the authors indicate, a single Region-
AEZ can contain land with widely varying productivity (Taheripour and Tyner, 2012). In addition,
differences in management practices can produce large differences is yield, regardless of potential NPP.
Note that if land selection were indeed random, there should be no difference in productivity between
cropped and non-cropped landand this analysis wouldnt be necessary.

3. Reducing the NPP ratios by 10% is a good proxy for the effects of irrigation.
Irrigation is only one of the management practices that affects actual productivity, and its unclear that
a 10% correction accounts for these differences.

4. Truncating the ratios to 1 produces a more accurate result.
If the basic approach of using the NPP ratio to estimate relative productivity is correct, its unclear
why a correction should be required. Nor is it clear why 1 is the best value: why not 0.9, 1.1, or some
other value? Should truncation to 1 precede reduction by 10% for irrigation?

We hasten to note that these factors do not invalidate the method of estimating ETA, but the cascade
of uncertainties represented by these assumptions does suggest treating the resulting ETA values as
coarse approximations. In the end, its difficult to judge whether this approach produces a more accurate
result than was achieved using a single global value for ETA.

S6.2 AEZ-EF

The report on the AEZ-EF model documents numerous uncertainties and limitations associated with that
model (Plevin et al., 2014). We briefly summarize them here.

• Forest carbon stocks represent the area-weighted average for all forested land in each Region-AEZ,
while GTAP represents only (economically) accessible forest.
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• Wetlands are assumed to not be cropped; a carbon density threshold is applied to identify and filter
out wetlands.

• Estimates of forgone sequestration depend on the unknowable future state of a forest.

• Estimates of carbon in long-lived wood products are very coarse.

• Estimates of below-ground carbon are estimated based on allometric equations.

• Estimates of the carbon stored in litter, understory plants, and harvested wood products are based on
coarse estimates.

• CO2-equivalence is summed for only CO2, CH4, and N2O. Other known climate forcing effects (e.g.,
albedo change, emissions of aerosols and GHG-precursors) are excluded from the analysis.

• GTAP does not project specific land cover transitions; it provides only projected net changes in area
for each land cover class. Heuristics are applied to identify plausible land transition sequences.

• Up-front emissions resulting from LUC are linearly amortized over 30 years; the atmospheric residence
time and decay of GHGs is not accounted for.

• All emissions from above and below-ground carbon are assumed to be released immediately.

S6.2.1 Cropland-pasture emission ratio

To represent the emission from conversion of cropland-pasture (C-P), the AEZ-EF model multiplies the
emissions computed (by region and AEZ) for pasture conversion by 50% to estimate the emissions from
cropland-pasture conversion. We note that in the Monte Carlo analyses, we represented this value with a
triangular distribution bounded by 0 and 1 with a mode of 0.5.

S6.2.1.1 Treatment of Cropland-Pasture in the CCLUB model

Here we compare the approach taken in the CCLUB model, released by Argonne National Laboratory
(Dunn et al., 2013).

To assess changes in soil carbon in the U.S., CCLUB uses a “surrogate” Century model (results of saved
Century model runs), at the county level, using each counties dominant soil textures, as well as yield and
weather history.

CCLUB estimates emissions only for the conversion of cropland-pasture, forest, and pasture to biofuel
feedstock production. That is, when modeling biofuels from corn, miscanthus, switchgrass or corn with
stover removal, CCLUB assumes these lands are converted to the modeled biofuel feedstock. CCLUB
averages emissions factors across counties in an AEZ to produce a single, average AEZ value, which is then
applied to area projected to change by the GTAP model. We note that the emission factors are not weighted
to account for the different land area in each county. For land-use changes outside, the model incorporates
emission factors developed by Winrock International for the U.S. Renewable Fuel Standard (Harris et al.,
2008; Harris, 2011).

The CCLUB model authors created a young forest-shrub category within ’accessible’ forest to reconcile
GTAP forest data with other data sources. This assumption, however, is applied to land-use change estimates
for which GTAP-BIO-ADV considered this land to be commercial forest.

The accuracy of results using the CCLUB method depends on these assumptions:

1. The dominant (majority or plurality) soil type in each county is assumed to be a good
proxy for the average soil type (and C stock or conversion emissions) in the county.
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2. The simple (i.e., not area-weighted) average C stock by county in an AEZ is assumed to
be a good proxy for the average C stock in the AEZ.

One value is used to represent the C stock in each county in an AEZ, and the resulting values are
averaged without regard to relative land area: an area-weighted average would be more appropriate
since the size of counties is highly variable. According to data downloaded from the US Census website,
the maximum county area in the US is 145,505 sq mi, with an average of 1,124 sq. mi. and a standard
deviation of 3,611 sq. mi. From our carbon database, its clear that C stocks are also highly variable
spatially. It’s unclear how the use of simple averaging biases the results: if the extremes of area line
up with the extremes of C, using the average could be highly distorting. Of course, we might be lucky
and it all just averages out despite the high variance.

3. The Century model is assumed to accurately represent actual land conversion emissions.

Century represents changes in soil C to a depth of about 20 cm, while recent research suggests that
studies that sampling to this level misses important changes in soil C occurring in the full top meter of
soil as a result of different tillage practices. The point here is that a model such as Century is only as
accurate as the data used to calibrate it, and if methods used to produce that data introduce biases,
the modeled results will be similarly biased.

To produce the data used in the surrogate model, the authors first spin up Century to represent current
soil C stocks, based on an assumed land-use history. Specifically, the authors assumed that all C-P
was in crops from 1880-1950, in pasture/hay/grasslands from 1950-2010, and then in corn-corn or
miscanthus/switchgrass from 2011-2040. Even if Century models this land-use history perfectly, if the
land-use history of the land converted deviates from these assumptions, the Century projection will
misrepresent the actual state of the land.

The actual land-use history of the converted cropland-pasture strongly determines conversion emissions:
land recently in crops will have very low emissions, while lands taken out of crop production long ago
will have high emissions. Simply assuming a single land-use history across all land does not address
this key information gap.

4. All converted C-P is assumed to be replaced by the biofuel feedstock being examined in
GTAP-BIO-ADV.

GTAP-BIO-ADV, however, offers no indication of which specific crop is grown on converted C-P, nor
does it indicate how many ha were converted from cropland-pasture to cropland overall; it merely
provides the net change in each land use type, by region and AEZ.

5. Treating GTAP-BIO-ADV results as applying to a young forest-shrub category is assumed
to not bias the results.

Even if the new category represents land more accurately, this assumption is at odds with assumptions
underlying the economic logic. For example, if the GTAP model projects conversion of forestry land
to cropland, the supply of timber is reduced, which increases price and induces afforestation in other
regions. If this land is actually young forest-shrub, timber supply would be unaffected and thus the
afforestation would not be induced.

6. The average carbon stock in an AEZ is assumed to be a good proxy for carbon on the
land actually converted.

This assumption is reasonable if one further assumes either low variance of C stocks across the AEZ,
or that the land converted is randomly selected across the AEZ. The point is that if there is wide
variability and some non-random approach is used to select C-P land for conversion, the C stock on
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land actually converted could be biased toward one extreme or the other. Of course it also requires
that all the preceding assumptions are reasonable.

Given all of the assumptions required in this more complex procedure, there is little basis for calling the
result obtained more accurate than a simple assumption with a wide variance, and the apparently greater
precision imparted by excluding uncertainty is specious. We agree that the approach of assigning cropland-
pasture conversion half the emissions of pasture conversion is a coarse simplification.

However, since the real value is unknown, we assigned this parameter a broad distribution (uniform with
minimum of 0 and maximum of 1) in the Monte Carlo simulation. The USDA definition of cropland-pasture
admits everything from cropland to pasture5.

In addition to not knowing the actual carbon stock on actual cropland-pasture, the modeling framework
cannot identify which plot of cropland-pasture is converted, other than placing it within a given Region-AEZ.
High variance in C stock, and probably land-use history, therefore translates into broad uncertainty about
actual emissions.

The primary difference between the CCLUB approach and the AEZ-EF approach is that CCLUB employs
more finely-resolved data, not that it requires fewer assumptions. The CCLUB result appears more scientific,
but given the reliance on a number of assumptions without a strong empirical basis, e.g, computing average
AEZ carbon stocks using unweighted county-based averages, assuming that C-P transitions exclusively to
biofuel feedstocks, and assuming that all C-P has a single, known, land-use history—there’s no basis for
concluding that CCLUBs approach is more accurate. Both approaches are limited by the assumptions
required to bridge low-resolution CGE model results—which are not spatially-explicit and do not identify
specific land transitions—to the spatial resolution and land-transition specificity required to estimate carbon
changes.

S6.3 Limitations of the Monte Carlo simulation and analysis

In their analysis of ILUC using a CGE model of Brazil, Ferreira Filho and Horridge (2014) note:

A CGE model like that used here builds on a host of assumptions; about functional forms; about
assumed elasticity values; and about initial data. Rarely do we have a probability distribution
which measures the uncertainty of estimates that are fed in—so we cannot in general compute
probability distributions for model outputs. We can however merely report how results depend
on input values.

For example, in the GTAP-BIO-ADV model used in the present analysis, the land nesting structure is
very simple (cropland, pasture and forests compete in the same nest), potentially leading to overestimation
of conversion from forests to cropland (Babcock and Carriquiry, 2010); other CGE models employ a more
complex structure (Ahammad and Mi, 2005; Golub and Hertel, 2008). However, a more complex nested
structure requires additional transformation parameters, by AEZ and region, which should be calibrated to
land supply elasticities for which econometric estimates are not currently available. Given this issue, Laborde
and Valin (2012) conducted sensitivity analysis on the nesting structure of non-cropland.

For these and other reasons, a Monte Carlo simulation with the GTAP-BIO-ADV and AEZ-EF models
should likewise not be interpreted as a prediction. The MCS does, however, allow us to interrogate the
relationships among input and output parameters given the present model structure and data.

5See http://www.ers.usda.gov/data/majorlanduses/glossary.htm#cropforpasture
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