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1. Calculation of Quantum Yield 

The quantum yield of QVBI was determined according to the following equation.
1
 

                      Φx = Φst(Dx/Dst)(Ast/Ax)(ηx
2
/ηst

2
)                          (1) 

Where Φst is the quantum yield of the standard, D is the area under the emission spectra, A is the 

absorbance at the excitation wavelength and η is the refractive index of the solvent used. x 

subscript denotes unknown, and st means standard. We chose quinine sulfate solution (Φ= 0.577 

in 0.1 M H2SO4) as the standard. 

 

2. Cell Cytotoxicity Assay  

According to the literature,
2
 the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium 

bromide) assay was used to test the cytotoxicity of QVBI to human renal carcinoma cells 7860. 

The cells with a density of 1×10
5
 cells per mL were cultured in a 96-well microplate to a total 

volume of 100 μL per well at 37 ℃ in a 5% CO2 atmosphere. After 24h, different concentrations 

of QVBI of 0.01 μM, 0.1 μM, 1 μM, 5 μM, 10 μM and 50μM were incubated with human renal 

carcinoma cells 7860 for 4 h in fresh medium, respectively. Cells in a culture medium without 

QVBI were used as the control. After washing the cells with cold phosphate buffered saline (PBS, 

pH 7.4) three times, 10 μL of MTT solution (10 mg·mL
-1

, PBS) was added into each well of the 

96-well microplate for another 4 h. Then, the remaining MTT solution was removed from the 

wells and 150 μL of DMSO was added into each well to dissolve the intracellular blue-violet 

formazan crystals. The absorbance value of the solution was measured at 490 nm wavelength. The 

cell viability was calculated by the following equation: 

                         % viability = [∑(Ai/Acontrol × 100)]/n                     (2) 

where Ai is the absorbance of different concentrations of the probe of 0.01 μM, 0.1 μM, 1 μM, 5 

μM, 10 μM and 50μM, respectively. Acontrol is the average absorbance of the control well in which 

the probe was absent, and n (=5) is the number of the data point. 

 

3. Supplementary Figures 

 

         

Figure S1. (a) Sigmoidal fitting of ratiometric fluorescence intensity (F522nm/F630nm) to various pH values (from 6.7 

to 1.5). λex = 412 nm. (b) Change of fluorescence spectra of QVBI at pH 6.7 and 1.5. λex = 488 nm. 
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Figure S2. Change of fluorescence spectra of QVBI in the 10% cell medium with pH decreased from 6.7 to 1.5 (λex 

= 412 nm). (Inset) Sigmoidal fitting of pH-dependent fluorescence intensity at 522 nm.  

 

 

Figure S3. Changes in fluorescence intensity for QVBI with times at different pH (λex = 412 nm, λem = 522 nm at 

pH 6.7 and 3.7, λem = 630 nm at pH 1.8, respectively). Excitation and emission bandwidths were both set at 2 nm. 

 

 

Figure S4. Cell cytotoxic effect of QVBI on human renal carcinoma cells 7860. 1, control; 2, 0.01 μM; 3, 0.1 μM; 

4, 1 μM; 5, 5 μM; 6, 10 μM; 7, 50 μM. Data are expressed as mean values standard error of the mean of five 

independent experiments.
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Figure S5. The photostability measurement using confocal laser scanning microscope for BIU-87 cells. Excitation 

wavelength was 405 nm, and emission was collected in the green channel (500-550 nm). Scale bar: 20 μm. 

 

 

Figure S6. The photostability curves under confocal laser scanning microscope for average fluorescence intensity 

in regions of interest 1-6 shown in Figure S5. 

 

 

Figure S7. Comparison for the ratio of fluorescence intensity at green channel and red channel (Fgreen/Fred). Data 

are expressed as mean standard deviation (selected 7 E. coli cells).
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Figure S8. 1H NMR spectra of QVBI. 

 

 

 

Figure S9. 13C NMR spectra of QVBI. 
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Figure S10. MALDI-TOF MS spectra.
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