Supporting Information for:

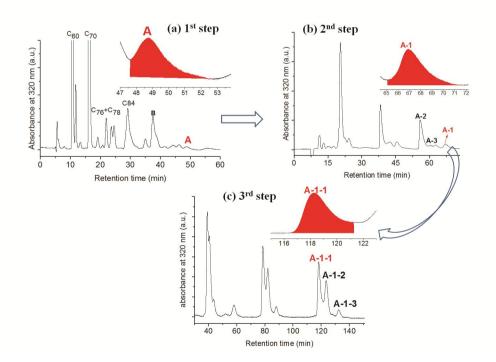
Capturing the Long-Sought Small-Bandgap Endohedral Fullerene

Sc₃N@C₈₂ with Low Kinetic Stability

Tao Wei,^a Song Wang,^a Fupin Liu,^a Yuanzhi Tan,^b Xianjun Zhu,^a Suyuan Xie,^b and Shangfeng Yang^{*a}

^a Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China (USTC), Hefei 230026,

China


^b State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China

Content

S1. Isolation of Sc ₃ N@C ₈₂	
S2. Estimation of the relative yield of Sc ₃ N@C ₈₂	[S3]
S3. X-ray crystallographic data of Sc ₃ N@C ₈₂ -C _{2v} (39718)	[S4]
S4. UV-vis-NIR spectrum of Sc ₃ N@C ₈₂ in CS ₂ solution	[S6]
S5. Thermal stability of Sc ₃ N@C ₈₂ vs Sc ₃ N@C ₈₀ - <i>I_h</i>	[S7]
S6. Cyclic voltammograms of Sc ₃ N@C ₈₂ in different scanning regions	[S7]

S1. Isolation of $Sc_3N@C_{82}$.

Sc₃N@C₈₂ was synthesized in a modified Krätschmer-Huffman generator by vaporizing composite graphite rods ($\Phi 8 \times 150$ mm) containing a mixture of Sc₂O₃ (99.99%) and graphite powder with a molar ratio of 1:15 (Sc:C) with the addition of 10 mbar N₂ into 400 mbar He. The as-produced soot was Soxhlet-extracted by CS₂ for 24 h, and the resulting brown-yellow solution was distilled to remove CS₂ and then immediately redissolved in toluene (~200 ml) and subsequently passed through a 0.2 µm Telflon filter (Sartorius AG, Germany) for HPLC isolation. Sc₃N@C₈₂ was isolated by three-step HPLC as illustrated in Fig. S1. In the first step, the fullerene extract mixture was isolated by 20 × 250 mm Buckyprep column, and fraction **A** with retention time ranging from 47.5 to 52.3 min was collected (see Fig. S1(a)). In the second-step isolation, the collected fraction **A** was subjected to the recycling HPLC isolation running in a 10 × 250 mm Buckyprep-M column, and fraction **A-1** was collected after two cycles (see Fig. S1(b)). In the third step, fraction **A-1** was further isolated by recycling HPLC using 10 × 250 mm Buckyprep column, resulting in isolation of fraction **A-1-1**, which was further checked by LD-TOF MS measurement as shown in Figure S2.

Figure S1. Isolation scheme of $Sc_3N@C_{82}$. (a) Chromatogram of the fullerene extract mixture obtained from Sc_2O_3 with addition of N_2 . (20 × 250 mm Buckyprep column; flow rate: 15 mL·min⁻¹; injection volume: 15 mL; toluene as eluent; 40 °C.) (b) Recycling HPLC chromatogram of fractions **A** isolated from the Sc_2O_3/N_2 extract (10 × 250 mm Buckyprep-M column; flow rate 5.0 ml/min; injection volume 5 ml; toluene as eluent; 40 °C). (c) Recycling HPLC chromatogram of fraction volume 5 ml; toluene as eluent; 40 °C). (c) Recycling HPLC chromatogram of fraction **A-1** (10 × 250 mm Buckyprep column; flow rate 5.0 ml/min; injection volume 5 ml; toluene as eluent; 40 °C). Inset: Enlarged chromatogram regions highlighting the fractions to be collected for next-step isolation. **A-1-1**: $Sc_3N@C_{82}$; **A-1-2**: $Sc_3CN@C_{80}$; **A-1-3**: Sc_3CNC_{82} ; **A-2**: C_{92} ; **A-3**: $Sc_2@C_{86}$; **B**: $Sc_3N@C_{80}$ (I)+ $Sc_3N@C_{80}$ (I)+ C_{86} .

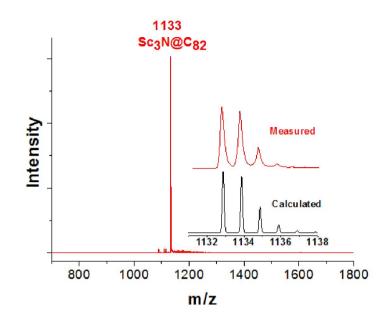


Figure S2. Postive-ion laser desorption time-of-flight (LD-TOF) mass spectrum of the isolated $Sc_3N@C_{82}$ (Fraction A-1-1). Insets: measured and calculated isotopic distributions of $Sc_3N@C_{82}$.

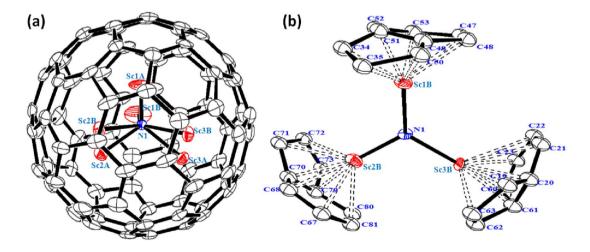
S2. Estimation of the relative yield of $Sc_3N@C_{82}$ to $Sc_3N@C_{80}(I_h)$ and $Sc_3N@C_{70}$.

The relative yield of $Sc_3N@C_{82}$ to $Sc_3N@C_{80}$ - I_h and $Sc_3N@C_{70}$ is estimated based on the integration area of the corresponding peaks in the chromatograms shown in Fig. S1.

Table S1. Assignments of	each (sub)fraction and the	ir relative abundance.

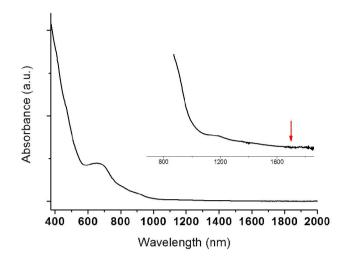
Fraction	Sub-fraction	Major component	Relative abundance
В	-	$\mathrm{Sc_3N}@\mathrm{C_{80}}-I_h$	79.1%
		$\mathrm{Sc}_{3}\mathrm{N}@\mathrm{C}_{80}$ - D_{5h}	13.2%
		C ₈₆	7.7%
Α	A-1	Sc ₃ N@C ₈₂ , Sc ₃ CN@C ₈₀	8.4%
	A-2 + A-3	$C_{92} + Sc_2C_{86}$	91.6%
A-1	A-1-1	Sc ₃ N@C ₈₂	48.6%
	A-1-2 + A-1-3	Sc ₃ CN@C ₈₀ , Sc ₃ CNC ₈₂	51.4%

(1) Given that relative yield of fraction A:B is 12.1%:1, the relative yield of $Sc_3N@C_{82}$ to $Sc_3N@C_{80}-I_h$ can be calculated as:


 $Sc_3N@C_{82}/Sc_3N@C_{80}-I_h = 48.6\% \times 8.4\% \times 12.1\% / 79.1\% \approx 0.62\%$

(2) In our previous work, the relative yield of $Sc_3N@C_{68}$ to $Sc_3N@C_{80}$ - I_h and $Sc_3N@C_{70}$ to $Sc_3N@C_{68}$ was calculated to be 1:10 and 1.8%:1, respectively.^[S1] Thus, the relative yield of $Sc_3N@C_{82}$ relative to $Sc_3N@C_{70}$ can be calculated as:

 $Sc_3N@C_{70}/Sc_3N@C_{80}-I_h = 1.8\% \div 10 = 0.18\%$


 $Sc_3N@C_{82}/Sc_3N@C_{70} = 0.62\% / 0.18\% \approx 3.4:1$

S3. X-ray crystallographic data of Sc₃N@C₈₂-C_{2v}(39718).

Figure S3. (a) Drawing showing the relative position of two Sc₃N sites inside the C_{82} - $C_{2v}(39718)$ cage, including the major one composed of Sc1A-Sc3A and the minor one consisting of Sc1B-Sc3B. All atoms are shown in 30% thermal ellipsoids. (b) Position of the minor Sc₃N site with respect to the nearest carbon atoms of $C_{2v}(39718)$ - C_{82} cage. C, N and Sc atoms are shown in gray, blue and red, respectively.

Temperature	T = 100 K	Crystal size	$0.1 \times 0.08 \times 0.06$		
			mm ³		
Empirical formula	C131 H56 N5 Ni Sc3	Reflections collected	7517		
Formula weight	1890.40	Independent reflections	6807[R(int) = 0.0374]		
Wavelength	1.54178	Completeness to θ	98.7% (θ = 70.79)		
Space group	C 2/m	Absorption correction	Numerical		
Unit cell dimensions	a = 25.2209(5) Å	Max. and min. transmission	0.71272 and 1.00000		
dimensions	b = 15.1985(3) Å	transmission			
	c = 19.9181(4) Å				
	$\beta = 94.772(2)$ °				
Volume	7608.5(3) Å ³	Refinement method	Full-matrix least-squares on F ²		
Ζ	4	Data/restraints/paramete rs	7517/1075/1034		
Density	1.650 g/cm^3	Goodness-of-fit on F2	0.937		
Absorption coefficient	3.045	Final R indices $[I > 2\sigma]$	R1 = 0.0721, wR2 = 0.1983		
F(0000)	3866	R indices (all data)	R1 = 0.0769, WR2 = 0.2034		
Theta range for data collection	3.971 to 70.310 °	Largest diff. peak hole	0.657 and -1.058 $e/Å^3$		
Index ranges	$-23 \le h \le 30$				
	$-18 \le k \le 18$				
	$-24 \le l \le 23$				

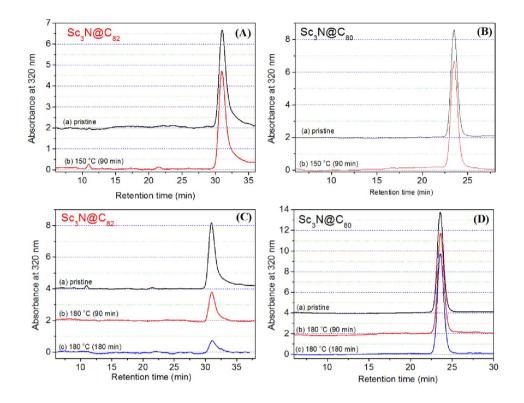
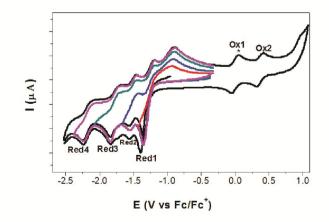


Figure S4. UV-Vis-NIR absorption spectrum of $Sc_3N@C_{82}-C_{2v}(39718)$ dissolved in carbon disulfide. Inset: enlarged spectral range of 680-1860 nm and the red arrow indicated the absorption onset at 1696 nm.

NCF	Absorption peaks (nm)	Absorption onset (λ _{onset} , nm)	$E_{g, optical} (eV)^a$	Ref.
Sc ₃ N@C ₆₈ -D ₃ (6140)	419, 452, 560, 600, 627, 659, 673, 729, 785, 824, 998	1200	1.10	S2
Sc ₃ N@C ₇₀ -C _{2v} (7854)	468, 558, 696, 807, 894	960	1.30	S1
$Sc_3N@C_{78}-D_{3h}(5)$	460, 623	1240	1.0	\$3
$Sc_3N@C_{80}-I_h(7)$	424, 735	820	1.51	S4
$Sc_3N@C_{80}-D_{5h}(6)$	413, 472	950	1.30	S4
$Sc_3N@C_{82}-C_{2v}(39718)^b$	341, 465, 642, 908	1696	0.73	This work


Table S3. Characteristic electronic absorption data and optical bandgap ($E_{g, optical}$) of Sc₃N@C_{2n} (2n=68, 70, 78, 80, 82) NCFs.

 ${}^{a}E_{g, optical}$ (eV) = 1240/ λ_{onset} (nm). ${}^{b}C_{82}$ -C_{2v}(39718) can be also labeled as C₈₂-C_{2v}(9) according to the conventional numbering of the isolated pentagon rule (IPR) isomers based on the Fowler-Monolopoulos spiral algorithm.^{S5}

Figure S5. HPLC chromatograms of purified $Sc_3N@C_{82}$ (A, C) and $Sc_3N@C_{80}$ - I_h (B, D) solutions in reflux toluene under heating at different temperature in ambient condition. (4.6 × 250 mm Buckyprep column; flow rate: 1.6 mL·min⁻¹; injection volume: 20 µL; toluene as eluent; 20 °C.)

S6. Cyclic voltammograms of Sc₃N@C₈₂ in different scanning regions.

Figure S6. Cyclic voltammograms of $Sc_3N@C_{82}-C_{2v}(39718)$ in *o*-DCB solution in different scanning regions showing the correlation of each reduction step with the corresponding re-oxidation step. Scan rate: 100 mV·s⁻¹, TBAPF₆ as supporting electrolyte. The asterisk labels the oxidation peak of ferrocene, which coincidentally overlaps with the first oxidation peak of Sc₃N@C₈₂-C_{2v}(39718).

Table S4. Redox potentials (V vs Fc/Fc⁺) and electrochemical energy gaps ($\Delta E_{gap, EC}$) of Sc₃N@C₈₂-C_{2v}(39718) and Gd₃N@C₈₂-C_s(39663).

Samples	$E_{1/2}$ (V vs Fc/Fc ⁺)					$\Delta E_{gap, EC}$ /	Ref.	
	Reduction steps (E _{1/2, red})			Oxida	tion step	V ^[a]		
				(E	1/2, ox)			
	first	second	third	fourth	first	second		
Sc ₃ N@C ₈₂ -C _{2v} (39718)	-1.35 ^[b]	-1.52	-1.78	-2.18	0	0.37	1.35	This
								work
$Gd_3N@C_{82}-C_s(39663)$	-1.52 ^[b]	-1.86 ^[b]	-	-	0.37	-	1.89	S6

^[a] $\Delta E_{gap,EC} = E_{1/2,ox(1)} - E_{1/2,red(1)}$; ^[b] The cathodic peak potential.

References:

- S1. Yang, S. F.; Popov, A. A.; Dunsch, L. Angew. Chem. Int. Ed. 2007, 46, 1256-1259.
- S2. Yang, S. F.; Kalbac, M.; Popov, A.; Dunsch, L. Chem. Eur. J. 2006, 12, 7856 7862.
- S3. Olmstead, M. M.; Bettencourt-Dias, A.; Duchamp, J. C.; Stevenson, S.; Marciu, D.; Dorn, H. C.; Balch, A. L. Angew. Chem. Int. Ed. 2001, 40, 1223 1225.
- S4. Yang, S. F.; Popov, A. A.; Kalbac, M.; Dunsch, L. Chem. Eur. J. 2008, 14, 2084 2092.
- S5. Fowler, P.; Manolopoulos, D. E. An Atlas of Fullerenes; Clarendon Press: Oxford, U.K., 1995.
- S6. Chaur, M. N.; Athans, A. J.; Echegoyen, L. Tetrahedron 2008, 64, 11387 11393.