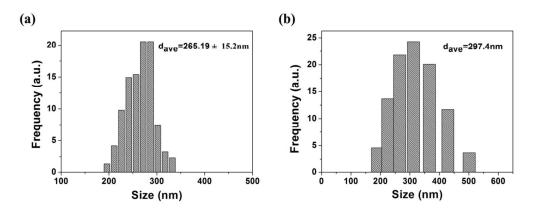
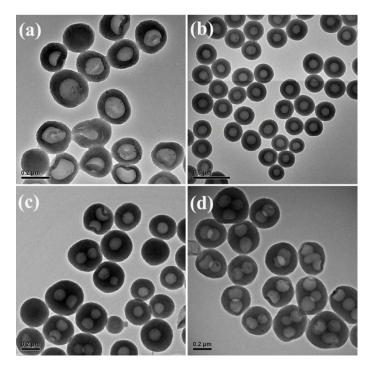
Supporting information for

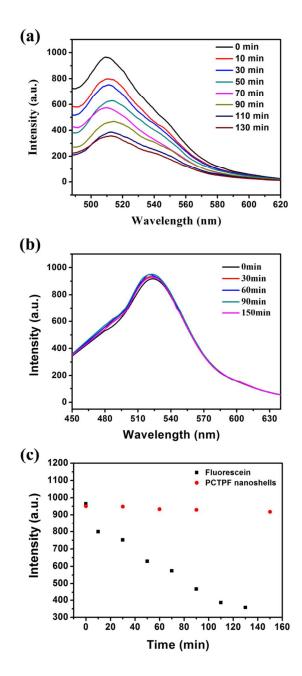
Fluorescent and Cross-linked Organic-Inorganic Hybrid Nanoshells for Monitoring Drug Delivery


Lijuan Sun[†], Tianhui Liu[‡], Hua Li[§], Liang Yang[§], Lingjie Meng^{*,‡}, Qinghua Lu^{*†}, and

Jiangang Long[§]


[†] School of Chemistry and Chemical Technology; State Key Laboratory of Metal Matrix Composites, Shanghai Jiaotong University, Shanghai, 200240, P. R. China. Email: qhlu@sjtu.edu.cn

[‡] School of Science; State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P.R. China. Email: menglingjie@mail.xjtu.edu.cn


§ School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China.

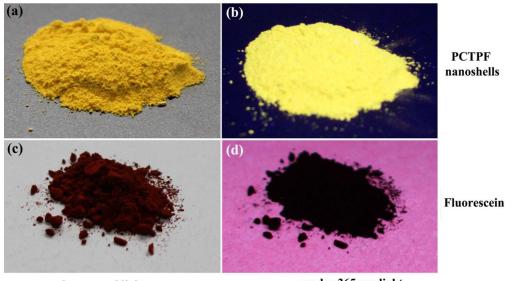

Figure S1. The size distribution of PCTPF nanoshells analyzed from (a) TEM images, and (b) DLS.

Figure S2. TEM images of nanoshells prepared by fixing the concentration of SiO_2 at 0.2 mg/mL, but tuning the concentration of HCCP and fluorescien at (a) 0.2 and 0.6 mg/mL; (b) 0.4 and 1.2 mg/mL; (c) 0.75 and 2.25 mg/mL; and (d) 1 and 3 mg/mL.

Figure S3. Fluorescence spectra of (a) fluorescein and (b) PCTPF nanoshells under different irradiation time at 365 nm (2 W), (c) plots of the fluorescent intensity of fluorescein *vs.* PCTPF nanoshells under different UV (365nm) irradiation time.

under natural light

under 365 nm light

Figure S4. Photographs of PCTPF nanoshells powder under (a) natural light and (b) 365 nm UV light, fluorescein powder under (c) natural light and (d) 365 nm UV light.