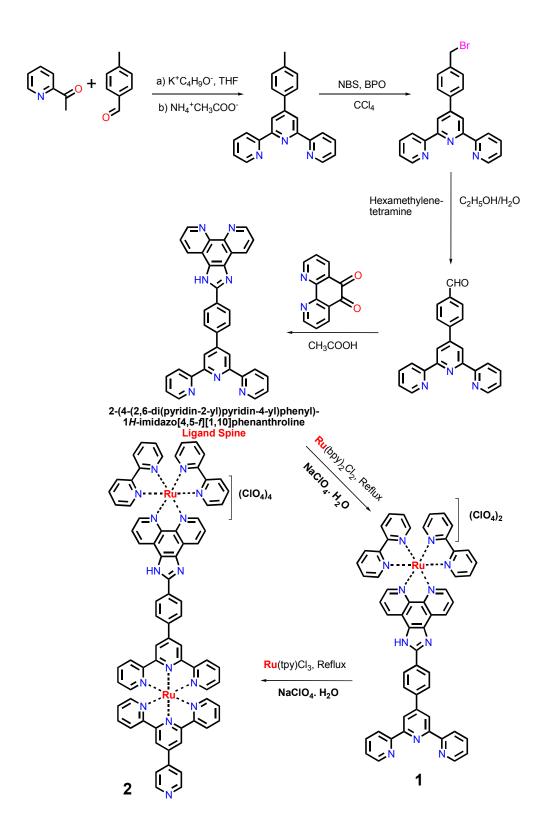
Supporting Information


Chromogenic Homo-Dinuclear Ruthenium(II) Monolayer as a Tunable Molecular Memory Module for Multibit Information Storage[†]

Anup Kumar,^a Megha Chhatwal,^a Domenico A. Cristaldi,^b Satish Kumar Awasthi,^a Rinkoo D. Gupta^c* and Antonino Gulino^b*

^aChemical Biology Laboratory, Department of Chemistry, University of Delhi, New Delhi-110 007, India

^bDipartimento di Scienze Chimiche, Università di Catania, and INSTM Udr of Catania, viale A. Doria 6, 95125 Catania, Italy, Tel: +39 095 7385067, email:agulino@unict.it

^cFaculty of Life Sciences and Biotechnology, South Asian University, New Delhi-110 021, India, Tel: +91 11 24122512 Ex.225, email:<u>rdgupta@sau.ac.in</u>

Scheme S1: Synthetic scheme for the homo-bimetallic chromophore 2.

Characterization of **2**:

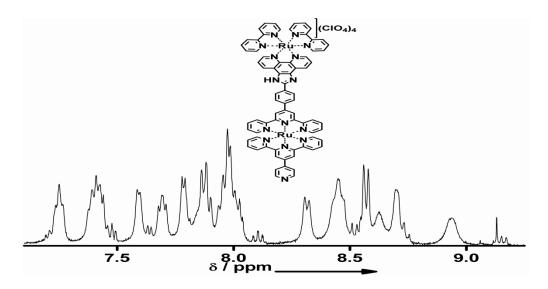


Figure S1: ¹H-NMR of **2** in DMSO- d_6 at ambient temperature.

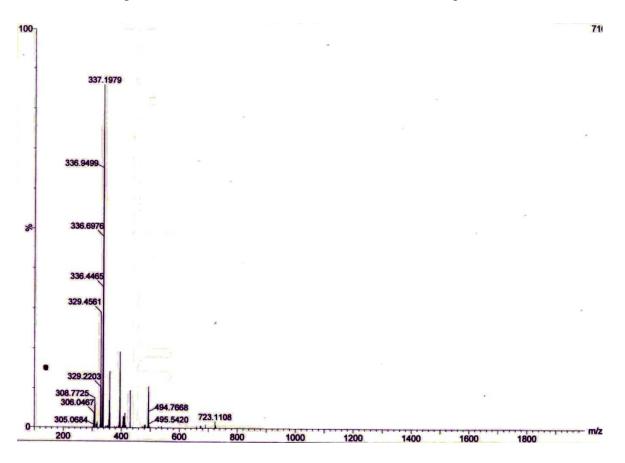


Figure S2: ESI-MS of **2** in acetonitrile at ambient temperature.

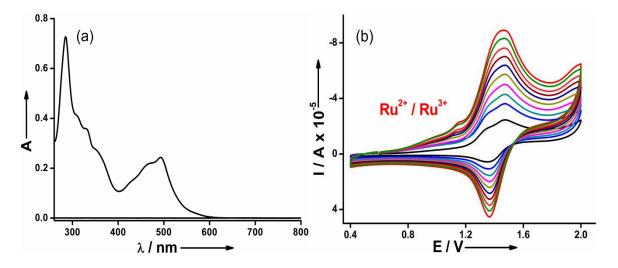


Figure S3: UV-vis spectrum of **2** (0.87×10^{-5} M, CH₃CN) at ambient temperature (a), Cyclic voltammetric responses of **2** (0.95×10^{-5} M, 10^{-3} M TBAP, CH₃CN) at different scan rates ranging from 100 - 1000 mVs⁻¹.



Figure S4: Plot showing linear fit of anodic (I_{pa} , red balls) and cathodic (I_{pc} , green balls) peak currents of **2** (0.95 × 10⁻⁵ M, 10⁻³ M TBAP, CH₃CN) as a function of scan rates ($R^2 = \sim 0.98$) (a), Plot of the peak current (I_{pa} / I_{pc}) ratio as a function of scan rates (b).

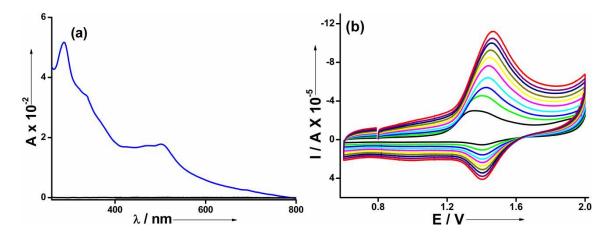


Figure S5: UV-vis spectrum of **2** on ITO monolayer (0.8×3 cm, CH₃CN) at ambient temperature (a), Cyclic voltammetric responses of **2** on ITO monolayer (0.8×3 cm, 20 mM TBAP, CH₃CN) at different scan rates ranging from 100-1000 mVs⁻¹ (b).

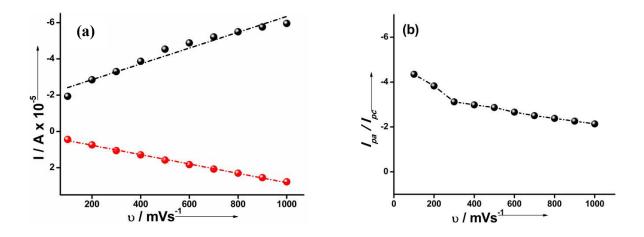


Figure S6: Plot showing the linear fit of anodic (I_{pa} , black balls) and cathodic (I_{pc} , red balls) peak currents of **2** on ITO monolayer (0.8×3 cm, 20 mM TBAP, CH₃CN) ($R^2 = \sim 0.99$) (a), as a function of scan rates (a). Plot of the peak current (I_{pa} / I_{pc}) ratio as a function of scan rates (b).

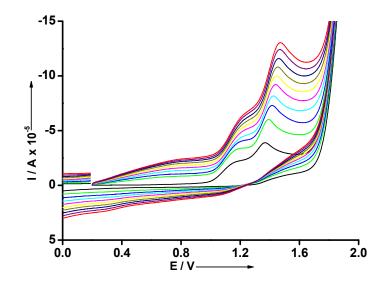


Figure S7: Cyclic voltammetric responses of ligand spine (0.87×10^{-5} M, 10^{-3} M TBAP, CH₃CN) at different scan rates ranging from 100-1000 mVs⁻¹.

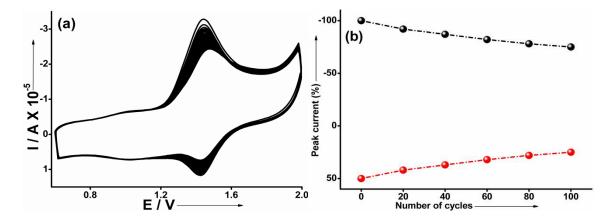


Figure S8: Read-write cycles of **2** on ITO for ruthenium metal centre (a). Anodic peak current (black balls) and cathodic peak current (red balls) as function of scan rate for 100 cycles (b).

Multi-potential switching of the absorbance of the 2 on ITO: The 2 on ITO was electrooptically switched by applying various potential biases for 1 s intervals, starting from 0.60 V and to 0.6 + n 0.1 V where n = 1, 2, 3... so on for 1 s. The monitoring the MLCT band at $\lambda = 502$ nm would result in precise control over the transparency of monolayer, as ΔA is a function of the voltage until complete (100%) oxidation is achieved.

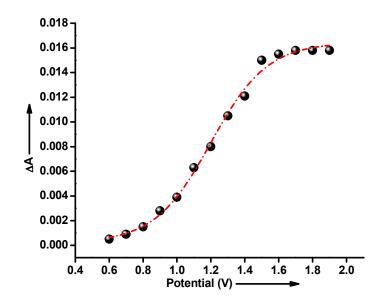


Figure S9. Difference in absorbance (ΔA) of the MLCT band at $\lambda = 502$ nm of **2** on ITO, as a function of the voltage, upon applying potential biases starting from 0.6 V to 0.6 + *n* 0.1 V where n = 1, 2, 3... so on for 1 s. Each data point represents the average of 3 measurements. The dashed red line is a sigmoidal fit ($\mathbb{R}^2 = 0.98$) of the data.

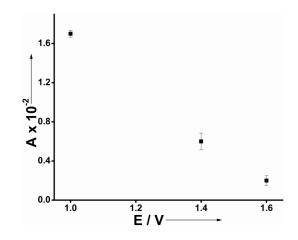


Figure S10: Details of triple-step potential based-switching carried out for three monolayers of **2** on ITO using the same set-up.

Electrochromic test in solution: Accumulative optical tuning of ruthenium. The electrolytic solution of homo-binuclear $(0.97 \times 10^{-5} \text{M}, 20 \text{ mM TBAP}, 50 \text{ ml})$ was purged with N₂ in the bulk electrolysis kit for 15 min with mild stirring. Then, potential biases of 1.6 - 1.0 V and 1.0 - 1.4 - 1.6 V were applied for the redox tuning of the ruthenium centers and spectra were recorded as a function of time. The reversibility was tested for 3 successive cycles.

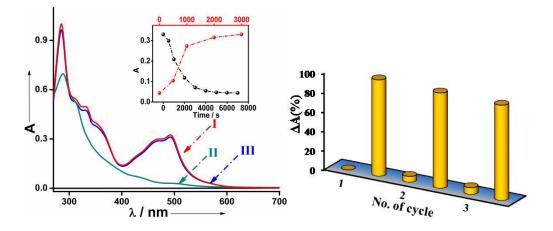


Figure S11: Absorbance intensity changes on electrochemical tuning of the ruthenium centers of the homo-binuclear complex (0.97×10^{-5} M, 20 mM TBAP in acetonitrile) in its initial spectrum (I) on applying 1.6 V (oxidation potential) (II), on applying 1.0 V (reduction potential) (III). Inset: representative plot for showing the gradual absorbance changes on applying the 1.6 V oxidation potential (black balls) and 1.0 V reduction potential (red balls), and bar chart for showing ΔA (%) at 492 nm (MLCT band position in solution study) *vs.* number of alternative redox cycles.

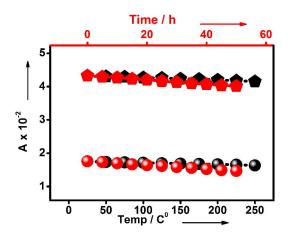


Figure S12: UV-vis monitoring of the **2** on ITO coated glass at various temperatures (25 - 250 °C) and time intervals (1 - 50 h) at 250 °C.

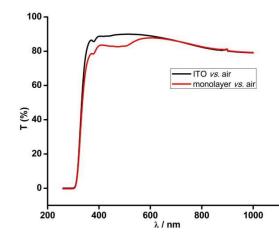


Figure S13: UV-vis transmittance spectra of ITO (black line) and **2** on ITO monolayer $(0.8 \times 3.0 \text{ cm})$.