Electronic Structures and Transport Properties of n-Type-Doped Indium Oxides

Zhangxian Chen,[†] Liang Huang,^{†,‡} Qingfan Zhang,[‡] Yongjie Xi,[†] Ran Li,[†] Wanchao Li,[†]
Guoqin Xu,*,[†] and Hansong Cheng*,^{†,‡}

[†]Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543

[‡]Sustainable Energy Laboratory, China University of Geosciences Wuhan, 388 Lumo Road, Wuhan, China 430074

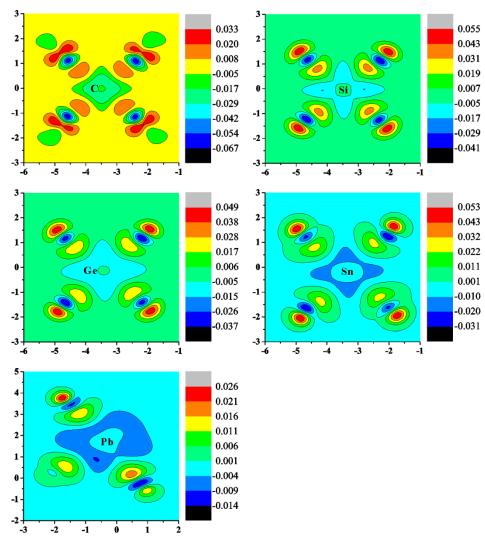


Figure S1. Charge density differences of In_2O_3 doped by group 14 elements. The charge difference is defined as $\Delta\rho = \rho_{total} - \rho_{dopant} - \rho_{In_2O_3}$. Here ρ_{total} , ρ_{dopant} and $\rho_{In_2O_3}$ refer to the charge density of doped system, single dopant atom and the rest In_2O_3 , respectively.

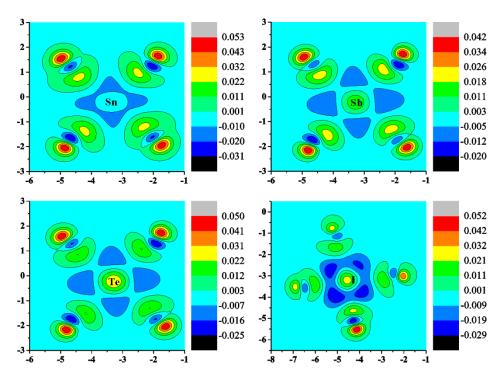


Figure S2. Charge density differences of In₂O₃ doped by Sn, Sb, Te and I.