N-Heterocycles from Chromium Aminocarbenes.

Martin Déry, Kevin Assouvie, Nora Heinrich, Isabelle Rajotte, Louis-Philippe D. Lefebvre, MarcAndré Legault, and Claude Spino*

Département de Chimie, Université de Sherbrooke, 2500 boul. Université, Sherbrooke, Québec, Canada, J1K 2R1

Claude.Spino@usherbrooke.ca

Supporting information

GENERAL CONSIDERATIONS 7
SYNTHESIS OF CHROMIUM AMINOCARBENES 8
Synthesis of chromium aminocarbene 13a-b (see after the synthesis of 13c and 13e) 8
Synthesis of chromium aminocarbene 13c and 13e 8
(E)-N-cyclohexyl-N-(hepta-4,6-dien-1-yl)formamide (18c) 8
(E)-Pentacarbonyl[(N-cyclohexyl-N-(hepta-4,6-dien-1-yl)amino)methylene]chromium(0) (13c). 9
N -cyclohexyl-N-(3-buten-1-yl)formamide (18e) 10
Pentacarbonyl[(N-cyclohexyl-N-(3-buten-1-yl)amino)methylene]chromium(0) (13e) 11
Synthesis of chromium aminocarbene 13a, 13b, 13d and 13f-i 11
N-Benzylformamide (16a) 12
N -(Cyclohexylmethyl)formamide (16b) 12
N-Isobutylformamide (16d) 13
(E)-N-(Benzyl)-N-(hepta-4,6-dienyl)formamide (18a) 13
(E)-N-(Cyclohexylmethyl)-N-(hepta-4,6-dienyl)formamide (18b) 14
(E)-Pentacarbonyl[(N-(benzyl)-N-(hepta-4,6-dienyl)amino)methylene]chromium(0) (13a)
(E)-Pentacarbonyl[(N-(cyclohexylmethyl)-N-(hepta-4,6- dienyl)amino)methylene]chromium(0) (13b) 15
N -Cyclohexyl-N(4-penten-1-yl)formamide (18d) 16
Pentacarbonyl[(N-cyclohexyl-N-(4-penten-1-yl)amino)methylene]chromium(0) (13d) 16
N -Isobutyl-N(4-penten-1-yl) formamide (18f) 17
Pentacarbonyl[(N-isobutyl-N-(4-penten-1-yl)amino)methylene]chromium(0) (13f) 18
N -t-Butyl-N(4-penten-1-yl) formamide (18g) 18
Pentacarbonyl[(N-tert-butyl-N-(4-penten-1-yl)amino)methylene]chromium(0) (13g) 18
(E)- and (Z)-N-Isobutyl-N(4-hexen-1-yl) formamide (18h) 19
(E)- and (Z)-Pentacarbonyl[(N-isobutyl-N-(4-hexen-1-yl)amino)methylene]chromium(0) (13h) 19
N-cyclohexyl-N-(5-methyl-4-hexen-1-yl)formamide (181) 20
Pentacarbonyl[(N-cyclohexyl-N-(5-methyl-4-hexen-1-yl)amino)methylene]chromium(0) (13I) 20
Synthesis of chromium aminocarbene 13i-k 21
But-3-en-1-ynyltriisopropylsilane 42k 21
(E)-Pentacarbonyl[(N-isobutyl-N-(5-phenyl-4-penten-1-yl)methylene]chromium(0) (13i). 22
(E)-Pentacarbonyl[(N-isobutyl-N-(5-methylcarboxy-4-penten-1-yl)methylene]chromium(0)(13j)22
(E)-N-isobutyl-N-(7-(triisopropylsilyl)hept-4-en-6-ynyl)formamide (18k) 23
Pentacarbonyl[(N-isobutyl-N-(7-triisopropylsilyl-4-hepten-6-yn-1- yl)methylene]chromium(0) (13k) 24
Synthesis of chromium aminocarbenes 20 and 22. 25
(S)-2-(Iodomethyl)pyrrolidine-1-carbaldehyde (45) 25
(R)-2-(but-3-enyl)pyrrolidine-1-carbaldehyde (47) 26
(R)-Pentacarbonyl[(3-buten-1-yl)pyrrolidine)methylene]chromium(0) (22) 27
Mixture of E and Z (R)-2-(hexa-3,5-dienyl)pyrrolidine-1-carbaldehyde (49) 27
Mixture of E and Z (R)-Pentacarbonyl[(3-buten-1-yl)pyrrolidine)methylene]chromium(0)(20)28
Synthesis of chromium aminocarbene (24) 29
(R)-2-(3-methylbut-3-enyl)pyrrolidine-1-carbaldehyde (51) 29
(2S)-2-(3,4-Dibromo-3-methylbutyl)pyrrolidine-1-carbaldehyde (52) 30
(R)-2-(4-bromo-3-methylbut-3-enyl)pyrrolidine-1-carbaldehyde (53) 31
(R)-2-(3-methylhexa-3,5-dienyl)pyrrolidine-1-carbaldehyde (54) 31
Mixture of E and Z (R)-pentacarbonyl[(2-(3-methylhexa-3,5-
dienyl)pyrrolidine)methylene]chromium(0) (24) 32 32
Synthesis of chromium aminocarbene (25) 33
3-(Cyclohexa-1, 3-dienyl)-1-iodopropane (56) 33
N-(3-(Cyclohexa-1, 3-dienyl)propyl)-N-(2-methylpropyl)formamide (57) 34
Pentacarbonyl[(N-(3-(Cyclohexa-1, 3-dienyl)propyl)-N-(2
methylpropyl)amino)methylene]chromium(0) (25) 35
Synthesis of chromium aminocarbene (31) 35
(E)-1-(hepta-4,6-dienyl)pyrrolidin-2-one (59) 36
Chromium aminocarbene (31) 36
Synthesis of chromium aminocarbene (33) 37
1-(Pent-4-enyl)piperidin-2-one (61) 37
Chromium aminocarbene (33) 38
Synthesis of chromium aminocarbene (37) 38
(E)-N-(2-(1H-indol-3-yl)ethyl)hepta-4,6-dien-1-amine (63) 39
(E)-N-(2-(1H-indol-3-yl)ethyl)-N-(hepta-4,6-dienyl)formamide (64) 39
(E)-N-(2-(1-benzyl-1H-indol-3-yl)ethyl)-N-(hepta-4,6-dienyl)formamide (36) 40
Chromium aminocarbene (37) 41
Cycloadducts 42
General procedure for the thermolysis of chromium aminocarbenes 42
(E)-1-Benzyl-5-(prop-1-enyl)-1,2,3,4-tetrahydropyridine 15a 42
(E)-1-Cyclopropylmethyl-5-(prop-1-enyl)-1,2,3,4-tetrahydropyridine 15b 42
(E)-1-Cyclohexyl-5-(prop-1-enyl)-1,2,3,4-tetrahydropyridine 15c 43
5-Benzyl-1-isobutyl-1,2,3,4-tetrahydropyridine 15i 43
methyl 2-(1-isobutyl-1,4,5,6-tetrahydropyridin-3-yl)acetate 15j 44
1-isobutyl-5-(3-(triisopropylsilyl)prop-2-ynyl)-1,2,3,4-tetrahydropyridine 15k 45
(E)-8-(prop-1-enyl)-1,2,3,5,6,7-hexahydroindolizine 19d 45
(E)-8-(Prop-1-enyl)-1,2,3,5,6,7-hexahydroindolizine 19e 46
(E)-8-(prop-1-enyl)-1,2,3,5,6,7-hexahydroindolizine 19g 46
(E)-8-(prop-1-enyl)-1,2,3,5,6,7-hexahydroindolizine 19h 47
(E)-6-(prop-1-enyl)-1,2,3,7,8,8a-hexahydroindolizine 21 47
Piperidine 26 49
(E)-8-(prop-1-enyl)-1,2,3,5,6,7-hexahydroindolizine 32 50
1-methyleneoctahydro-1H-quinolizine 34 50
(E)-1-benzyl-3-(2-(5-(prop-1-enyl)-3,4-dihydropyridin-1(2H)-yl)ethyl)-1H-indole 38 51
1-Benzyl-3-(2-((4aS,7aR)-4,4a-dihydro-1H-cyclopenta[c]pyridin-2(3H,7H,7aH)-yl)ethyl)- 1 H -indole 39 51
${ }^{1} \mathrm{H}$ NMR SPECTRA 53
(E)-Pentacarbonyl[(N-(benzyl)-N-(hepta-4,6-dienyl)amino)methylene]chromium(0) (13a)
(E)-Pentacarbonyl[(N-(cyclohexylmethyl)-N-(hepta-4, 6-54
dienyl)amino)methylene]chromium(0) (13b) 55
(E) Pe
(E) Pe (E)-Pentacarbonyl[(N-cyclohexyl-N-(hepta-4,6-dien-1-yl)amino)methylene]chromium(0) (13c) 56
(E)-Pentacarbonyl[(N-cyclohexyl-N-(4-penten-1-yl)amino)methylene]chromium(0) (13d)
57
(E)-Pentacarbonyl[(N-cyclohexyl-N-(3-buten-1-yl)amino)methylene]chromium(0) (13e) 58
(E)-Pentacarbonyl[(N-isobutyl-N-(4-penten-1-yl)amino)methylene]chromium(0) (13f) 59
(E)-Pentacarbonyl[(N-tert-butyl-N-(4-penten-1-yl)amino)methylene]chromium(0) (13g) 60
(E)-Pentacarbonyl[(N-isobutyl-N-(4-hexen-1-yl)amino)methylene]chromium(0) (13h) 61
Pentacarbonyl[(N-isobutyl-N-(5-phenyl-4-penten-1-yl amino)methylene]chromium(0) (13i)62
Pentacarbonyl[(N-isobutyl-N-(5-methylcarboxy-4-penten-1- yl)amino)methylene]chromium(0) (13j) 63
Pentacarbonyl[(N-isobutyl-N-(7-triisopropylsilyl-4-hepten-6-yn-1-yl) amino)methylene]chromium(0) (13k) 64
Pentacarbonyl[(N-cyclohexyl-N-(5-methyl-4-hexen-1-yl) amino)methylene]chromium(0) (131) 65
(E)-1-Benzyl-5-(prop-1-enyl)-1,2,3,4-tetrahydropyridine 15a 66
(E)-1-Cyclopropylmethyl-5-(prop-1-enyl)-1,2,3,4-tetrahydropyridine 15b 67
(E)-1-cyclohexyl-5-(prop-1-enyl)-1,2,3,4-tetrahydropyridine 15c 68
N-tert-Butyl-1,2,3,4-tetrahydropyridine 15g 69
5-Benzyl-1-isobutyl-1,2,3,4-tetrahydropyridine 15i 70
methyl 2-(1-isobutyl-1,4,5,6-tetrahydropyridin-3-yl)acetate 15j 71
1-isobutyl-5-(3-(triisopropylsilyl)prop-2-ynyl)-1,2,3,4-tetrahydropyridine $\mathbf{1 5 k}$ 72
(E)-N-(Benzyl)-N-(hepta-4,6-dienyl)formamide (18a) 73
(E)-N-(Cyclohexylmethyl)-N-(hepta-4, 6-dienyl)formamide (18b) 74
(E)-N-cyclohexyl-N-(hepta-4,6-dien-1-yl)formamide (18c) 75
N -Cyclohexyl-N(4-penten-1-yl) formamide (18d) 76
N -cyclohexyl-N-(3-buten-1-yl)formamide (18e) 77
N -Isobutyl-N(4-penten-1-yl) formamide (18f) 78
N-tert-butyl-N(4-penten-1-yl) formamide (18g) 79
N-Isobutyl-N(4-hexen-1-yl) formamide (18h) 80
(E)-N-isobutyl-N-(7-(triisopropylsilyl)hept-4-en-6-ynyl)formamide (18k) 81
N-cyclohexyl-N-(5-methyl-4-hexen-1-yl)formamide (181) 82
(E)-8-(prop-1-enyl)-1,2,3,5,6,7-hexahydroindolizine 19d 83
(E)-8-(Prop-1-enyl)-1,2,3,5,6,7-hexahydroindolizine 19e 84
(E)-8-(prop-1-enyl)-1,2,3,5,6,7-hexahydroindolizine 19g 85
(E)-8-(prop-1-enyl)-1,2,3,5,6,7-hexahydroindolizine 19h 86
Mixture of E and Z (R)-Pentacarbonyl[(3-buten-1-yl)pyrrolidine)methylene]chromium(0) (20) 87
(R,E)-6-(prop-1-enyl)-1,2,3,7,8,8a-hexahydroindolizine (21) 88
(R)-Pentacarbonyl[(3-buten-1-yl)pyrrolidine)methylene]chromium(0) (22) 89
(R)-6-methyleneoctahydroindolizine (23a) and (3aR)-octahydro-1H-
cyclopropa[e]indolizine (23b). 90
Mixture of E and Z (R)-pentacarbonyl[(2-(3-methylhexa-3,5- dienyl)pyrrolidine)methylene]chromium(0) (24).. 91
Pentacarbonyl[(N-(3-(Cyclohexa-1, 3-dienyl)propyl)-N-(2-
methylpropyl)amino)methylene]chromium(0) (25) 92
Piperidine 26 93
Chromium aminocarbene (31) 94
(E)-8-(prop-1-enyl)-1,2,3,5,6,7-hexahydroindolizine (32) in $\mathrm{C}_{6} \mathrm{D}_{6}$ 95
Chromium aminocarbene (33) 96
1-Methyleneoctahydro-1H-quinolizine (34) 97
(S)-2-(iodomethyl)pyrrolidine-1-carbaldehyde (45) 98
(R)-2-(but-3-enyl)pyrrolidine-1-carbaldehyde (47) 99
Mixture of E and Z (R)-2-(hexa-3,5-dienyl)pyrrolidine-1-carbaldehyde (49) 100
(R)-2-(3-methylbut-3-enyl)pyrrolidine-1-carbaldehyde (51) 101
(2S)-2-(3,4-Dibromo-3-methylbutyl)pyrrolidine-1-carbaldehyde (52) 102
(R)-2-(4-bromo-3-methylbut-3-enyl)pyrrolidine-1-carbaldehyde (53) 103
(R)-2-(3-methylhexa-3,5-dienyl)pyrrolidine-1-carbaldehyde (54) 104
3-(Cyclohexa-1, 3-dienyl)-1-iodopropane (56) 105
N -(3-(Cyclohexa-1, 3-dienyl)propyl)-N-(2-methylpropyl)formamide (57) 106
(E)-1-(hepta-4,6-dienyl)pyrrolidin-2-one (59) 107
1-(Pent-4-enyl)piperidin-2-one (61) 108
(E)-N-(2-(1H-indol-3-yl)ethyl)hepta-4,6-dien-1-amine (63) 109
(E)-N-(2-(1H-indol-3-yl)ethyl)-N-(hepta-4,6-dienyl)formamide (64) 110
(E)-N-(2-(1-benzyl-1H-indol-3-yl)ethyl)-N-(hepta-4,6-dienyl)formamide (36) 111
Pentacarbonyl[((E)-N-(2-(1-benzyl-1H-indol-3-yl)ethyl)-N-(hepta-4,6- dienyl)amino)methylene]chromium(0) (37) 112
(E)-1-benzyl-3-(2-(5-(prop-1-enyl)-3,4-dihydropyridin-1(2H)-yl)ethyl)-1H-indole (38) 113
1-benzyl-3-(2-(4,4a-dihydro-1H-cyclopenta[c]pyridin-2(3H,7H,7aH)-yl)ethyl)-1H-indole (39) 114
(7aR)-4-methyl-2-phenyl-3a,4,6,7,7a, 8,9,10,11a,11b-decahydro-1H-dipyrrolo[1,2-a:3',4'- h]quinoline-1,3(2H)-dione (66) 115
${ }^{13}$ C NMR SPECTRA 116
(E)-Pentacarbonyl[(N-(benzyl)-N-(hepta-4,6-dienyl)amino)methylene]chromium(0) (13a)
117
(E)-Pentacarbonyl[(N-(cyclohexylmethyl)-N-(hepta-4, 6-
dienyl)amino)methylene]chromium(0) (13b) 118
(E)-Pentacarbonyl[(N-cyclohexyl-N-(hepta-4,6-dien-1-yl)amino)methylene]chromium(0) (13c) 119
(E)-Pentacarbonyl[(N-cyclohexyl-N-(4-penten-1-yl)amino)methylene]chromium(0) (13d)120
(E)-Pentacarbonyl[(N-cyclohexyl-N-(3-buten-1-yl)amino)methylene]chromium(0) (13e)121
(E)-Pentacarbonyl[(N-isobutyl-N-(4-penten-1-yl)amino)methylene]chromium(0) (13f) 122
(E)-Pentacarbonyl[(N-tert-butyl-N-(4-penten-1-yl)amino)methylene]chromium(0) (13g) 123
(E)-Pentacarbonyl[(N-isobutyl-N-(4-hexen-1-yl)amino)methylene]chromium(0) (13h) 124
Pentacarbonyl[(N-isobutyl-N-(5-phenyl-4-penten-1-yl)amino)methylene]chromium(0) (13i)
Pentacarbonyl[(N-isobutyl-N-(5-methylcarboxy-4-penten-1-
yl)amino)methylene]chromium(0) (13j) 126
Pentacarbonyl[(N-isobutyl-N-(7-triisopropylsilyl-4-hepten-6-yn-1- yl)amino)methylene]chromium(0) (13k) 127
Pentacarbonyl[(N-cyclohexyl-N-(5-methyl-4-hexen-1-yl)amino)methylene]chromium(0) (131) 128
(E)-1-cyclohexyl-5-(prop-1-enyl)-1,2,3,4-tetrahydropyridine 15c 129
N-tert-Butyl-1,2,3,4-tetrahydropyridine 15g 130
5-Benzyl-1-isobutyl-1,2,3,4-tetrahydropyridine 15i 131
methyl 2-(1-isobutyl-1,4,5,6-tetrahydropyridin-3-yl)acetate 15j 132
1-isobutyl-5-(3-(triisopropylsilyl)prop-2-ynyl)-1,2,3,4-tetrahydropyridine 15k 133
(E)-N-(Benzyl)-N-(hepta-4,6-dienyl)formamide (18a) 134
(E)-N-(Cyclohexylmethyl)-N-(hepta-4, 6-dienyl)formamide (18b) 135
(E)-N-cyclohexyl-N-(hepta-4,6-dien-1-yl)formamide (18c) 136
N -Cyclohexyl-N(4-penten-1-yl) formamide (18d) 137
(E)-N-cyclohexyl-N-(3-buten-1-yl)formamide (18e) 138
N -Isobutyl-N(4-penten-1-yl) formamide (18f) 139
N -tert-butyl-N(4-penten-1-yl) formamide (18g) 140
N -Isobutyl-N(4-hexen-1-yl) formamide (18h) 141
(E)-N-isobutyl-N-(7-(triisopropylsilyl)hept-4-en-6-ynyl)formamide (18k) 142
N-cyclohexyl-N-(5-methyl-4-hexen-1-yl)formamide (181) 143
(E)-8-(prop-1-enyl)-1,2,3,5,6,7-hexahydroindolizine 19d 144
(E)-8-(Prop-1-enyl)-1,2,3,5,6,7-hexahydroindolizine 19e 145
(E)-8-(prop-1-enyl)-1,2,3,5,6,7-hexahydroindolizine $\mathbf{1 9 g}$ 146
(E)-8-(prop-1-enyl)-1,2,3,5,6,7-hexahydroindolizine 19h 147
Mixture of E and Z (R)-Pentacarbonyl[(3-buten-1-yl)pyrrolidine)methylene]chromium(0)
(20) 148
(R,E)-6-(prop-1-enyl)-1,2,3,7,8,8a-hexahydroindolizine (21) 149
(R)-Pentacarbonyl[(3-buten-1-yl)pyrrolidine)methylene]chromium(0) (22). 150
(R)-6-methyleneoctahydroindolizine (23a) and (3aR)-octahydro-1H-cyclopropa[e]indolizine (23b) ... 151
Mixture of E and Z (R)-pentacarbonyl[(2-(3-methylhexa-3,5-dienyl)pyrrolidine)methylene]chromium(0) (24)... 152
Pentacarbonyl[(N-(3-(Cyclohexa-1, 3-dienyl)propyl)-N-(2-
methylpropyl)amino)methylene]chromium(0) (25) 153
Piperidine 26 154
Chromium aminocarbene (31) 155
(E)-8-(prop-1-enyl)-1,2,3,5,6,7-hexahydroindolizine (32) 156
Chromium aminocarbene (33) 157
1-methyleneoctahydro-1H-quinolizine (34) 158
(S)-2-(iodomethyl)pyrrolidine-1-carbaldehyde (45) 159
(R)-2-(but-3-enyl)pyrrolidine-1-carbaldehyde (47) 160
Mixture of E and Z (R)-2-(hexa-3,5-dienyl)pyrrolidine-1-carbaldehyde (49) 161
(R)-2-(3-methylbut-3-enyl)pyrrolidine-1-carbaldehyde (51) 162
(2S)-2-(3,4-Dibromo-3-methylbutyl)pyrrolidine-1-carbaldehyde (52) 163
(R)-2-(4-bromo-3-methylbut-3-enyl)pyrrolidine-1-carbaldehyde (53). 164
(R)-2-(3-methylhexa-3,5-dienyl)pyrrolidine-1-carbaldehyde (54) 165
3-(Cyclohexa-1, 3-dienyl)-1-iodopropane (56) 166
N -(3-(Cyclohexa-1, 3-dienyl)propyl)-N-(2-methylpropyl)formamide (57) 167
(E)-1-(hepta-4,6-dienyl)pyrrolidin-2-one (59) 168
1-(Pent-4-enyl)piperidin-2-one (61) 169
(E)-N-(2-(1H-indol-3-yl)ethyl)hepta-4,6-dien-1-amine (63) 170
(E)-N-(2-(1H-indol-3-yl)ethyl)-N-(hepta-4,6-dienyl)formamide (64) 171
(E)-N-(2-(1-benzyl-1H-indol-3-yl)ethyl)-N-(hepta-4,6-dienyl)formamide (36) 172
Pentacarbonyl[((E)-N-(2-(1-benzyl-1H-indol-3-yl)ethyl)-N-(hepta-4,6- dienyl)amino)methylene]chromium(0) (37) 173
(E)-1-benzyl-3-(2-(5-(prop-1-enyl)-3,4-dihydropyridin-1(2H)-yl)ethyl)-1H-indole (38). 174
1-benzyl-3-(2-(4,4a-dihydro-1H-cyclopenta[c]pyridin-2(3H,7H,7aH)-yl)ethyl)-1H-indole (39) 175
(7aR)-4-methyl-2-phenyl-3a,4,6,7,7a,8,9,10,11a,11b-decahydro-1H-dipyrrolo[1,2-a:3',4'- h]quinoline-1,3(2H)-dione (66) 176
COSY SPECTRA 177
(R,E)-6-(prop-1-enyl)-1,2,3,7,8,8a-hexahydroindolizine (21) in $\mathrm{C}_{6} \mathrm{D}_{6}$ 178
(7aR)-4-methyl-2-phenyl-3a,4,6,7,7a,8,9,10,11a,11b-decahydro-1H-dipyrrolo[1,2-a:3',4'- h]quinoline-1,3(2H)-dione (66) in CDCl_{3} 179

GENERAL CONSIDERATIONS

All reactions were performed under an inert atmosphere of argon in glassware that had been flamedried. Solvents were distilled from potassium/benzophenone ketyl (THF, $\mathrm{Et}_{2} \mathrm{O}$), from calcium hydride $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, toluene, benzene, m-xylene, DMF, $\left.\mathrm{Et}_{3} \mathrm{~N}\right)$.
$\checkmark \mathrm{Cr}(\mathrm{CO})_{6}$ (Aldrich or Strem) was reduced in a thin power and washed with anhydrous ethanol and ether. Naphtalene was recristallyzed in anhydrous ethanol.
$\checkmark \mathrm{TMSCl}$ was distilled from calcium hydride. Isobutylamine was distilled prior to use.
Aluminum oxide (Brockmann 1) came from Aldrich. Proton nuclear magnetic resonance (${ }^{\mathbf{1}} \mathbf{H}$ NMR) spectra were recorded on a 300 MHz or 400 MHz spectrometer. NMR samples were dissolved in chloroform- d (unless specified otherwise) and chemical shifts are reported in ppm relative to the residual undeuterated solvent. Carbon nuclear magnetic resonance ($\left.{ }^{13} \mathbf{C} \mathbf{N M R}\right)$ spectra were recorded on a 75.5 MHz or 100.7 MHz spectrometer. NMR samples were dissolved in chloroform-d (unless specified otherwise) and chemical shifts are reported in ppm relative to the solvent. LRMS analyses were performed on a GC system spectrometer (30 m length, $25 \mu \mathrm{OD}$, DB- 5 ms column) coupled with a mass spectrometer. High-resolution spectrometry was performed by electrospray time-of-flight. Reactions were monitored by thin-layer chromatography (TLC) on 0.25 mm silica gel coated glass plate UV 254, vanillin, KMnO_{4}, PMA, Dragen Dorff, or by ${ }^{1} \mathbf{H}$ NMR. Silica gel (particule size: 230-400 mesh) was used for flash chromatography. Melting points are uncorrected.

SYNTHESIS OF CHROMIUM AMINOCARBENES

Synthesis of chromium aminocarbene 13a-b (see after the synthesis of 13c and 13e)

 Synthesis of chromium aminocarbene 13c and 13e

For compounds 13, 18, and 41:
c $n=2, R^{2}=\mathrm{HC}=\mathrm{CH}_{2}$
en=1, $R^{2}=H$
13

(E)-N-cyclohexyl-N-(hepta-4,6-dien-1-yl)formamide (18c)

Cyclohexylamine $40 \mathrm{c}(6.24 \mathrm{~mL}, 54.5 \mathrm{mmol})$ was added to a solution of the iodide $\mathbf{1 7 a}(4.04 \mathrm{~g}, 18.2$ mmol) and sodium carbonate ($3.86 \mathrm{~g}, 36.4 \mathrm{mmol}$) in ethanol (226 mL). The reaction was refluxed for 20 h , cooled to rt and the solvent was evaporated under reduced pressure. The crude product was purified by flash chromatography on silica gel using a solution of methanol in DCM (10 to 30\%). The secondary amine was isolated as a salt so it was dissolved in DCM, washed with 1 N NaOH , dried over magnesium sulfate, filtered and evaporated under reduced pressure to afford amine 41c ($3.55 \mathrm{~g}, 92 \%$), which was used directly in the next step without further characterisation. N-Formylbenzotriazole (3.51 $\mathrm{g}, 23.9 \mathrm{mmol})$ was added to a solution of the amine $41 \mathrm{c}(3.55 \mathrm{~g}, 18.4 \mathrm{mmol})$ in THF $(155 \mathrm{~mL})$. The reaction mixture was heated to reflux temperature for 18 h . Then, $2 \mathrm{~N} \mathrm{NaOH}(200 \mathrm{~mL})$ was added at rt and the reaction mixture was stirred for 30 min . The mixture was extracted with dichloromethane (3 x 250 mL). The combined organic layers were separated and dried over anhydrous magnesium sulfate, filtered and evaporated under reduced pressure. The crude product was purified by flash
chromatography on silica gel using a solution of ethyl acetate in hexanes (10:90 to 30:70) as eluent. The product ($3.26 \mathrm{~g}, 80 \%$) was obtained as pale yellow oil and as a mixture of rotamers (ratio $=73: 27$). ${ }^{1} \mathbf{H}$ NMR (major rotamer) $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 8.15(\mathrm{~s}, 1 \mathrm{H}), 6.30(\mathrm{dt}, 1 \mathrm{H}, J=16.9,10.2 \mathrm{~Hz}), 6.07$ (dd, $1 \mathrm{H}, J=15.1,10.2 \mathrm{~Hz}), 5.69(\mathrm{dt}, 1 \mathrm{H}, J=15.1,7.1 \mathrm{~Hz}), 5.09(\mathrm{~d}, 1 \mathrm{H}, J=16.9 \mathrm{~Hz}), 4.97(\mathrm{~d}, 1 \mathrm{H}, J=$ $10.2 \mathrm{~Hz}), 3.24-3.17(\mathrm{~m}, 3 \mathrm{H}), 2.10(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 1.90-1.74(\mathrm{~m}, 3 \mathrm{H}), 1.74-1.60(\mathrm{~m}, 3 \mathrm{H}), 1.56-1.40$ $(\mathrm{m}, 3 \mathrm{H}), 1.31(\mathrm{qt}, 2 \mathrm{H}, J=12.5,3.3 \mathrm{~Hz}), 1.11(\mathrm{qt}, 1 \mathrm{H}, J=12.7,3.3 \mathrm{~Hz}) .{ }^{1} \mathbf{H} \mathbf{N M R}$ (minor rotamer) (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 8.04(\mathrm{~s}, 1 \mathrm{H}), 6.30(\mathrm{dt}, 1 \mathrm{H}, J=16.9,10.2 \mathrm{~Hz}), 6.07(\mathrm{dd}, 1 \mathrm{H}, J=15.1,10.2 \mathrm{~Hz})$, $5.64(\mathrm{dt}, 1 \mathrm{H}, J=15.1,6.8 \mathrm{~Hz}), 5.12(\mathrm{~d}, 1 \mathrm{H}, J=16.9 \mathrm{~Hz}), 5.00(\mathrm{~d}, 1 \mathrm{H}, J=10.2 \mathrm{~Hz}), 3.99(\mathrm{tt}, 1 \mathrm{H}, J=$ $11.8,3.5 \mathrm{~Hz}), 3.18-3.13(\mathrm{~m}, 2 \mathrm{H}), 2.10(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 1.90-1.74(\mathrm{~m}, 3 \mathrm{H}), 1.74-1.60(\mathrm{~m}, 3 \mathrm{H}), 1.56-$ $1.40(\mathrm{~m}, 3 \mathrm{H}), 1.31(\mathrm{qt}, 2 \mathrm{H}, J=12.5,3.3 \mathrm{~Hz}), 1.11(\mathrm{qt}, 1 \mathrm{H}, J=12.7,3.3 \mathrm{~Hz}) .{ }^{13} \mathbf{C}$ NMR (major rotamer) (100.7 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 162.5$ (d), 137.2 (d), 134.1 (d), 131.7 (d), 115.3 (t), 58.7 (d), 41.6 (t), 33.0 (t), 30.9 (t), $30.4(\mathrm{t}), 28.7(\mathrm{t}), 26.0(\mathrm{t}), 25.4(\mathrm{t}) .{ }^{13} \mathbf{C}$ NMR (minor rotamer) ($\left.100.7 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (ppm) 163.2 (d), 136.9 (d), 133.2 (d), 132.3 (d), 115.8 (t), 52.9 (d), 44.7 (t), 33.0 (t), 31.2 (t), 29.7 (t), 28.7 (t), 26.0 (t , 25.6 (t). IR (neat) $v\left(\mathrm{~cm}^{-1}\right)$ 3010, 2932, 2856, 1670, 1004. LRMS (m / z, relative intensity) $244\left(\mathrm{MNa}^{+}, 100\right)$. Exact Mass calcd for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{NNaO}$: 244.1672, found: 244.1670.

(E)-Pentacarbonyl[(N-cyclohexyl-N-(hepta-4,6-dien-1-yl)amino)methylene]chromium(0) (13c)

Naphtalene ($4.63 \mathrm{~g}, 36.1 \mathrm{mmol}$) was added to small pieces of sodium $(830 \mathrm{mg}, 36.1 \mathrm{mmol})$ in a roundbottomed flask. Anhydrous THF (72 mL) was added and the reaction mixture was stirred at rt for 4 h . The dark green solution was added over 1.5 h , using a syringe pump, to a solution of purified (see general consideration above) $\operatorname{Cr}(\mathrm{CO})_{6}(3.98 \mathrm{~g}, 18.1 \mathrm{mmol})$ in THF (217 mL) at $-78{ }^{\circ} \mathrm{C}$. The CO_{2} /acetone cooling bath was removed and the reaction mixture was stirred at rt for 18 h . The dark orange solution was cooled back to $-78^{\circ} \mathrm{C}$ and a solution of the formamide $\mathbf{1 8 c}(2.00 \mathrm{~g}, 9.04 \mathrm{mmol})$ in THF (6 mL) was added over 3 min . The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 30 min . The $\mathrm{CO}_{2} /$ acetone cooling bath was removed and the reaction mixture was warmed up to $0{ }^{\circ} \mathrm{C}$ and maintained at that temperature while stirring for 1 h . The reaction mixture was cooled down again to $-78^{\circ} \mathrm{C}$ and TMSCl ($3.44 \mathrm{~mL}, 27.1 \mathrm{mmol}$) was rapidly added. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$
for an additional 30 min ., neutral $\mathrm{Al}_{2} \mathrm{O}_{3}(29 \mathrm{~g})$ was added and the reaction mixture was warmed up to rt . The solvent was evaporated under reduced pressure and the residue was charged on top of a silica gel column for chromatographic purification using a solution of ethyl acetate in hexanes (100% hexanes first to remove the residual naphthalene and then 5:95) as eluent. The product $13 \mathrm{c}(3.23 \mathrm{~g}, 90 \%)$ was obtained as a pale yellow solid and as a mixture of rotamers (ratio $=66: 34$). ${ }^{1} \mathbf{H} \mathbf{N M R}$ (major rotamer) $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 11.01(\mathrm{~s}, 1 \mathrm{H}), 6.33(\mathrm{dt}, 1 \mathrm{H}, J=17.0,10.4 \mathrm{~Hz}), 6.12(\mathrm{dd}, 1 \mathrm{H}, J=15.2,10.4$ $\mathrm{Hz}), 5.71(\mathrm{dt}, 1 \mathrm{H}, J=15.2,7.1 \mathrm{~Hz}), 5.15(\mathrm{~d}, 1 \mathrm{H}, J=17.0 \mathrm{~Hz}), 5.03(\mathrm{~d}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}), 3.99-3.94(\mathrm{~m}$, 2 H), 3.39-3.33 (m, 1H), 2.25 (q, 2H, $J=7.2 \mathrm{~Hz}$), 1.95-1.81 (m, 4H), 1.80-1.44 (m, 4H), 1.42-1.12 (m, $4 \mathrm{H}) .{ }^{1} \mathbf{H}$ NMR (minor rotamer) $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 10.86(\mathrm{~s}, 1 \mathrm{H}), 6.31(\mathrm{dt}, 1 \mathrm{H}, J=17.1,10.3$ $\mathrm{Hz}), 6.08(\mathrm{dd}, 1 \mathrm{H}, J=15.3,10.3 \mathrm{~Hz}), 5.63(\mathrm{dt}, 1 \mathrm{H}, J=15.3,6.9 \mathrm{~Hz}), 5.15(\mathrm{~d}, 1 \mathrm{H}, J=17.0 \mathrm{~Hz}), 5.03(\mathrm{~d}$, $1 \mathrm{H}, J=10.0 \mathrm{~Hz}), 4.64(\mathrm{tt}, 1 \mathrm{H}, J=11.8,2.9 \mathrm{~Hz}), 3.41-3.36(\mathrm{~m}, 2 \mathrm{H}), 2.10(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 1.95-1.81$ $(\mathrm{m}, 4 \mathrm{H}), 1.80-1.44(\mathrm{~m}, 4 \mathrm{H}), 1.42-1.12(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}$ (both rotamers) $\left(100.7 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$ 259.5 (d), 254.2 (d), 224.6 (s$), 224.5$ (s$), 217.9$ (s$), 217.8$ (s$), 137.0$ (d), 136.8 (d), 132.9 (d), 132.9 (d), $132.6(\mathrm{~d}), 132.4(\mathrm{~d}), 116.4(\mathrm{t}), 116.1(\mathrm{t}), 69.9(\mathrm{~d}), 69.7(\mathrm{~d}), 59.6(\mathrm{t}), 56.1(\mathrm{t}), 33.5(\mathrm{t}), 31.7(\mathrm{t}), 31.2(\mathrm{t})$, $29.9(\mathrm{t}), 29.8(\mathrm{t}), 29.2(\mathrm{t}), 25.8(\mathrm{t}), 25.3(\mathrm{t}), 25.3(\mathrm{t}), 25.2(\mathrm{t})$. note : some signals are missing because some signals of the two rotamers overlap. IR (neat) $v\left(\mathrm{~cm}^{-1}\right) 3037,3009,2939,2861,2054$ 2096-1760 (br), 1535, 1004. LRMS (m / z, relative intensity) $420\left((\mathrm{MNa})^{+}, 20\right), 392\left((\mathrm{M}+\mathrm{Na}-\mathrm{CO})^{+}, 10\right), 364$ $\left((\mathrm{M}+\mathrm{Na}-2 \mathrm{CO})^{+}, 100\right)$. Exact Mass calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{CrNNaO}_{5}: 420.0874$, found: 420.0869.

N-cyclohexyl-N-(3-buten-1-yl)formamide (18e)

Same procedure as per compound 18c with N-cyclohexyl- N-(4-butenyl)amine $41 \mathrm{e}(0.463 \mathrm{~g}, 3.02 \mathrm{mmol})$ in THF (25 mL), N-formylbenzotriazole $(0.747 \mathrm{~g}, 5.08 \mathrm{mmol})$ giving formamide $\mathbf{1 8 e}(0.423 \mathrm{~g}, 77 \%)$ as colorless oil and as a $3: 1$ mixture of rotamers. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.15$ (s) and 8.03 (s) $(1 \mathrm{H}$, rotamers), $5.75(\mathrm{~m}, 1 \mathrm{H}), 5.05(\mathrm{app} . \mathrm{m}, 2 \mathrm{H}), 4.01(\mathrm{~m})$ and $3.24(\mathrm{~m})(2 \mathrm{H}$, rotamers), 3.24 (app. m) and 2.31 (app. m) (4 H , rotamers) 1.75 (complex m, 5 H$), 1.47(\mathrm{~m}, 2 \mathrm{H}), 1.31(\mathrm{~m}, 2 \mathrm{H}), 1.10(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) as a mixture of rotamers $\delta 163.2(\mathrm{CH}), 162.3(\mathrm{CH}), 135.4(\mathrm{CH}), 134.3(\mathrm{CH})$, $117.8\left(\mathrm{CH}_{2}\right), 116.6\left(\mathrm{CH}_{2}\right), 58.6(\mathrm{CH}), 52.5(\mathrm{CH}), 44.6\left(\mathrm{CH}_{2}\right), 41.4\left(\mathrm{CH}_{2}\right), 36.1\left(\mathrm{CH}_{2}\right), 33.5\left(\mathrm{CH}_{2}\right), 32.9$ $\left(\mathrm{CH}_{2}\right), 30.8(\mathrm{CH}), 25.9(\mathrm{CH}), 25.5\left(\mathrm{CH}_{2}\right), 25.3\left(\mathrm{CH}_{2}\right) ;$ IR $(\mathrm{NaCl}) v 3076,2931,2856,1668,1451,1416$.

LRMS (m / z, relative intensity) $204\left(\mathrm{MNa}^{+}\right)$. Exact Mass calcd for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{NONa}: 204.1359$, found : 204.1361.

Pentacarbonyl[(N-cyclohexyl-N-(3-buten-1-yl)amino)methylene]chromium(0) (13e)

Following the same procedure described above as per the preparation of complex 13c, the formamide $18 \mathbf{e}(0.223 \mathrm{~g}, 0.625 \mathrm{mmol})$ was converted into the corresponding carbene $\mathbf{1 3 e}(0.067 \mathrm{~g}, 30 \%)$, obtained as bright-yellow oil and as a $1: 1$ mixture of rotamers. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.03$ (s) and $10.72(\mathrm{~s})(1 \mathrm{H}$, rotamers $), 5.88(\mathrm{~m})$ and $5.69(\mathrm{~m})(1 \mathrm{H}$, rotamers $), 5.15(\mathrm{~m}, 2 \mathrm{H}), 4.66(\mathrm{~m})$ and $3.50(\mathrm{~m})$ $(1 \mathrm{H}$, rotamers), $4.06(\mathrm{~m})$ and $3.50(\mathrm{~m})(2 \mathrm{H}$, rotamers), $2.57(\mathrm{~m})$ and $2.38(\mathrm{~m})(2 \mathrm{H}$, rotamers) $2.00-1.85$ (complex m) and 1.78-1.45 (6H, rotamers), 1.40-1.20 (m), $1.01(\mathrm{~m})$ and $0.95-0.85(4 \mathrm{H}$, rotamers); ${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ as a mixture of rotamers $\delta 260.0(\mathrm{CH}), 254.8(\mathrm{CH}), 224.3(\mathrm{C}), 224.2(\mathrm{C})$, $217.6(\mathrm{C}), 217.6(\mathrm{C}), 133.4(\mathrm{CH}), 133.3(\mathrm{CH}), 119.1\left(\mathrm{CH}_{2}\right), 118.1\left(\mathrm{CH}_{2}\right), 69.8(\mathrm{CH}), 69.6(\mathrm{CH}), 59.0$ $\left(\mathrm{CH}_{2}\right), 55.8\left(\mathrm{CH}_{2}\right), 35.5\left(\mathrm{CH}_{2}\right), 33.8\left(\mathrm{CH}_{2}\right), 33.3\left(\mathrm{CH}_{2}\right), 31.5\left(\mathrm{CH}_{2}\right), 25.7\left(\mathrm{CH}_{2}\right), 25.3\left(\mathrm{CH}_{2}\right) ;$ IR (NaCl) v 3085, 2935, 2856, 2056, 1991 to 1875, 1526. LRMS (m / z, relative intensity) 324 (M-2CO) ${ }^{+}$. Exact Mass calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{CrNO}_{3} \mathrm{Na}: 324.0662$, found 324.0670.

Synthesis of chromium aminocarbene 13a, 13b, 13d and 13f-i

N-Benzylformamide (16a)

Synthesized following the procedure from Freudenreich and al. ${ }^{1}{ }^{1} \mathrm{H}$ NMR spectra identical to published data. ${ }^{2}$ M.P. $56-58{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ as a mixture of rotamers $\delta(\mathrm{ppm}) 8.28(\mathrm{~s})$ and $8.21(\mathrm{~d}, J=12.0 \mathrm{~Hz})(1 \mathrm{H}$, rotamers), 7.41-7.24 (m, 5H), 5.92-6.64 (br s, 1H), $4.50(\mathrm{~d}, J=6.0 \mathrm{~Hz})$ and $4.43(\mathrm{~d}, J=6.5 \mathrm{~Hz})(2 \mathrm{H}$, rotamers).

N-(Cyclohexylmethyl)formamide (16b)

Formic acid ($17.0 \mathrm{~mL}, 451 \mathrm{mmol}$) was slowly added to cyclohexanemethylamine ($10.0 \mathrm{~mL}, 76.9 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. The solution was refluxed for 7 h and then cooled to room temperature. The solution was concentrated under reduced pressure to produce an orange oil. The oil was dissolved in an aqueous saturated ammonium chloride solution and the aqueous layer was extracted with diethyl ether three times. The combined organic layer was washed twice with saturated aqueous sodium bicarbonate and once with brine. It was dried over anhydrous magnesium sulphate, filtered and concentrated under reduced pressure to produce an orange oil. The crude product was purified by flash chromatography on a silica gel column eluting with 10% to 60% of ethyl acetate in hexanes to yield $81(6.07 \mathrm{~g}, 56 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR spectra identical to published data. ${ }^{3}{ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ as a $3.4: 1.0$ mixture of rotamers $\delta(\mathrm{ppm}) 8.19(\mathrm{~s})$ and $7.99(\mathrm{~d}, J=11.6 \mathrm{~Hz})(1 \mathrm{H}$, rotamers), $5.60(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.14(\mathrm{t}, J$ $=6.6 \mathrm{~Hz})$ and $3.04(\mathrm{t}, J=6.6 \mathrm{~Hz})(2 \mathrm{H}$, rotamers $), 1.79-1.65(\mathrm{~m}, 5 \mathrm{H}), 1.55-1.32(\mathrm{~m}, 1 \mathrm{H}), 1.31-1.06(\mathrm{~m}$, $3 \mathrm{H}), 1.02-0.83(\mathrm{~m}, 2 \mathrm{H})$.

N-Isobutylformamide (16d)

N-Isobutylamine ($12.0 \mathrm{~mL}, 119 \mathrm{mmol}$) and ethyl formate $(184 \mathrm{~mL}, 2.29 \mathrm{~mol})$ were heated to reflux for 12 h . The solution was cooled to rt and concentrated under reduced pressure to yield ($12.1 \mathrm{~g}, 100 \%$) of product 16d as colorless oil and as a 2.9: 1.0 mixture of rotamers. It was used crude in the next step without further purification. It's proton NMR spectra was identical to published data. ${ }^{4}{ }^{\mathbf{1}} \mathbf{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 8.20(\mathrm{~s})$ and $8.01(\mathrm{~d}, J=21.1 \mathrm{~Hz})(1 \mathrm{H}$, rotamers $), 5.59(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.14(\mathrm{t}, J=6.6$ $\mathrm{Hz})$ and $3.03(\mathrm{t}, J=6.6 \mathrm{~Hz})(2 \mathrm{H}$, rotamers $), 1.80(\mathrm{~m}, J=6.6 \mathrm{~Hz})$ and $1.75(\mathrm{~m}, J=6.6 \mathrm{~Hz})(1 \mathrm{H}$, rotamers), $0.93(\mathrm{~d}, 6 \mathrm{H}, J=6.6 \mathrm{~Hz})$.

(E)-N-(Benzyl)-N-(hepta-4,6-dienyl)formamide (18a)

Sodium hydride ($2.76 \mathrm{~g}, 60 \%$ in mineral oil, 69.0 mmol) was added to a solution of N-benzylformamide $(9.09 \mathrm{~g}, 67.3 \mathrm{mmol})$ in tetrahydrofuran $(155 \mathrm{~mL})$ and dimethylformamide $(80 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction was warmed to room temperature and stirred for 40 min . A solution of iodide $\mathbf{1 7 a}(11.9 \mathrm{~g}$, $53.8 \mathrm{mmol})$ in tetrahydrofuran $(26 \mathrm{~mL})$ was then added via cannula. The resulting mixture was heated at $35^{\circ} \mathrm{C}$ for 150 min . The reaction mixture was cooled to room temperature and water (350 mL) was added. The aqueous layer was extracted with ethyl acetate three times. The combined organic layer was washed with brine, dried over anhydrous magnesium sulphate, filtered and concentrated under reduced pressure. The resulting yellowish oil was dissolved in diethyl ether and the organic layer was washed with brine three times, dried over anhydrous magnesium sulphate, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography on a silica gel column eluting with 10% to 50% of diethyl ether in hexanes to yield $\mathbf{1 8 a}(10.3 \mathrm{~g}, 84 \%)$ as colorless oil. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ as a $1.2: 1.0$ mixture of rotamers $\delta(\mathrm{ppm}) 8.28(\mathrm{~s})$ and $8.18(\mathrm{~s})(1 \mathrm{H}$, rotamers), 7.40-7.19 (m, 5H), 6.28 (ddd, $1 \mathrm{H}, J=16.8,9.8,9.8 \mathrm{~Hz}$), 6.03 (dd, $1 \mathrm{H}, J=14.8,9.8 \mathrm{~Hz}$), $5.68-5.53(\mathrm{~m}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=16.8 \mathrm{~Hz})$ and $5.08(\mathrm{~d}, J=16.8 \mathrm{~Hz})(1 \mathrm{H}$, rotamers), $5.00(\mathrm{~d}, J=9.9 \mathrm{~Hz})$ and $4.97(\mathrm{~d}, J=9.9)(1 \mathrm{H}$, rotamers), $4.54(\mathrm{~s})$ and $4.39(\mathrm{~s})(2 \mathrm{H}$, rotamers $), 3.23(\mathrm{t}, J=7.3 \mathrm{~Hz})$ and 3.14 $(\mathrm{t}, J=7.3 \mathrm{~Hz})\left(2 \mathrm{H}\right.$, rotamers), $2.05\left(\mathrm{q}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}\right.$), 1.61 (quint, $2 \mathrm{H}, J=7.3 \mathrm{~Hz}$). ${ }^{13} \mathbf{C}$ NMR (75.5 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) as a mixture of rotamers $\delta(\mathrm{ppm}) 162.9(\mathrm{~d}), 137.0(\mathrm{~d}), 136.7$ (d), 136.4 (s), 136.1 (s),
133.6 (d), 132.8 (d), 132.2 (d), 131.6 (d), 128.9 (d), 128.6 (d), 128.1 (d), 128.1 (d), 127.6 (d), 127.5 (d), $115.8(\mathrm{t}), 115.2(\mathrm{t}), 51.3(\mathrm{t}), 46.0(\mathrm{t}), 45.1(\mathrm{t}), 41.6(\mathrm{t}), 29.7(\mathrm{t}), 29.1(\mathrm{t}), 27.3(\mathrm{t}), 26.3(\mathrm{t})$. IR (neat) v $\left(\mathrm{cm}^{-1}\right)$ 3086, 3063, 3030, 3006, 2930, 2864, 1672, 1428, 1005. LRMS (m / z, relative intensity): 229 $\left(\mathrm{M}^{+}, 96\right), 148(58), 90(100)$. HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}: 229.1467$, found: 229.1469.
(E)-N-(Cyclohexylmethyl)-N-(hepta-4,6-dienyl)formamide (18b)

Sodium hydride ($441 \mathrm{mg}, 60 \%$ in mineral oil, 11.0 mmol) was added to a solution of N (cyclohexylmethyl)formamide $\mathbf{1 6 a}(1.07 \mathrm{~g}, 7.57 \mathrm{mmol})$ in tetrahydrofuran (18 mL) and dimethylformamide $(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was warmed to rt and stirred for 40 min . A solution of iodide $17 \mathrm{a}(1.52 \mathrm{~g}, 6.84 \mathrm{mmol})$ in tetrahydrofuran $(3 \mathrm{~mL})$ was then added via cannula. The resulting mixture was heated to $45-50{ }^{\circ} \mathrm{C}$ for 2.5 h . The reaction mixture was cooled to rt and a saturated aqueous ammonium chloride solution was added. The mixture was diluted with a $1: 1$ solution of water and saturated aqueous ammonium chloride. The aqueous layer was extracted with ethyl acetate three times. The combined organic layers were washed with brine, dried over anhydrous magnesium sulfate, filtered and concentrated under reduced pressure. The resulting yellowish oil was dissolved in diethyl ether and the organic layer was washed twice with brine, dried over anhydrous magnesium sulfate, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography on a silica gel column eluting with 15% to 30% of ethyl acetate in hexanes to yield 18b ($1.12 \mathrm{~g}, 69 \%$) as colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ as a $1.5: 1.0$ mixture of rotamers $\delta(\mathrm{ppm}) 8.08(\mathrm{~s})$ and $7.98(\mathrm{~s})(1 \mathrm{H}$, rotamers $), 6.31(\mathrm{dt}, 1 \mathrm{H}, J=16.9,9.0 \mathrm{~Hz}), 6.07(\mathrm{dd}, 1 \mathrm{H}, J=15.1,9.0$ $\mathrm{Hz}), 5.69(\mathrm{dt}, J=15.1,7.1 \mathrm{~Hz})$ and $5.64(\mathrm{dt}, J=15.1,7.1 \mathrm{~Hz})(1 \mathrm{H}$, rotamers $), 5.12(\mathrm{~d}, J=16.9 \mathrm{~Hz})$ and $5.10(\mathrm{~d}, J=16.9 \mathrm{~Hz})(1 \mathrm{H}$, rotamers $), 5.01(\mathrm{~d}, J=9.0 \mathrm{~Hz})$ and $4.98(\mathrm{~d}, J=9.0 \mathrm{~Hz})(1 \mathrm{H}$, rotamers $), 3.28$ $(\mathrm{t}, J=7.4 \mathrm{~Hz})$ and $3.20(\mathrm{t}, J=7.2 \mathrm{~Hz})(2 \mathrm{H}$, rotamers $), 3.15(\mathrm{~d}, J=7.2 \mathrm{~Hz})$ and $3.00(\mathrm{~d}, J=7.7 \mathrm{~Hz})(2 \mathrm{H}$, rotamers), $2.10(\mathrm{q}, J=7.1 \mathrm{~Hz})$ and $2.09(\mathrm{q}, J=7.1 \mathrm{~Hz})(2 \mathrm{H}$, rotamers), 1.79-1.45 (m, 8H), 1.30-1.11 $(\mathrm{m}, 3 \mathrm{H}), 1.01-0.77(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100.7 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (mixture of rotamers unresolvable) $\delta(\mathrm{ppm})$ 163.3 (d), 163.2 (d), 137.2 (d), 137.0 (d), 134.0 (d), 133.2 (d), 132.4 (d), 131.8 (d), 116.0 (t), 115.5 (t), $54.3(\mathrm{t}), 48.1(\mathrm{t}), 47.3(\mathrm{t}), 42.6(\mathrm{t}), 36.2(\mathrm{~d}), 35.8(\mathrm{~d}), 31.0(\mathrm{t}), 30.8(\mathrm{t}), 30.2(\mathrm{t}), 29.5(\mathrm{t}), 28.0(\mathrm{t}), 26.9(\mathrm{t})$, $26.6(\mathrm{t}), 26.6(\mathrm{t}), 26.0(\mathrm{t}), 25.9(\mathrm{t})$. IR (neat) $v\left(\mathrm{~cm}^{-1}\right)$ 2926, 2852, 1674, 1430. LRMS (m / z, relative intensity): $235\left(\mathrm{M}^{+}, 32\right), 152\left(\left(\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{11}\right)^{+}, 100\right), 94$ (55), 79 (63). Exact Mass calcd for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{NO}$: 235.1936, found: 235.1933 .

(E)-Pentacarbonyl[(N-(benzyl)-N-(hepta-4,6-dienyl)amino)methylene]chromium(0) (13a)

Same procedure as per the preparation of complex $\mathbf{1 3 c}, \operatorname{Cr}(\mathrm{CO})_{6}(3.85 \mathrm{~g}, 17.5 \mathrm{mmol})$, formamide 18a $(2.05 \mathrm{~g}, 8.98 \mathrm{mmol})$ yielded $\mathbf{1 3 a}(2.32 \mathrm{~g}, 64 \%)$, as yellowish oil and as a $1.07: 1.00(Z: E)$ mixture of rotamers. ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl} 3$) as a $1.07: 1.00(Z: E)$ mixture of rotamers $\delta(\mathrm{ppm}) 11.11$ (s) and $11.07(\mathrm{~s})(1 \mathrm{H}$, rotamers $), 7.46-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.30(\mathrm{dd}, J=7.1,1.1 \mathrm{~Hz})$ and $7.13(\mathrm{dd}, J=6.9,1.7$ $\mathrm{Hz})(2 \mathrm{H}$, rotamers $), 6.30(\mathrm{dt}, J=16.8,10.3 \mathrm{~Hz})$ and $6.28(\mathrm{dt}, J=16.8,10.3 \mathrm{~Hz})(1 \mathrm{H}$, rotamers $), 6.06$ $(\mathrm{dt}, 1 \mathrm{H}, J=14.8,10.3 \mathrm{~Hz}), 5.66(\mathrm{dt}, J=14.8,7.2 \mathrm{~Hz})$ and $5.54(\mathrm{dt}, J=14.8,7.1 \mathrm{~Hz})(1 \mathrm{H}$, rotamers $)$, $5.24(\mathrm{~s})$ and $4.76(\mathrm{~s})(2 \mathrm{H}$, rotamers), $5.13(\mathrm{dd}, 1 \mathrm{H}, J=16.8,3.3 \mathrm{~Hz}), 5.02(\mathrm{dd}, 1 \mathrm{H}, J=10.3,3.3 \mathrm{~Hz})$, $3.92-3.85(\mathrm{~m})$ and $3.42(\mathrm{t}, J=7.1 \mathrm{~Hz})(2 \mathrm{H}$, rotamers), $2.20(\mathrm{q}, J=7.2 \mathrm{~Hz})$ and $2.02(\mathrm{q}, J=7.1 \mathrm{~Hz})(2 \mathrm{H}$, rotamers), $1.97-1.86(\mathrm{~m})$ and 1.71 (quint, $J=7.1 \mathrm{~Hz})\left(2 \mathrm{H}\right.$, rotamers). ${ }^{13} \mathbf{C} \mathbf{N M R}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ as a mixture of rotamers $\delta(\mathrm{ppm}) 265.4$ (d), 265.1 (d), 223.8 (s), 223.7 (s), 217.4 (s), 217.3 (s), 136.6 (d), 136.4 (d), 133.6 (s), 133.5 (s), 132.7 (d), 132.3 (d), 131.7 (d), 129.3 (d), 129.2 (d), 128.9 (d), 128.7 (d), $127.7(\mathrm{~d}), 127.3(\mathrm{~d}), 116.3(\mathrm{t}), 115.9(\mathrm{t}), 68.7(\mathrm{t}), 62.6(\mathrm{t}), 60.7(\mathrm{t}), 56.1(\mathrm{t}), 29.4(\mathrm{t}), 28.8(\mathrm{t}), 27.9(\mathrm{t})$, 27.5 (t). IR (neat) $v\left(\mathrm{~cm}^{-1}\right)$ 2055, 1973, 1910, 1516, 1453. LRMS (m / z, relative intensity): $405\left(\mathrm{M}^{+}\right.$, 3), $349\left(\left[\mathrm{M}-(\mathrm{CO})_{2}\right]^{+}, 5\right), 321\left(\left[\mathrm{M}-(\mathrm{CO})_{3}\right]^{+}, 7\right), 265\left(\left[\mathrm{M}-(\mathrm{CO})_{5}\right]^{+}, 34\right), 213\left(\left[\mathrm{M}-\mathrm{Cr}(\mathrm{CO})_{5}\right]^{+}, 74\right), 173$ (64), 91 (100). HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{CrNO}_{5}: 405.0668$, found: 405.0659 .
(E)-Pentacarbonyl[(N-(cyclohexylmethyl)-N-(hepta-4,6-dienyl)amino)methylene]chromium(0) (13b)

Same procedure as per the preparation of complex $\mathbf{1 3 c}, \operatorname{Cr}(\mathrm{CO})_{6}(2.07 \mathrm{~g}, 9.41 \mathrm{mmol})$ in tetrahydrofuran $(120 \mathrm{~mL})$, formamide $\mathbf{1 8 b}(1.11 \mathrm{~g}, 4.72 \mathrm{mmol})$ yielded carbene $\mathbf{1 3 b}(1.78 \mathrm{~g}, 92 \%)$ obtained as yellowish oil and as a $3.6: 1.0(E: Z)$ mixture of rotamers. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ as a $3.6: 1.0$ $(E: Z)$ mixture of rotamers $\delta(\mathrm{ppm}) 10.93(\mathrm{~s})$ and $10.72(\mathrm{~s})(1 \mathrm{H}$, rotamers $), 6.33(\mathrm{dt}, J=17.0,10.1 \mathrm{~Hz})$ and $6.31(\mathrm{dt}, 17.0,10.1 \mathrm{~Hz})(1 \mathrm{H}$, rotamers $), 6.12(\mathrm{dd}, J=14.9,10.1 \mathrm{~Hz})$ and $6.08(\mathrm{dd}, J=14.9,10.1$ $\mathrm{Hz})(1 \mathrm{H}$, rotamers $), 5.70(\mathrm{dt}, J=14.9,7.2 \mathrm{~Hz})$ and $5.61(\mathrm{dt}, J=14.9,7.2 \mathrm{~Hz})(1 \mathrm{H}$, rotamers $), 5.14(\mathrm{~d}$, $1 \mathrm{H}, J=17.0 \mathrm{~Hz}), 5.03(\mathrm{~d}, 1 \mathrm{H}, J=10.1 \mathrm{~Hz}), 3.93-3.87(\mathrm{~m})$ and $3.55(\mathrm{t}, J=7.2 \mathrm{~Hz})(2 \mathrm{H}$, rotamers $), 3.82$
$(\mathrm{d}, J=7.7 \mathrm{~Hz})$ and $3.39(\mathrm{~d}, J=7.0 \mathrm{~Hz})(2 \mathrm{H}$, rotamers), $2.24(\mathrm{q}, J=7.2 \mathrm{~Hz})$ and $2.06(\mathrm{q}, J=7.2 \mathrm{~Hz})$ $\left(2 \mathrm{H}\right.$, rotamers), 1.93-1.54 (m, 8 H), 1.33-0.79 (m, 5H). ${ }^{13} \mathbf{C} \mathbf{~ N M R ~ (1 0 0 . 7 ~ M H z , ~} \mathrm{CDCl}_{3}$) (mixture of rotamers unresolvable) $\delta(\mathrm{ppm}) 263.2$ (d), 262.4 (d), 224.2 (s), 224.2 (s), 218.0 (s), 217.8 (s), 136.9 (d), 136.7 (d), 133.1 (d), 132.7 (d), 132.6 (d), 132.1 (d), 116.6 (t), 116.2 (t), 70.9 (t$), 64.0(\mathrm{t}), 62.2$ (t$), 57.1$ (t$)$, $36.8(\mathrm{~d}), 36.4(\mathrm{~d}), 30.5(\mathrm{t}), 30.4(\mathrm{t}), 29.8(\mathrm{t}), 29.1(\mathrm{t}), 28.4(\mathrm{t}), 28.0(\mathrm{t}), 26.3(\mathrm{t}), 26.3(\mathrm{t}), 26.1(\mathrm{t}), 25.8$ (t). IR (neat) $v\left(\mathrm{~cm}^{-1}\right)$ 2930, 2854, 2055, 1973, 1910, 1522. LRMS (m / z, relative intensity): $411\left(\mathrm{M}^{+}, 1\right)$, $271\left(\left(\mathrm{M}-(\mathrm{CO})_{5}\right)^{+}, 8\right), 219\left(\left(\mathrm{M}-\mathrm{Cr}(\mathrm{CO})_{5}\right)^{+}, 69\right), 136\left(\left(\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{Cr}(\mathrm{CO})_{5}\right)^{+}\right.$, 100). Exact Mass calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{5} \mathrm{Cr}$: 411.1138 , found: 411.1130 .

N-Cyclohexyl-N(4-penten-1-yl)formamide (18d)

Following the same procedure as per 18b, $\mathrm{NaH}(17.16 \mathrm{mmol}, 60 \%$ in mineral oil) in THF and DMF (57 mL 2:1 ratio, 0.3 M), N-cyclohexylformamide $\mathbf{1 6 c}(1.74 \mathrm{~mL}, 13.2 \mathrm{mmol})$, alkyl iodide $\mathbf{1 7 c}(2.59 \mathrm{~g}, 13.2$ $\mathrm{mmol})$ gave the desired formamide $\mathbf{1 8 d}(1.26 \mathrm{~g}, 70 \%)$ as colourless oil and as a $2: 1$ mixture of two rotamers. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.13(\mathrm{~s})$ and $8.03(\mathrm{~s})(1 \mathrm{H}$, rotamers), $5.78(\mathrm{~m}, 1 \mathrm{H}), 5.07-4.92$ $(\mathrm{m}, 2 \mathrm{H}), 3.97(\mathrm{~m})$ and $4.23-3.11(\mathrm{~m})(4 \mathrm{H}$, rotamers $), 2.05(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.57(\mathrm{~m}, 6 \mathrm{H}), 1.46(\mathrm{~m}, 2 \mathrm{H})$, $1.31(\mathrm{~m}, 2 \mathrm{H}), 1.11(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ as a mixture of rotamers $\delta 163.0(\mathrm{~d}), 162.3$ (d), 137.7 (d), $137.0(\mathrm{~d}), 115.6(\mathrm{t}), 114.9(\mathrm{t}), 58.5(\mathrm{~d}), 52.6(\mathrm{~d}), 44.4(\mathrm{t}), 41.4(\mathrm{t}), 32.8(\mathrm{t}), 31.3(\mathrm{t}), 30.6$ (t), 28.0 (t), 25.8 (t), 25.4 (t), 25.1 (t); IR (NaCl) v 3474, 3076, 2930, 1663. LRMS (m / z, relative intensity) $218\left(\mathrm{MNa}^{+}\right)$. Exact Mass calcd for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{NONa}: 218.1521$, found : 218.1524.

Pentacarbonyl[(N-cyclohexyl-N-(4-penten-1-yl)amino)methylene]chromium(0) (13d)

Following the same procedure described above as per the preparation of complex 13c, the formamide $18 \mathbf{d}(0.488 \mathrm{~g}, 2.50 \mathrm{mmol})$ was converted into the corresponding carbene $\mathbf{1 3 d}(0.784 \mathrm{~g}, 84 \%)$, as a bright-yellow solid and as a $3: 1$ mixture of rotamers. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.99$ (s) and 10.85
(s) (rotamers, 1 H$), 5.84(\mathrm{~m}, 1 \mathrm{H}), 5.10(\mathrm{~d}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{t}, J=11.5 \mathrm{~Hz})$ and 3.38 $(\mathrm{t}, J=8.5 \mathrm{~Hz})($ rotamers, $2 \mathrm{H}), 3.96(\mathrm{~m}, 2 \mathrm{H}), 2.21(\mathrm{~m}, 2 \mathrm{H}), 2.06(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.80($ complex $\mathrm{m}, 4 \mathrm{H})$, $1.70(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.46($ complex $\mathrm{m}, 1 \mathrm{H}), 1.33(\mathrm{~m}, 3 \mathrm{H}), 1.17(\mathrm{~m}, 1 \mathrm{H}),{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ as a mixture of rotamers $\delta 224.2(\mathrm{CO}), 217.7(\mathrm{CO}), 136.7(\mathrm{CH}), 116.1\left(\mathrm{CH}_{2}\right), 69.7(\mathrm{CH}), 59.3\left(\mathrm{CH}_{2}\right), 55.7$ $\left(\mathrm{CH}_{2}\right), 33.3\left(\mathrm{CH}_{2}\right), 31.5\left(\mathrm{CH}_{2}\right), 30.8\left(\mathrm{CH}_{2}\right), 28.6\left(\mathrm{CH}_{2}\right), 25.5\left(\mathrm{CH}_{2}\right), 24.9\left(\mathrm{CH}_{2}\right)$; IR $(\mathrm{NaCl}) v 3085$, 2938, 2860, 2054, 1915, 1532. Exact Mass calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{CrNO}_{3} \mathrm{Na}\left(\mathrm{MNa}^{+}-2 \mathrm{CO}\right): 338.0819$, found : 338.0827.

N-Isobutyl-N(4-penten-1-yl) formamide (18f)

KHMDS (0.5 M in Toluene, $33.6 \mathrm{ml}, 16.8 \mathrm{mmol}$) was added to a solution of isobutylformamide $\mathbf{1 6 d}$ $(1.7 \mathrm{~g}, 16.5 \mathrm{mmol})$ and $18-\mathrm{C}-6(886.8 \mathrm{mg}, 3.4 \mathrm{mmol})$ at rt . After stirring 1.5 h at $\mathrm{rt}, 1$-bromo-4-pentene $(2 \mathrm{~g}, 1.6 \mathrm{ml}, 13.4 \mathrm{mmol})$ was added and the resulting mixture was stirred at that temperature and monitored by TLC. When the reaction was complete, the solvent was removed under reduced pressure and water was added. The resulting aqueous phase was extracted with DCM (3 times). The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, filtered and concentrated under reduced pressure. Purification by flash chromatography ($60 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes) yielded ($2.01 \mathrm{~g}, 90 \%$) of amide 18 f as colorless oil and as a $1.5: 1.0$ mixture of rotamers.
Rotamer A : ${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 8.10(\mathrm{~s}, 1 \mathrm{H}), 5.88-5.69(\mathrm{~m}, 1 \mathrm{H}), 5.08-5.04(\mathrm{~m}, 2 \mathrm{H})$, $3.25-3.18(\mathrm{~m}, 2 \mathrm{H}), 3.14(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.07(\mathrm{dd}, J=13.2,6.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.99-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.71-$ $1.57(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{~d}, J=6.81 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 163.26$ (d), 137.13 (d), $115.92(\mathrm{t}), 49.07$ (t), $46.96(\mathrm{t}), 30.50(\mathrm{t}), 27.49(\mathrm{t}), 26.33(\mathrm{~d}), 20.15(\mathrm{q})$. IR (KBr) v ($\left.\mathrm{cm}^{-1}\right) 3077,1674$, 1468. LRMS (m / z, relative intensity) $192\left(\mathrm{M}+\mathrm{Na}^{+}, 100\right)$. Exact Mass calcd for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{NNaO}$ 192.1364, found : 192.1358.
Rotamer B : ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 8.01(\mathrm{~s}, 1 \mathrm{H}), 5.88-5.69(\mathrm{~m}, 1 \mathrm{H}), 5.02-4.96(\mathrm{~m}, 2 \mathrm{H})$, $3.32-3.25(\mathrm{~m}, 2 \mathrm{H}), 2.98(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.07(\mathrm{dd}, J=13.2,6.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.99-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.71-$ $1.57(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{~d}, J=6.81 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 163.13$ (d), 137.73 (d), 115.26 (t$), 55.40(\mathrm{t}), 42.30$ (t$), 31.20$ (t$), 26.75$ (t$), 26.41$ (d), 19.86 (q).

Pentacarbonyl[(N-isobutyl-N-(4-penten-1-yl)amino)methylene]chromium(0)(13f)

Following the same procedure described above as per the preparation of complex 13c, the formamide $18 f(400 \mathrm{mg}, 2.36 \mathrm{mmol})$ was converted into the corresponding carbene $\mathbf{1 3 f}(662.9 \mathrm{mg}, 81 \%)$, as colorless oil and as a $1: 3$ mixture of rotamers. Rotamer A : ${ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 10.95$ (s, 1H), 5.92-5.66 (m, 1H), 5.15-5.01 (m, 2H), 3.99-3.87 (m, 2H), 3.37 (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}$), 2.08-1.94 (m, 2H), 1.88 (ddd, $J=15.2,10.2,6.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.75(\mathrm{dd}, J=14.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.02(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, $6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 263.31$ (d), 224.15 (s$), 217.88$ (s$), 217.75$ (s$), 136.30$ (d), 116.77 (t), 63.38 (t), 63.07 (t), 30.20 (t), 27.47 (t), 26.91 (d), 19.52 (q). IR (KBr) v $\left(\mathrm{cm}^{-1}\right): 2964,1973,1909$. Rotamer B : ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta(\mathrm{ppm}) 10.78(\mathrm{~s}, 1 \mathrm{H}), 5.92-5.66(\mathrm{~m}, 1 \mathrm{H}), 5.15-5.01(\mathrm{~m}$, 2 H), 3.83 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $3.56(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.20(\mathrm{dd}, J=14.2,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.08-1.94(\mathrm{~m}$, 2 H), 1.88 (ddd, $J=15.2,10.2,6.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.75(\mathrm{dd}, J=14.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.89(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H})$. ${ }^{13}$ C NMR ($75 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 262.54$ (d), 224.15 (s), 217.88 (s$), 217.75$ (s$), 136.80$ (d), 116.24 (t), 71.91 (d), 56.94 (t), 30.85 (t), 27.93 (t), 27.31 (d), 19.58 (q).

N-t-Butyl-N(4-penten-1-yl) formamide (18g)

Following the procedure as per formamide $\mathbf{1 8 b}, N-(t$-butyl)formamide ($0.47 \mathrm{~mL}, 4.19 \mathrm{mmol}$) was alkylated with iodide $\mathbf{1 7 c}(1.50 \mathrm{~g}, 7.65 \mathrm{mmol})$ to give formamide $\mathbf{1 8 g}$ as colorless oil $(0.729 \mathrm{~g}, 56 \%)$. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.38(\mathrm{~s}, 1 \mathrm{H}), 5.78(\mathrm{~m}, 1 \mathrm{H}), 5.01(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~d}, J=$ $9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{~m}, 2 \mathrm{H}), 2.05(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.63(\mathrm{~m}, 2 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 161.4(\mathrm{~d}), 137.7(\mathrm{~d}), 115.0(\mathrm{t}), 55.3(\mathrm{~s}), 41.0(\mathrm{t}), 31.5(\mathrm{t}), 29.6(\mathrm{q}), 28.3(\mathrm{t}) ; \mathbf{I R}(\mathrm{NaCl}) v 2970$, 2931, 1659, 1372. LRMS (m / z, relative intensity) $192\left(\mathrm{MNa}^{+}\right)$. Exact Mass calcd for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{NONa}$ 192.1364, found 192.1358 .

Pentacarbonyl[(N-tert-butyl-N-(4-penten-1-yl)amino)methylene]chromium(0)(13g)

Following the same procedure described above as per the preparation of complex 13c, the formamide $\mathbf{1 8 g}(1.60 \mathrm{~g}, 9.45 \mathrm{mmol})$ was converted into the corresponding carbene $\mathbf{1 3 g}(2.79 \mathrm{~g}, 86 \%)$ obtained as air-sensitive bright-yellow oil and a single rotamer. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.38(\mathrm{~s}, 1 \mathrm{H}), 5.84$ $(\mathrm{m}, 1 \mathrm{H}), 5.10(\mathrm{dm}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{dm}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~m}, 2 \mathrm{H}), 2.21(\mathrm{q}, J=7.0 \mathrm{~Hz}$, $2 \mathrm{H}), 1.91(\mathrm{~m}, 2 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 256.0(\mathrm{~d}), 224.3(\mathrm{~s}), 217.7(\mathrm{~s}), 136.7$ (d), 116.0 (t), 67.6 (s), 54.9 (t), 31.0 (t), 30.5 (t), 30.0 (q); IR (NaCl) v 3081, 2988, 2052, 1977, 1919. Exact Mass calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{CrNO}_{3} \mathrm{Na}\left(\mathrm{MNa}^{+}-2 \mathrm{CO}\right): 312.0668$, found: 312.0672.

(E)- and (Z)-N-Isobutyl-N(4-hexen-1-yl) formamide (18h)

Following the procedure as per formamide 18b, N-(t-butyl)formamide ($0.47 \mathrm{~mL}, 4.19 \mathrm{mmol}$) was alkylated with iodide $\mathbf{1 7 d}(800 \mathrm{mg}, 3.81 \mathrm{mmol})$ to give formamide $\mathbf{1 8 h}(0.320 \mathrm{~g}, 46 \%)$ as colorless oil and as a single rotamer. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.39(\mathrm{~s}, 1 \mathrm{H}), 5.41(\mathrm{~m}, 2 \mathrm{H}), 3.22(\mathrm{~m}, 2 \mathrm{H}), 1.97$ $(\mathrm{m}, 2 \mathrm{H}), 1.65-1.53$ (covered, complex m, 5H), $1.34(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.4$ (d), 130.3 (d), 125.4 (d), 55.3 (s$), 41.1$ (t , 30.4 (t , 29.6 (q$), 29.1$ (t$), 17.8$ (q$)$; IR (NaCl$) v 2979$, 2922, 1655. LRMS (m / z, relative intensity) $206\left(\mathrm{MNa}^{+}\right)$. Exact Mass calcd for $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{NONa}$: 206.1515, found : 206.1518.

(E)- and (Z)-Pentacarbonyl[(N-isobutyl-N-(4-hexen-1-yl)amino)methylene]chromium(0) (13h)

Following the same procedure as per the preparation of complex $\mathbf{1 3 c}$, the formamide $\mathbf{1 8 h}(0.550 \mathrm{~g}, 3.00$ mmol) was converted into the corresponding carbene $13 \mathrm{~h}(0.852 \mathrm{~g}, 79 \%)$ obtained as air-sensitive bright-yellow oil and as a single rotamer. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.36(\mathrm{~s}, 1 \mathrm{H}), 5.48(\mathrm{~m}, 2 \mathrm{H})$, $4.00(\mathrm{~m}, 2 \mathrm{H}), 2.12(\mathrm{app} . \mathrm{m}, 2 \mathrm{H}), 1.88(\mathrm{~m}, 2 \mathrm{H}), 1.67(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 255.4$ (d), 224.3 (s$), 217.7$ (s), 129.2 (d), 126.6 (d), 67.5 (s$), 55.0(\mathrm{t}), 31.2$ (t), 30.0 (q), $29.8(\mathrm{t}), 17.8(\mathrm{q}) ;$ IR (NaCl$) v 2988,2948,2054,1915$. LRMS (m / z, relative intensity) $326\left(\mathrm{MNa}^{+}\right)$. Exact Mass calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{CrNO}_{3} \mathrm{Na}: 326.0819$, found : 326.0823.

N-cyclohexyl-N-(5-methyl-4-hexen-1-yl)formamide (18I)

Following the procedure as per formamide $\mathbf{1 8 b}, N$-(cyclohexyl)formamide $(0.590 \mathrm{~mL}, 4.45 \mathrm{mmol})$ was alkylated with iodide $\mathbf{1 7 l}(1.00 \mathrm{~g}, 4.76 \mathrm{mmol})$ to give formamide $181(508 \mathrm{mg}, 51 \%)$ as colorless oil and as a single rotamer. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05(\mathrm{~s})$ and $7.94(\mathrm{~s})(1 \mathrm{H}$, rotamers), $5.00(\mathrm{~m}, 1 \mathrm{H})$, $3.89(\mathrm{~m})$ and $3.09(\mathrm{~m})(1 \mathrm{H}$, rotamers), $3.09(\mathrm{~m})$ and $1.90(\mathrm{~m})(4 \mathrm{H}$, rotamers), 1.80-1.35 (complex m, $8 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~m}, 2 \mathrm{H}), 1.05(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.5(\mathrm{~d})$, 162.7 (d), 132.9 (s$), 132.1$ (s$), 124.0(\mathrm{~d}), 123.4(\mathrm{~d}), 58.9(\mathrm{~d}), 53.2(\mathrm{~d}), 45.2(\mathrm{t}), 42.1(\mathrm{t}), 33.4(\mathrm{t}), 32.2(\mathrm{t})$, $31.2(\mathrm{t}), 29.6(\mathrm{t}), 26.3(\mathrm{t}), 26.2(\mathrm{t}), 25.9(\mathrm{t}), 25.7(\mathrm{t}), 25.5(\mathrm{t}), 18.2(\mathrm{q}), 18.2(\mathrm{q}) ;$ IR (NaCl) v 3327, 2928, 2852, 1676; HRMS (ESI, 70 eV) [$\left.\mathrm{MNa}^{+}\right] \mathrm{C}_{14} \mathrm{H}_{25} \mathrm{NONa}$, calcd. 246.1828, found 246.1833.

Pentacarbonyl/(N-cyclohexyl-N-(5-methyl-4-hexen-1-yl)amino)methylene]chromium(0) (13I)

Following the same procedure described above as per the preparation of complex 13c, the formamide $181(0.447 \mathrm{~g}, 2.00 \mathrm{mmol})$ was converted into the corresponding carbene to give $569 \mathrm{mg}(71 \%)$ of product 131 as yellow oil and as a $2: 1$ mixture of rotamers. Rotamer A : ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $10.97(\mathrm{~s})$ and $10.82(\mathrm{~s})(1 \mathrm{H}$, rotamers), $5.16(\mathrm{~m})$ and $5.07(\mathrm{~m})(1 \mathrm{H}$, rotamers), $4.64(\mathrm{~m})$ and $3.37(\mathrm{~m})$ $(1 \mathrm{H}$, rotamers), $3.95(\mathrm{~m})$ and $3.37(\mathrm{~m})(2 \mathrm{H}$, rotamers), $2.15(\mathrm{dd}, J=7.4$ and 7.4 Hz$)$ and $1.97(\mathrm{dd}, J=$ 14.5 and 7.2 Hz$)(2 \mathrm{H}$, rotamers), $1.90-1.75$ (complex m, 6 H$), 1.72(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.62(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 3 \mathrm{H}), 1.33(\mathrm{~m}, 5 \mathrm{H}), 1.19(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 258.8$ (d), 253.5 (d), 224.3 (s$)$, $224.2(\mathrm{~s}), 217.7(\mathrm{~s}), 217.6(\mathrm{~s}), 133.3(\mathrm{~s}) 129.4(\mathrm{~d}), 129.2(\mathrm{~d}), 69.4(\mathrm{~d}), 69.4(\mathrm{~d}), 59.6(\mathrm{t}), 55.9(\mathrm{t}), 33.3$
 1880, 1535; HRMS (ESI, 70 eV) [MNa $\left.{ }^{+}-2 \mathrm{CO}\right] \mathrm{C}_{17} \mathrm{H}_{26} \mathrm{CrNO}_{3} \mathrm{Na}$, calcd. 366.1132, found 366.1132.

Synthesis of chromium aminocarbene 13i-k

But-3-en-1-ynyltriisopropylsilane 42k

Vinylbromide (1.0 M in THF, $6.68 \mathrm{~mL}, 6.68 \mathrm{mmol}$) in THF was added to a solution triisopropylsilylacetylene ($1 \mathrm{~mL}, 4.46 \mathrm{mmol}$), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(62.58 \mathrm{mg}, 0.09 \mathrm{mmol})$ and $\mathrm{CuI}(33.96 \mathrm{mg}$, $0.18 \mathrm{mmol})$ in $\mathrm{Et}_{3} \mathrm{~N}(4.5 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$. After stirring for 3 h at $25^{\circ} \mathrm{C}, 1 \mathrm{~N} \mathrm{HCl}(\mathrm{aq})$ was added to the solution. A saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added, and the product was extracted with diethyl ether. The organic layer was dried over anhydrous magnesium sulfate, and concentrated under vacuum. Purification by column chromatography with hexane yielded enyne $\mathbf{4 2 k}$ ($801 \mathrm{mg}, 86 \%$) as colorless oil. The ${ }^{1} \mathrm{H}$ NMR spectra was identical to published data. ${ }^{5} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 5.84$ (dd, J $=17.6,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{dd}, \mathrm{J}=17.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{dd}, \mathrm{J}=10.9,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.08(\mathrm{~d}, \mathrm{~J}=3.1$ $\mathrm{Hz}, 21 \mathrm{H})$.

(E)-Pentacarbonyl[(N-isobutyl-N-(5-phenyl-4-penten-1-yl)methylene]chromium(0) (13i)

Styrene 42 i ($603.2 \mathrm{mg}, 5.79 \mathrm{mmol}$) and chromium aminocarbene $\mathbf{1 3 f}(200 \mathrm{mg}, 0.58 \mathrm{mmol})$ were added sequencially via syringe in a stirred solution of DCM and Grubbs 2 nd generation catalyst (24.6 mg , 0.03 mmol). The mixture was heated to reflux for 24 h . The reaction mixture was then reduced in volume and purified directly on a silica gel column to give $168.9 \mathrm{mg}(69 \%)$ of product $\mathbf{1 3 i}$ as yellow oil and as a $1: 3$ mixture of rotamers. Rotamer A : ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.92(\mathrm{~s}, 1 \mathrm{H}), 7.36-7.22$ (m, 5H), $6.39(\mathrm{~m}, 1 \mathrm{H}), 6.17-6.02(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.54(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.13(\mathrm{dd}, J$ $=13.8,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.81-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.35(\mathrm{~m}, 1 \mathrm{H}), 0.96(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 263.68$ (d), 224.11 (s), 217.91 (s), 217.78 (s), 137.11 (s$), 132.06$ (d), 129.97 (d), 128.76 (d), $127.80(\mathrm{~d}), 127.58(\mathrm{~d}), 126.20(\mathrm{~d}), 71.97(\mathrm{t}), 63.09(\mathrm{t}), 57.05(\mathrm{t}), 30.23(\mathrm{t}), 29.52(\mathrm{~d}), 28.06(\mathrm{t})$, 26.98 (d), 22.80 (t), 19.56 (q). IR (KBr) $v\left(\mathrm{~cm}^{-1}\right): 2963,2054,1972,1910,1673$. Rotamer B : ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.73(\mathrm{~s}, 1 \mathrm{H}), 7.36-7.22(\mathrm{~m}, 5 \mathrm{H}), 6.39(\mathrm{~m}, 1 \mathrm{H}), 6.17-6.02(\mathrm{~m}, 1 \mathrm{H}), 3.95-3.86(\mathrm{~m}$, 2 H), 3.32 (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{dd}, J=14.5,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.91$ (td, $J=15.2,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.60-1.35$ $(\mathrm{m}, 1 \mathrm{H}), 0.83(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 262.93$ (d), 224.11 (s$), 217.91$ (s), 217.78 (s , 137.35 (s), 131.59 (d), 129.97 (d), 128.72 (d), 128.42 (d), 127.42 (d), 126.20 (d), 71.97 (t), 63.43 (t), 57.05 (t$), 31.74$ (t), 29.52 (d), 28.56 (t$), 27.33$ (d), 22.80 (t$), 19.62$ (q).

(E)-Pentacarbonyl[(N-isobutyl-N-(5-methylcarboxy-4-penten-1-yl)methylene]chromium (0) (13j)

Same procedure as per 13i using methyl metacrylate $42 \mathbf{j}$ ($546 \mathrm{mg}, 6.34 \mathrm{mmol}$) and chromium aminocarbene $13 f(219 \mathrm{mg}, 0.63 \mathrm{mmol})$ The reaction mixture was then reduced in volume and purified directly on a silica gel colomn to give $122.6 \mathrm{mg}(48 \%)$ of product $\mathbf{1 3} \mathbf{j}$ as yellow oil and as $1: 4$ mixture of rotamers.
Rotamer A : ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.82(\mathrm{~s}, 1 \mathrm{H}), 7.05-6.83(\mathrm{~m}, 1 \mathrm{H}), 5.9(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.97-3.89(\mathrm{~m}, 2 \mathrm{H}), 3.73(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 3 \mathrm{H}), 3.37(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{dd}, J=14.1,7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $2.05-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.83(\mathrm{dd}, J=14.6,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.89(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (75 MHz , CDCl3) $\delta 264.8$ (d), 233.9 (s$), 217.8$ (s), 217.7 (s$), 166.8$ (s$), 146.2$ (d), 122.9 (d), 71.9 (t), 56.7 (t), 51.7
(q), 29.8 (t), 29.2 (d), 27.4 (t), 27.3 (d), 19.5 (q). IR (KBr) $v\left(\mathrm{~cm}^{-1}\right): 2954,2054,2039,1971,1923$, 1727, 1672. Rotamer B : ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.00(\mathrm{~s}, 1 \mathrm{H}), 7.05-6.83(\mathrm{~m}, 1 \mathrm{H}), 5,88(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 3 \mathrm{H}), 3.58(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.18(\mathrm{dd}, J=$ $14.5,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.05-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.83(\mathrm{dd}, J=14.6,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.03(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 264.0$ (d), 233.9 (s , 217.8 (s$), 217.7$ (s), 166.8 (s$), 146.8$ (d), 122.5 (d), 71.9 (t), 56.7 (t), 51.7 (q), 29.8 (t), 29.2 (d), 27.4 ($), 27.3$ (d), 19.6 (q).

(E)-N-isobutyl-N-(7-(triisopropylsilyl)hept-4-en-6-ynyl)formamide (18k)

To a solution of enyne $\mathbf{4 2 k}(101 \mathrm{mg}, 0.49 \mathrm{mmol})$ in benzene $(2,43 \mathrm{~mL})$ catalyst \mathbf{A} was added $(41 \mathrm{mg}$, $0.05 \mathrm{mmol})$ followed by terminal alkene $18 \mathrm{f}(246 \mathrm{mg}, 1.46 \mathrm{mmol})$. The reaction mixture was stirred for 39 h at $70^{\circ} \mathrm{C}$ under a nitrogen atmosphere. After removal of the organic solvent under reduced pressure, the residue was purified by column chromatography on silica gel with $40 / 60$ hexane/ether to yield $146,4 \mathrm{mg}(86 \%)$ of the formamide $\mathbf{1 8 k}$ as a colorless oil and as a $1: 1.76$ mixture of rotamers. Rotamer A : ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $8.03-7.98(\mathrm{~m}, 1 \mathrm{H}), 5.67-5.44(\mathrm{~m}, 1 \mathrm{H}), 5.35(\operatorname{tdd}, J=9.9$, $9.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{ddd}, J=11.5,7.1,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.29-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.73-$ $1.57(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.57(\mathrm{~m}, 3 \mathrm{H}), 1.07(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 18 \mathrm{H}), 0.89(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 6 \mathrm{H})$. Rotamer B : ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.11-8.06(\mathrm{~m}, 1 \mathrm{H}), 6.23-6.07(\mathrm{~m}, 1 \mathrm{H}), 5.94(\mathrm{ddt}, J=12.5,11.0,7.5 \mathrm{~Hz}$, 1 H), 3.22 (dd, $J=9.4,4.4 \mathrm{~Hz}, 2 \mathrm{H}$), $3.16-3.08(\mathrm{~m}, 2 \mathrm{H}), 2.37$ (ddd, J = 15.8, 11.6, 7.3 Hz, 2H), 2.17$2.05(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.57(\mathrm{~m}, 3 \mathrm{H}), 1.07(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 18 \mathrm{H}), 0.89(\mathrm{~d}, J=6.5 \mathrm{~Hz}$, 6 H). Both rotamers : ${ }^{13} \mathbf{C}$ NMR ($76 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.3$ (d), 163.1 (d), 163.1 (d), 162.8 (d), 144.1 (d), 143.5 (d), 143.3 (d), 142.6 (d), 128.9 (d), 127.6 (d), 127.6 (d), 126.6 (d), 126.3 (d), 125.6 (d), 125.3 (d), 111.6 (d), 111.3 (d), 111.0 (d), 110.7 (d), 103.6 (s), $103.3(\mathrm{~s}), 96.1(\mathrm{~s}), 95.6(\mathrm{~s}), 55.6(\mathrm{t}), 55.6(\mathrm{t}), 55.5$ (t$)$, $54.7(\mathrm{t}), 49.4(\mathrm{t}), 49.2(\mathrm{t}), 47.9(\mathrm{t}), 47.5(\mathrm{t}), 44.4(\mathrm{t}), 42.8(\mathrm{t}), 42.5(\mathrm{t}), 32.0(\mathrm{t}), 30.6(\mathrm{t}), 29.9(\mathrm{t}), 28.2$
 18.1 (q), 17.8 (q), 13.0 (q), 11.4 (q). IR (KBr) $v\left(\mathrm{~cm}^{-1}\right): 3021,2145,1937,1676$. LRMS $(\mathrm{m} / \mathrm{z}$, relative intensity) $372\left(\mathrm{MNa}^{+}\right)$. Exact Mass calcd for $\mathrm{C}_{21} \mathrm{H}_{39} \mathrm{NOSiNa} 372.2699$, found: 372.2709.

Pentacarbonyl[(N-isobutyl-N-(7-triisopropylsilyl-4-hepten-6-yn-1-yl)methylene]chromium(0) (13k)

Following the same procedure described above as per the preparation of complex 13c, the formamide $\mathbf{1 8 k}(301.9 \mathrm{mg}, 0.86 \mathrm{mmol})$ was converted into the corresponding carbene to give $270 \mathrm{mg}(59 \%)$ of product 13k as yellow oil and as a mixture $1: 3: 6: 0.5$ of rotamers and geometrical isomers, $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D). Rotamer A : ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.81(\mathrm{~s}, 1 \mathrm{H}), 6.26-6.12(\mathrm{~m}, 1 \mathrm{H}), 5.58-5.47(\mathrm{~m}$, $1 \mathrm{H}), 3.94(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{dd}, J=8.1,2 \mathrm{H}), 3.59-3.51(\mathrm{~m}, 2 \mathrm{H}), 3.40(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.37-2.23(\mathrm{~m}$, $2 \mathrm{H}), 2.06-1.86(\mathrm{~m}, 3 \mathrm{H}), 1.04-1.02(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 18 \mathrm{H}), 0.91-0.89(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H})$. Rotamer B : ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.79(\mathrm{~s}, 3 \mathrm{H}), 6.03-5.88(\mathrm{~m}, 1 \mathrm{H}), 5.47-5.36(\mathrm{~m}, 1 \mathrm{H}), 3.94(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{~d}$ $, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.59-3.51(\mathrm{~m}, 2 \mathrm{H}), 3.36(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.61-2.38(\mathrm{~m}, 2 \mathrm{H}), 1.79(\mathrm{~d}, J=5.1 \mathrm{~Hz}$, $3 \mathrm{H}), 1.03-1.01(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 18 \mathrm{H}), 0.90-0.87(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H})$. Rotamer C : ${ }^{1} \mathbf{H} \mathbf{N M R}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 10.78(\mathrm{~s}, 6 \mathrm{H}), 6.03-5.88(\mathrm{~m}, 1 \mathrm{H}), 5.71-5.58(\mathrm{~m}, 1 \mathrm{H}), 3.94(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $3.59-3.51(\mathrm{~m}, 2 \mathrm{H}), 3.36(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.61-2.38(\mathrm{~m}, 2 \mathrm{H}), 1.67(\mathrm{ddd}, J=13.2,9.0,6.0 \mathrm{~Hz}, 3 \mathrm{H})$, $1.12-1.05(\mathrm{~d}, J=5.718 \mathrm{H}), 0.90-0.88(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H})$. Rotamer D : ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $10.76(\mathrm{~s}, 1 \mathrm{H}), 6.26-6.12(\mathrm{~m}, 1 \mathrm{H}), 5.29-5.15(\mathrm{~m}, 1 \mathrm{H}), 3.94(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.59-3.51$ $(\mathrm{m}, 2 \mathrm{H}), 3.34(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.37-2.23(\mathrm{~m}, 2 \mathrm{H}), 2.23-2.08(\mathrm{~m}, 3 \mathrm{H}), 1.03-1.01(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 18 \mathrm{H})$, 0.89-0.87 (d, $J=7.5 \mathrm{~Hz}, 6 \mathrm{H}$).

All rotamers : ${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 262.74$ (d), 262.39 (d), 224.20 (s), 217.91 (s), 217.75 (s), 217.69 (s), 142.10 (s$), 130.46$ (d), 129.17 (d), 127.74 (d), 125.57 (d), 125.21 (d), 124.66 (d), 111.56 (s$)$, $103.21(\mathrm{~s}), 72.00(\mathrm{t}), 63.93(\mathrm{t}), 63.22(\mathrm{t}), 56.96(\mathrm{t}), 56.81(\mathrm{t}), 31.93(\mathrm{t}), 31.71(\mathrm{t}), 27.85(\mathrm{t}), 27.51(\mathrm{t})$, 27.32 (d), 27.28 (d), 26.97 (d), 26.85 (d), 26.50 (t), 19.54 (q), 18.74 (q), 18.06 (q), 17.98 (q), 11.39 (q). IR (KBr) $v\left(\mathrm{~cm}^{-1}\right): 2964,2055,1974,1916,1674$.

Synthesis of chromium aminocarbenes 20 and 22.

(S)-2-(Iodomethyl)pyrrolidine-1-carbaldehyde (45)

Iodine ($982 \mathrm{mg}, 3.87 \mathrm{mmol}$) was added to a solution of triphenylphosphine ($1.02 \mathrm{~g}, 3.87 \mathrm{mmol}$) and imidazole ($290 \mathrm{mg}, 4.26 \mathrm{mmol}$) in 15 mL of anhydrous dichloromethane at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 45 min . A solution of the alcohol $44^{6}(500 \mathrm{mg}, 3.87 \mathrm{mmol})$ in 3 mL of anhydrous dichloromethane was added at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at rt for 18 h . Then, a 1 N aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(20 \mathrm{~mL})$ was added and the phases were separated. The aqueous layer was extracted with dichloromethane ($2 \times 15 \mathrm{~mL}$), the combined organic layers were dried over anhydrous magnesium sulfate, filtered and evaporated under reduced pressure. The crude product was purified by flash chromatography on a silica gel column using solutions of acetone in hexanes (20:80 to 40:60) as eluent. The iodide 45 ($791 \mathrm{mg}, 86 \%$) was obtained as a colorless solid and as a $56: 44$ mixture of rotamers. Note: an impurity forms rapidly upon storing the product, even in the refregirator, turning the solid to a pale brown color. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (both rotamers) $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 8.35(\mathrm{~s}, 1 \mathrm{H}), 8.29(\mathrm{~s}$,
$1 \mathrm{H}), 4.08-3.93(\mathrm{~m}, 2 \mathrm{H}), 3.67-3.55(\mathrm{~m}, 2 \mathrm{H}), 3.54-3.49(\mathrm{~m}, 3 \mathrm{H}), 3.48-3.37(\mathrm{~m}, 1 \mathrm{H}), 3.26(\mathrm{dd}, 1 \mathrm{H}, J=$ $10.3,5.3 \mathrm{~Hz}$), $3.19\left(\mathrm{dd}, 1 \mathrm{H}, J=10.2,8.2 \mathrm{~Hz}\right.$), 2.25-2.06 (m, 2H), 2.04-1.78 (m, 6H). ${ }^{13}$ C NMR (both rotamers) ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 161.1(\mathrm{~d}), 161.0(\mathrm{~d}), 58.2(\mathrm{~d}), 55.6(\mathrm{~d}), 47.3(\mathrm{t}), 44.0(\mathrm{t}), 31.5(\mathrm{t})$, $31.4(\mathrm{t}), 23.8(\mathrm{t}), 22.1(\mathrm{t}), 10.6(\mathrm{t}), 10.4(\mathrm{t})$. IR (neat) $v\left(\mathrm{~cm}^{-1}\right) 3068,2970,2876,1666,1383,1158$. LRMS (m / z, relative intensity) $238\left(\mathrm{M}^{+}, 10\right), 112$ (40), 98 (100). Exact Mass calcd for $\mathrm{C}_{6} \mathrm{H}_{10}$ INO: 238.9807, found: $238.9814 .[\alpha]_{\mathrm{D}}=-77.4$.

(R)-2-(but-3-enyl)pyrrolidine-1-carbaldehyde (47)

Allyltributylstannane $46(0.55 \mathrm{~mL}, 1.8 \mathrm{mmol})$ and AIBN $(73 \mathrm{mg}, 0.446 \mathrm{mmol})$ were added to a solution of the iodide $45(213 \mathrm{mg}, 0.891 \mathrm{mmol})$ in anhydrous benzene $(0.9 \mathrm{~mL}, 1 \mathrm{M})$. The reaction mixture was heated to reflux temperature for 5.5 h and cooled down before the solvent was evaporated under reduced pressure. The crude product was purified by flash chromatography on a silica gel column using solutions of acetone in hexanes ($0: 100-30: 70-50: 50$) as eluent. The product $47(60 \mathrm{mg}, 44 \%)$ was obtained as colorless oil and as a $71: 29$ mixture of rotamers. ${ }^{1} \mathbf{H}$ NMR (major rotamer) (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 5.70-5.54(\mathrm{~m}, 1 \mathrm{H}), 4.91-4.73(\mathrm{~m}, 2 \mathrm{H}), 3.67-3.58(\mathrm{~m}, 1 \mathrm{H}), 3.44-3.32(\mathrm{~m}, 1 \mathrm{H}), 3.28-3.10$ $(\mathrm{m}, 1 \mathrm{H}), 1.97-1.60(\mathrm{~m}, 5 \mathrm{H}), 1.60-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.13(\mathrm{~m}, 2 \mathrm{H}) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ (minor rotamer) (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 5.70-5.54(\mathrm{~m}, 1 \mathrm{H}), 4.91-4.73(\mathrm{~m}, 2 \mathrm{H}), 3.87-3.77(\mathrm{~m}, 1 \mathrm{H}), 3.44-3.32(\mathrm{~m}, 1 \mathrm{H})$, 3.28-3.10 (m, 1H), 1.97-1.60 (m, 5H), 1.60-1.45 (m, 2H), 1.45-1.13 (m, 2 H$).{ }^{13} \mathbf{C}$ NMR (major rotamer) ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 160.8(\mathrm{~d}), 137.1(\mathrm{~d}), 115.3(\mathrm{t}), 56.9(\mathrm{~d}), 43.1(\mathrm{t}), 34.8(\mathrm{t}), 30.3(\mathrm{t}), 30.1(\mathrm{t})$, 22.3 (t). ${ }^{13} \mathbf{C}$ NMR (minor rotamer) (75.5 MHz, CDCl_{3}) $\delta(\mathrm{ppm}) 160.8(\mathrm{~d}), 137.8(\mathrm{~d}), 114.5(\mathrm{t}), 54.8(\mathrm{~d})$,
 1663, 1649, 1415, 1384. LRMS (m / z, relative intensity) $154\left(\mathrm{MH}^{+}, 5\right), 153\left(\mathrm{M}^{+}, 5\right), 111(40), 98(100)$. Exact Mass calcd for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{NO}$: 153.1154, found: 153.1158. $[\alpha]_{\mathbf{D}}=-44.1$.

(R)-Pentacarbonyl[(3-buten-1-yl) pyrrolidine)methylene]chromium(0) (22)

Following the same procedure described above as per the preparation of complex 13c, the formamide $47(245 \mathrm{mg}, 1.60 \mathrm{mmol})$ was converted into the corresponding carbene $22(422 \mathrm{mg}, 80 \%)$ obtained as air-sensitive yellow oil and as single rotamer. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 11.0(\mathrm{~s}, 1 \mathrm{H}), 5.77$ (dddd, $1 \mathrm{H}, J=16.8,10.2,6.4,6.4 \mathrm{~Hz}), 5.11-5.02(\mathrm{~m}, 2 \mathrm{H}), 4.16-3.97(\mathrm{~m}, 2 \mathrm{H}), 3.73-3.63(\mathrm{~m}, 1 \mathrm{H}), 2.31-$ $2.11(\mathrm{~m}, 3 \mathrm{H}), 2.11-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.53(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta(\mathrm{ppm}) 255.2(\mathrm{~d}), 224.1(\mathrm{~s}), 217.9(\mathrm{~s}), 136.6(\mathrm{~d}), 116.4(\mathrm{t}), 71.1(\mathrm{~d}), 56.1(\mathrm{t}), 34.2(\mathrm{t}), 30.4(\mathrm{t}), 29.9(\mathrm{t})$, 23.6 (t). IR (neat) $v\left(\mathrm{~cm}^{-1}\right) 3081,2980$, 2932, 2055, 2021-1773, 1515. LRMS (m / z, relative intensity) $296\left((\mathrm{M}-2 \mathrm{CO}+\mathrm{Na})^{+}, 100\right)$. Exact mass calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{CrNNaO}_{3}$: 296.0349, found: 296.0359.

Mixture of E and $Z(R)$-2-(hexa-3,5-dienyl)pyrrolidine-1-carbaldehyde (49)

Tributyl(penta-2,4-dienyl)stannane 48 (ratio $E: Z=86: 14,2.44 \mathrm{~g}, 6.83 \mathrm{mmol}$) and 1,1azobis(cyclohexanecarbonitrile) (VAZO) ($334 \mathrm{mg}, 1.37 \mathrm{mmol}$) were added to a solution of the iodide $45(817 \mathrm{mg}, 3.42 \mathrm{mmol})$ in anhydrous benzene $(3.4 \mathrm{~mL}, 1 \mathrm{M})$. The reaction mixture was heated to reflux temperature for 5 h and cooled down before the solvent was evaporated under reduced pressure. The crude product was purified by flash chromatography on a silica gel column using solutions of acetone in hexanes ($0: 100$ to $50: 50$) as eluent. Diene $49(282 \mathrm{mg}, 46 \%)$ was obtained as colorless oil and as a 80 : 20 mixture of E and Z double bonds, each geometrical isomer itself existing as a mixture of rotamers. ${ }^{1} \mathbf{H}$ NMR $\left(E\right.$ double bond, major rotamer) $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 8.22(\mathrm{~s}, 1 \mathrm{H}), 6.27(\mathrm{dt}, 1 \mathrm{H}, J=$ $17.0,10.3 \mathrm{~Hz}), 6.05(\mathrm{dd}, 1 \mathrm{H}, J=15.2,10.3 \mathrm{~Hz}), 5.63(\mathrm{dt}, 1 \mathrm{H}, J=15.2,6.8 \mathrm{~Hz}), 5.09(\mathrm{~d}, 1 \mathrm{H}, J=17.0$ $\mathrm{Hz}), 4.97(\mathrm{~d}, 1 \mathrm{H}, J=10.3 \mathrm{~Hz}), 3.80-3.73(\mathrm{~m}, 1 \mathrm{H}), 3.59-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.41-3.27(\mathrm{~m}, 1 \mathrm{H}), 2.14-2.06(\mathrm{~m}$, $2 \mathrm{H}), 2.05-1.60(\mathrm{~m}, 5 \mathrm{H}), 1.60-1.48(\mathrm{~m}, 1 \mathrm{H}) .{ }^{1} \mathbf{H}$ NMR (E double bond, minor rotamer) $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 8.22(\mathrm{~s}, 1 \mathrm{H}), 6.27(\mathrm{dt}, 1 \mathrm{H}, J=17.0,10.3 \mathrm{~Hz}), 6.05(\mathrm{dd}, 1 \mathrm{H}, J=15.2,10.3 \mathrm{~Hz}), 5.68$ $(\mathrm{dt}, 1 \mathrm{H}, J=15.2,6.8 \mathrm{~Hz}), 5.05(\mathrm{~d}, 1 \mathrm{H}, J=17.0 \mathrm{~Hz}), 4.93(\mathrm{~d}, 1 \mathrm{H}, J=10.3 \mathrm{~Hz}), 4.02-3.95(\mathrm{~m}, 1 \mathrm{H}), 3.59-$
$3.48(\mathrm{~m}, 1 \mathrm{H}), 3.41-3.27(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.15(\mathrm{~m}, 2 \mathrm{H}), 2.05-1.60(\mathrm{~m}, 5 \mathrm{H}), 1.44-1.34(\mathrm{~m}, 1 \mathrm{H}) .{ }^{1} \mathbf{H}$ NMR (Z double bond, major rotamer) $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 8.22(\mathrm{~s}, 1 \mathrm{H}), 6.56(\mathrm{dt}, 1 \mathrm{H}, J=16.8,11.7$ $\mathrm{Hz}), 6.10-5.93(\mathrm{~m}, 1 \mathrm{H}), 5.38(\mathrm{dt}, 1 \mathrm{H}, J=10.6,7.5 \mathrm{~Hz}), 5.19(\mathrm{~d}, 1 \mathrm{H}, J=17.0 \mathrm{~Hz}), 5.12(\mathrm{~d}, 1 \mathrm{H}, J=10.3$ $\mathrm{Hz}), 3.80-3.73(\mathrm{~m}, 1 \mathrm{H}), 3.59-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.41-3.27(\mathrm{~m}, 1 \mathrm{H}), 2.14-2.06(\mathrm{~m}, 2 \mathrm{H}), 2.05-1.60(\mathrm{~m}, 5 \mathrm{H})$, 1.60-1.48 (m, 1H). ${ }^{1} \mathbf{H}$ NMR (Z double bond, minor rotamer) $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 8.22(\mathrm{~s}, 1 \mathrm{H})$, $6.59(\mathrm{dt}, 1 \mathrm{H}, J=16.8,11.7 \mathrm{~Hz}), 6.10-5.93(\mathrm{~m}, 1 \mathrm{H}), 5.43(\mathrm{dt}, 1 \mathrm{H}, J=10.6,7.5 \mathrm{~Hz}), 5.12(\mathrm{~d}, 1 \mathrm{H}, J=$ $16.8 \mathrm{~Hz}), 5.09(\mathrm{~d}, 1 \mathrm{H}, J=11.7 \mathrm{~Hz}), 4.02-3.95(\mathrm{~m}, 1 \mathrm{H}), 3.59-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.41-3.27(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.15$ $(\mathrm{m}, 2 \mathrm{H}), 2.05-1.60(\mathrm{~m}, 5 \mathrm{H}), 1.44-1.34(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (E double bond, major rotamer) $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 161.1(\mathrm{~d}), 136.9(\mathrm{~d}), 133.3(\mathrm{~d}), 132.1(\mathrm{~d}), 115.8(\mathrm{t}), 57.3(\mathrm{~d}), 43.5(\mathrm{t}), 35.5(\mathrm{t}), 30.6(\mathrm{t})$, 29.1 (t), 22.7 (t). ${ }^{13} \mathbf{C}$ NMR (E double bond, minor rotamer) ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 161.2$ (d),
 (Z double bond, major rotamer) ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 161.1$ (d), 131.8 (d), 130.7 (d), 130.4 (d), 118.1 (t), 57.3 (d), 43.5 (t), 35.9 (t$), 30.6$ (t$), 29.1$ (t$), 24.4$ (t$).{ }^{13} \mathbf{C}$ NMR (Z double bond, minor rotamer) ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 161.2$ (d), 132.19 (d), 131.8 (d), 129.7 (d), 117.3 (t), 55.1 (d), 46.6 (t), 33.6 (t), 30.4 (t), 29.2 (t), 24.6 (t). IR (neat) $v\left(\mathrm{~cm}^{-1}\right)$ 3080, 2926, 2864, 1668, 1643, 1385. LRMS $\left(m / z\right.$, relative intensity) $202\left((\mathrm{M}+\mathrm{Na})^{+}, 100\right), 185(5)$. Exact Mass calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NONa}$ 202.1208, found: 202.1199. $[\alpha]_{\mathrm{D}}=-36.2$.

Mixture of E and $Z(R)$-Pentacarbonyl[(3-buten-1-yl)pyrrolidine)methylene]chromium(0) (20)

Following the same procedure as per the preparation of complex 13c, the formamide 49 ($537 \mathrm{mg}, 3.00$ mmol) was converted into the corresponding carbene 20 ($808 \mathrm{mg}, 76 \%$) obtained as air-sensitive yellow oil and as a single rotamer. ${ }^{1} \mathbf{H}(E$ double bound $)\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 10.99(\mathrm{~s}, 1 \mathrm{H}), 6.30(\mathrm{dt}$, $1 \mathrm{H}, J=16.9,10.2 \mathrm{~Hz}), 6.08(\mathrm{dd}, 1 \mathrm{H}, J=15.3,10.2 \mathrm{~Hz}), 5.63(\mathrm{dt}, 1 \mathrm{H}, J=15.3,7.6 \mathrm{~Hz}), 5.14(\mathrm{~d}, 1 \mathrm{H}, J=$ $16.9 \mathrm{~Hz}), 5.03(\mathrm{~d}, 1 \mathrm{H}, J=10.2 \mathrm{~Hz}), 4.14-3.99(\mathrm{~m}, 2 \mathrm{H}), 3.71-3.64(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.02(\mathrm{~m}, 4 \mathrm{H}), 1.88-1.71$ $(\mathrm{m}, 2 \mathrm{H}), 1.65-1.52(\mathrm{~m}, 2 \mathrm{H}) .{ }^{1} \mathbf{H}(Z$ double bound $)\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 6.57(\mathrm{dt}, 1 \mathrm{H}, J=16.4$, $11.1 \mathrm{~Hz}), 6.12-6.04(\mathrm{~m}, 1 \mathrm{H}), 5.37(\mathrm{dt}, 1 \mathrm{H}, J=10.6,7.5 \mathrm{~Hz}), 5.25(\mathrm{~d}, 1 \mathrm{H}, J=16.4 \mathrm{~Hz}), 4.14-3.99(\mathrm{~m}$, $2 \mathrm{H}), 3.71-3.64(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.02(\mathrm{~m}, 4 \mathrm{H}), 1.88-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.52(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}(E$ double
bound) ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 255.0$ (d), 224.3 (s), 218.0 (s), 136.8 (d), 132.7 (d), 132.4 (d), 116.4 $(\mathrm{t}), 71.3(\mathrm{~d}), 56.2(\mathrm{t}), 34.6(\mathrm{t}), 30.5(\mathrm{t}), 28.9(\mathrm{t}), 23.7(\mathrm{t}) .{ }^{13} \mathrm{C}\left(Z\right.$ double bound) ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$
 30.6 (t), 28.9 (t), $24.0(\mathrm{t})$. IR (neat) $v\left(\mathrm{~cm}^{-1}\right) 3088,2975,2944,2882,2359,2340,2054,1972,1937$, 1902, 1516, 1506, 1453, 1005, 679, 655. LRMS (m / z, relative intensity) $378\left((\mathrm{M}+\mathrm{Na})^{+}, 35\right), 350(15)$, 322 (99), 292 (20), 224 (35), 194 (100). Exact Mass calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{CrNO}_{5} \mathrm{Na}$: 378.0404, found: 378.0410. $[\alpha]_{\mathbf{D}}=+69.821$.

Synthesis of chromium aminocarbene (24)

(R)-2-(3-methylbut-3-enyl)pyrrolidine-1-carbaldehyde (51)

Tributyl(2-methylallyl)stannane $50(5.07 \mathrm{~g}, 14.7 \mathrm{mmol})$ and 1,1 -azobis(cyclohexanecarbonitrile) (VAZO) ($717 \mathrm{mg}, 2.94 \mathrm{mmol}$) were added to a solution of the iodide $45(1.75 \mathrm{~g}, 7.34 \mathrm{mmol})$ in anhydrous benzene $(7.3 \mathrm{~mL}, 1 \mathrm{M})$. The reaction mixture was heated to reflux temperature for 5 h and cooled down before the solvent was evaporated under reduced pressure. The crude product was purified by flash chromatography on a silica gel column using solutions of acetone in hexanes (0:100 to 30:70) as eluent. The product 51 ($491 \mathrm{mg}, 40 \%$) was obtained as colorless oil and as a mixture of rotamers
(ratio $=76: 24,{ }^{1} \mathrm{H}$ NMR). ${ }^{1} \mathrm{H}$ NMR (major rotamer) $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 8.25(\mathrm{~s}, 1 \mathrm{H}), 4.69(\mathrm{~s}$, $2 \mathrm{H}), 3.82-3.72(\mathrm{~m}, 1 \mathrm{H}), 3.63-3.49(\mathrm{~m}, 1 \mathrm{H}), 3.47-3.30(\mathrm{~m}, 1 \mathrm{H}), 2.14-1.52(\mathrm{~m}, 8 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR (minor rotamer) $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 8.24(\mathrm{~s}, 1 \mathrm{H}), 4.75(\mathrm{~s}, 2 \mathrm{H}), 4.05-3.94(\mathrm{~m}, 1 \mathrm{H}), 3.63-$ $3.49(\mathrm{~m}, 1 \mathrm{H}), 3.47-3.30(\mathrm{~m}, 1 \mathrm{H}), 2.14-1.52(\mathrm{~m}, 7 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.48-1.37(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (major rotamer) $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 161.2(\mathrm{~d}), 144.5(\mathrm{~s}), 110.8(\mathrm{~d}), 57.5(\mathrm{~d}), 43.5(\mathrm{t}), 34.2(\mathrm{t}), 34.0(\mathrm{t})$, 30.7 (t), 22.7 (t), 22.7 (q). ${ }^{13} \mathbf{C}$ NMR (minor rotamer) ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 161.2$ (d), 145.4 (s), $110.2(\mathrm{~d}), 55.2(\mathrm{~d}), 46.6(\mathrm{t}), 34.3(\mathrm{t}), 31.7(\mathrm{t}), 30.4(\mathrm{t}), 24.0(\mathrm{t}), 22.7(\mathrm{q})$. IR (neat) $v\left(\mathrm{~cm}^{-1}\right) 3074,2967$, 2935, 2876, 1654, 1452, 1419, 1385, 1176, 887. LRMS (m / z, relative intensity) $190\left((\mathrm{M}+\mathrm{Na})^{+}, 100\right)$. Exact Mass calcd for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{NONa}$: 190.1202, found: 190.1202. $[\alpha]_{\mathbf{D}}=-59.23$.

(2S)-2-(3,4-Dibromo-3-methylbutyl)pyrrolidine-1-carbaldehyde (52)

Pyridinium tribromide $(1.63 \mathrm{~g}, 5.09 \mathrm{mmol})$ was added to a solution of the alkene $51(740 \mathrm{mg}, 4.42$ $\mathrm{mmol})$ in dichloromethane $(12.5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1.5 h . A saturated aqueous solution of sodium bicarbonate $(15 \mathrm{~mL})$ and a 1 N solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(15 \mathrm{~mL})$ were added. The mixture was extracted with dichloromethane ($3 \times 30 \mathrm{~mL}$), the combined organic layers were dried over anhydrous magnesium sulfate, filtered and evaporated under reduced pressure. The crude product was purified by flash chromatography on a silica gel column using a solution of acetone in hexanes (20:80) as eluent. The dibromide $52(1.05 \mathrm{~g}, 73 \%)$ was obtained as colorless oil and as a 65 : 35 mixture of rotamers, each as a mixture of diastereomers. ${ }^{1} \mathbf{H} \mathbf{N M R}$ (major rotamer) (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 8.29(\mathrm{~s}, 1 \mathrm{H}), 3.88-3.76(\mathrm{~m}, 3 \mathrm{H}), 3.66-3.52(\mathrm{~m}, 1 \mathrm{H}), 3.41-3.31(\mathrm{~m}, 1 \mathrm{H}), 2.10-1.55(\mathrm{~m}$, $8 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H}) .{ }^{1} \mathbf{H}$ NMR (minor rotamer) ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 8.25(\mathrm{~s}, 1 \mathrm{H}), 4.14-4.00(\mathrm{~m}$, $1 \mathrm{H}), 3.88-3.76(\mathrm{~m}, 2 \mathrm{H}), 3.66-3.52(\mathrm{~m}, 1 \mathrm{H}), 3.49-3.41(\mathrm{~m}, 1 \mathrm{H}), 2.10-1.55(\mathrm{~m}, 8 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (mixture of rotamers and diastereomers) ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 161.2$ (d), 160.8 (d), 67.3 (s$), 66.5(\mathrm{~s}), 57.1(\mathrm{~d}), 54.5(\mathrm{~d}), 54.4(\mathrm{~d}), 46.3(\mathrm{t}), 43.2(\mathrm{t}), 42.5(\mathrm{t}), 42.1(\mathrm{t}), 41.8(\mathrm{t}), 38.3(\mathrm{t}), 31.8(\mathrm{t})$, 31.7 (t), 30.6 (q), 30.3 (t), 29.8 (t), 23.6 (t , 22.5 (t). IR (neat) $v\left(\mathrm{~cm}^{-1}\right)$ 2969, 2875, 1666, 1383. LRMS $\left(m / z\right.$, relative intensity) $350\left((\mathrm{M}+\mathrm{Na})^{+}, 100\right), 270\left((\mathrm{M}+\mathrm{Na})^{+}-\mathrm{HBr}, 40\right)$. Exact Mass calcd for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{Br}_{2} \mathrm{NONa}: 349.9549$, found: 349.9556 . $[\alpha]_{\mathbf{D}}=-40.18$.

(R)-2-(4-bromo-3-methylbut-3-enyl)pyrrolidine-1-carbaldehyde (53)

DBU ($4.49 \mathrm{~mL}, 30.1 \mathrm{mmol}$) was added to the dibromide $52(983 \mathrm{mg}, 3.01 \mathrm{mmol})$ and the reaction mixture was stirred at rt for 18 h . A 1 N aqueous HCl solution $(30 \mathrm{~mL})$ was added and the mixture was extracted with diethyl ether ($3 \times 30 \mathrm{~mL}$). The combined organic layers were dried over anhydrous magnesium sulfate, filtered and evaporated under reduced pressure to yield $679 \mathrm{mg}(92 \%)$ of pure vinylbromide 53 as a mixture of rotamers and E and Z double bond isomers. ${ }^{1} \mathbf{H}$ NMR (mixture of rotamers and E and Z isomers) ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 8.29$ (s) and 8.25 (s) (1 H , rotamers and isomers), 5.96-5.93 (m), $5.91(\mathrm{~s})$ and $5.86(\mathrm{~s})(1 \mathrm{H}$, rotamers and isomers), 4.02-3.92 (m) and 3.82-3.70 $(\mathrm{m})(1 \mathrm{H}$, rotamers $), 3.65-3.50(\mathrm{~m}, 1 \mathrm{H}), 3.48-3.29(\mathrm{~m}, 1 \mathrm{H}), 2.31-1.53(\mathrm{~m})$ and $1.48-1.37(\mathrm{~m})(8 \mathrm{H}$, rotamers and isomers), 1.80 (s (br), 3 H). ${ }^{13} \mathbf{C}$ NMR (mixture of rotamers and isomers, some signals are missing because of overlapping) ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 161.0$ (d), 160.8 (d), 141.0 (s), 140.3 (s), 140.2 (s), 101.9 (d), 101.5 (d), 101.3 (d), 100.8 (d), 57.3 (d), 57.0 (d), 54.8 (d), 54.6 (d), 46.3 (t), 43.2 $(\mathrm{t}), 34.6(\mathrm{t}), 33.7(\mathrm{t}), 32.8(\mathrm{t}), 31.4(\mathrm{t}), 30.8(\mathrm{t}), 30.6(\mathrm{t}), 30.3(\mathrm{t}), 30.2(\mathrm{t}), 30.1(\mathrm{t}), 23.7(\mathrm{t}), 22.4(\mathrm{t}), 22.0$ (q), 21.9 (q), 19.0 (q). IR (neat) $v\left(\mathrm{~cm}^{-1}\right) 3070,2975,2947,2876,1666,1416,1384,1161$. LRMS (m / z, relative intensity) $286\left((\mathrm{M}+\mathrm{K})^{+}, 5\right), 268\left((\mathrm{M}+\mathrm{Na})^{+}, 100\right) 246\left((\mathrm{M}+\mathrm{H})^{+}, 2\right)$. Exact Mass calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{BrNONa}: 268.0307$, found: 268.0305. $[\alpha]_{\mathrm{D}}=-48.83$.

(R)-2-(3-methylhexa-3,5-dienyl)pyrrolidine-1-carbaldehyde (54)

Vinylbromides $53(1.34 \mathrm{~g}, 5.45 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(100 \mathrm{mg}, 0.109 \mathrm{mmol})$ and $\mathrm{PCy}_{3} \mathrm{HBF}_{4}(161 \mathrm{mg}$, 0.436 mmol) were mixed in anhydrous dioxane (5.5 mL) and charged in a seal-type screw-cap vial. Tributyl(vinyl)stannane ($1.91 \mathrm{~mL}, 6.54 \mathrm{mmol}$) and CsF ($1.82 \mathrm{~g}, 12.0 \mathrm{mmol}$) were added. Argon was bubbled in the solution for 3 min ., the vial was shut sealed, and the reaction mixture was heated to 70 ${ }^{\circ} \mathrm{C}$ for 18 h . Then, the vial was opened and another portion of $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(100 \mathrm{mg}, 0.109 \mathrm{mmol})$ was
added, the vial was sealed again and the reaction mixture was heated to $70{ }^{\circ} \mathrm{C}$ for an additional 18 h . The solvent was then evaporated under reduced pressure. The crude product was purified by flash chromatography on silica gel using solutions of ethyl acetate in hexanes (30:70 to 70:30). A pale yellow oil ($897 \mathrm{mg}, 85 \%$) was obtained as a mixture of rotamers and E and Z double bonds. ${ }^{1} \mathbf{H}$ NMR (mixture of rotamers and E / Z double bonds) $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 8.25(\mathrm{~s}, 1 \mathrm{H}),(6.56(\mathrm{dt}, J=16.9,10.4$ $\mathrm{Hz})$ and $6.50(\mathrm{dt}, J=16.9,10.4 \mathrm{~Hz}), 1 \mathrm{H}), 5.91-5.81(\mathrm{~m}, 1 \mathrm{H}),(5.12(\mathrm{~d}, J=16.9 \mathrm{~Hz})$ and $5.08(\mathrm{~d}, J=$ $16.9 \mathrm{~Hz}), 1 \mathrm{H}),(5.02(\mathrm{~d}, J=10.4 \mathrm{~Hz})$ and $4.98(\mathrm{~d}, J=10.4 \mathrm{~Hz}), 1 \mathrm{H}),(4.04-3.92(\mathrm{~m})$ and $3.82-3.69(\mathrm{~m})$, $1 \mathrm{H})$, (3.65-3.47 (m) and 3.46-3.28 (m), 2H), (2.30-1.50 (m) and 1.48-1.33 (m), 8H), (2.08, 1.78, 1.76 and $1.62(\mathrm{~s}, 3 \mathrm{H})$). ${ }^{13} \mathbf{C}$ NMR (mixture of rotamers and isomers, some signals are missing because or overlaping) (75.5 MHz, CDCl_{3}) $\delta(\mathrm{ppm}) 160.7$ (d), 160.6 (d), 138.6 (s), 138.3 (s), 137.5 (s), 137.3 (s), 132.9 (d), 132.6 (d), 132.5 (d), 132.1 (d), 126.6 (d), 126.1 (d), 125.8 (d), 125.3 (d), 115.2 ($t), 115.0$ (t), $114.4(\mathrm{t}), 57.2(\mathrm{~d}), 57.0(\mathrm{~d}), 54.8(\mathrm{~d}), 54.7(\mathrm{~d}), 46.1(\mathrm{t}), 43.0(\mathrm{t}), 35.7(\mathrm{t}), 35.7(\mathrm{t}), 34.0(\mathrm{t}), 33.7(\mathrm{t}), 31.5$ $(\mathrm{t}), 31.3(\mathrm{t}), 30.2(\mathrm{t}), 30.1(\mathrm{t}), 29.9(\mathrm{t}), 28.4(\mathrm{t}), 28.3(\mathrm{t}), 23.5(\mathrm{t}), 23.5(\mathrm{t}), 23.2(\mathrm{q}), 22.2(\mathrm{t}), 22.2(\mathrm{t}), 16.3$ (q). IR (neat) $v\left(\mathrm{~cm}^{-1}\right)$ 3081, 3040, 2968, 2875, 1663, 1383. LRMS (m / z, relative intensity) 216 $\left((\mathrm{M}+\mathrm{Na})^{+}, 100\right)$. Exact Mass calcd for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{NNaO}: 216.1364$, found: 216.1363.

Mixture of E and $Z(R)$-pentacarbonyl[(2-(3-methylhexa-3,5-dienyl)pyrrolidine)methylene]chromium(0)

 (24)

Following the same procedure as per the preparation of complex 13c, the formamide $54(318 \mathrm{mg}, 1.65$ mmol) was converted into the corresponding carbene 24 ($425 \mathrm{mg}, 70 \%$) obtained as air-sensitive yellow oil and as a single rotamer but as a mixture of E and Z isomers 67:33). ${ }^{1} \mathbf{H}$ NMR (E double bound) (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 10.98(\mathrm{~s}, 1 \mathrm{H}), 6.55(\mathrm{dt}, 1 \mathrm{H}, J=16.9,10.4 \mathrm{~Hz}), 5.86(\mathrm{~d}, 1 \mathrm{H}, J=11.0 \mathrm{~Hz}), 5.14$ $(\mathrm{d}, 1 \mathrm{H}, J=16.9 \mathrm{~Hz}), 5.04(\mathrm{~d}, 1 \mathrm{H}, J=9.9 \mathrm{~Hz}), 4.16-3.99(\mathrm{~m}, 2 \mathrm{H}), 3.70-3.60(\mathrm{~m}, 1 \mathrm{H}), 2.30-2.09(\mathrm{~m}, 4 \mathrm{H})$, 2.06-1.96 (m, 1H), 1.90-1.74 (m, 2H), $1.77(\mathrm{~s}, 3 \mathrm{H}), 1.68-1.59(\mathrm{~m}, 1 \mathrm{H}) .{ }^{1} \mathbf{H}$ NMR (Z double bound) (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 10.98(\mathrm{~s}, 1 \mathrm{H}), 6.46(\mathrm{dt}, 1 \mathrm{H}, J=16.6,10.4 \mathrm{~Hz}), 5.90(\mathrm{~d}, 1 \mathrm{H}, J=11.4 \mathrm{~Hz}), 5.14$ $(\mathrm{d}, 1 \mathrm{H}, J=16.9 \mathrm{~Hz}), 5.04(\mathrm{~d}, 1 \mathrm{H}, J=9.9 \mathrm{~Hz}), 4.16-3.99(\mathrm{~m}, 2 \mathrm{H}), 3.70-3.60(\mathrm{~m}, 1 \mathrm{H}), 2.30-2.09(\mathrm{~m}, 4 \mathrm{H})$, 2.06-1.96 (m, 1H), 1.90-1.74 (m, 2H), $1.79(\mathrm{~s}, 3 \mathrm{H}), 1.68-1.59(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (E double bound)
(75.5 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 254.8(\mathrm{~d}), 223.9(\mathrm{~s}), 217.7(\mathrm{~s}), 136.8(\mathrm{~s}), 132.7$ (d), 126.6 (d), 115.8 (t), 71.1 (d), $55.9(\mathrm{t}), 35.5(\mathrm{t}), 32.8(\mathrm{t}), 30.2(\mathrm{t}), 23.4(\mathrm{t}), 16.4(\mathrm{q})$. IR (neat) $v\left(\mathrm{~cm}^{-1}\right) 3085,2976,2939$, 2880, 2054, 2030-1769 (br), 1519, 1453, 903. LRMS (m / z, relative intensity) 392 (($\mathrm{M}+\mathrm{Na})^{+}, 70$), 336 (100), 306 (65). Exact Mass calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{CrNO}_{5} \mathrm{Na}: 392.0561$, found: 392.0560.

Synthesis of chromium aminocarbene (25)

3-(Cyclohexa-1, 3-dienyl)-1-iodopropane (56)

Iodine ($7.32 \mathrm{~g}, 28.8 \mathrm{mmol}$) was added to a solution of triphenylphosphine ($7.93 \mathrm{~g}, 30.2 \mathrm{mmol}$) and imidazole ($2.43 \mathrm{~g}, 35.7 \mathrm{mmol}$) in dichloromethane $(250 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After 15 min , a solution of alcohol $55^{7}(3.80 \mathrm{~g}, 27.5 \mathrm{mmol})$ in dichloromethane $(10 \mathrm{~mL})$ was added and the solution was warmed to rt . After 1 h , the solution was treated with a 1.0 M aqueous solution of sodium thiosulfate. The organic layer was separated and the aqueous layer was extracted twice with dichloromethane. The combined organic layers were washed with brine, dried over anhydrous magnesium sulfate, filtered, and concentrated under reduced pressure. The crude product was purified by flash chromatography on a silica gel column eluting with 0% to 1% of diethyl ether in hexanes to yield $56(6.46 \mathrm{~g}, 95 \%)$ as colorless oil. ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 5.91-5.83(\mathrm{~m}, 1 \mathrm{H}), 5.73-5.65(\mathrm{~m}, 2 \mathrm{H}), 3.19(\mathrm{t}, 2 \mathrm{H}, J$
$=6.9 \mathrm{~Hz}$), 2.23-2.12 (m, 4H), 2.11-2.02 (m, 2H), 1.96 (quint, $2 \mathrm{H}, J=6.9 \mathrm{~Hz}$). ${ }^{13} \mathbf{C}$ NMR (75.5 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 137.2(\mathrm{~s}), 124.6(\mathrm{~d}), 124.0(\mathrm{~d}), 119.8(\mathrm{~d}), 37.9(\mathrm{t}), 31.3(\mathrm{t}), 26.3(\mathrm{t}), 23.0(\mathrm{t}), 6.7(\mathrm{t})$. IR (neat) $v\left(\mathrm{~cm}^{-1}\right) 3035,2926,2870,2820,1422,1213,1167$. LRMS (m / z, relative intensity): $246\left(\mathrm{M}^{+}\right.$, 30), 119 (10), 91 (100). Exact Mass calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{I}: 245.9905$, found: 245.9909.

N-(3-(Cyclohexa-1, 3-dienyl)propyl)-N-(2-methylpropyl)formamide (57)

Sodium hydride $(1.30 \mathrm{~g}, 60 \%$ in mineral oil, 32.5 mmol$)$ was added to a solution of N-isobutylformamide $\mathbf{1 6 d}(2.91 \mathrm{~g}, 28.8 \mathrm{mmol})$ in tetrahydrofuran (56 mL) and N, N-dimethylformamide $(42 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was warmed to rt and stirred for 30 min . A solution of iodide 56 $(6.40 \mathrm{~g}, 25.8 \mathrm{mmol})$ in tetrahydrofuran (11 mL) was then added via cannula. The resulting mixture was heated to $45{ }^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was cooled to rt and saturated aqueous ammonium chloride (150 mL) was added. The mixture was further diluted with a $1: 1$ solution of water and saturated aqueous ammonium chloride. The aqueous layer was extracted three times with ethyl acetate. The combined organic layers were washed with brine, dried over anhydrous magnesium sulfate, filtered and concentrated under reduced pressure. The resulting yellowish oil was dissolved in diethyl ether and the combined organic layers was washed three times with brine, dried over anhydrous magnesium sulfate, filtered, and concentrated under reduced pressure. The crude product was purified by flash chromatography on a silica gel column eluting with 10% to 30% of ethyl acetate in hexanes to yield 57 $(4.91 \mathrm{~g}, 86 \%)$ as colorless oil. ${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ as a $1.4: 1.0$ mixture of rotamers $\delta(\mathrm{ppm})$ $8.10(\mathrm{~s})$ and $8.00(\mathrm{~s})(1 \mathrm{H}$, rotamers), $5.91-5.82(\mathrm{~m}, 1 \mathrm{H}), 5.73-5.62(\mathrm{~m}, 2 \mathrm{H}), 3.31-3.25(\mathrm{~m})$ and $3.21(\mathrm{t}, J$ $=7.1 \mathrm{~Hz})(2 \mathrm{H}$, rotamers $), 3.14(\mathrm{~d}, J=7.7 \mathrm{~Hz})$ and $2.98(\mathrm{~d}, J=7.2 \mathrm{~Hz})(2 \mathrm{H}$, rotamers $), 2.23-1.79(\mathrm{~m}$, $7 \mathrm{H}), 1.75-1.62(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{~d}, J=6.6 \mathrm{~Hz})$ and $0.88(\mathrm{~d}, J=6.6 \mathrm{~Hz})\left(6 \mathrm{H}\right.$, rotamers). ${ }^{13} \mathbf{C}$ NMR $(75.5$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) as a mixture of rotamers $\delta(\mathrm{ppm}) 162.8(\mathrm{~d}), 138.3$ (s), 137.4 (s), 124.4 (d), 124.3 (d),
 26.1 (t , 25.7 (d), 25.7 (t), 24.8 (t), 22.7 (t), 19.9 (q), 19.6 (q). IR (neat) $v\left(\mathrm{~cm}^{-1}\right) 3037,2958,2870$, 2825, 1674, 1427. LRMS (m / z, relative intensity): $221\left(\mathrm{M}^{+}, 27\right.$), $220(100), 178\left(\left(\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{7}\right)^{+}, 40\right), 164$ $\left.\left(\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{9}\right)^{+}, 9\right), 91(66)$. Exact Mass calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{NO}: 220.1701$, found: 220.1706.

Pentacarbonyl[(N-(3-(Cyclohexa-1, 3-dienyl)propyl)-N-(2-

methylpropyl)amino)methylene] chromium(0) (25)

Following the procedure as per the preparation of complex 13c, formamide $57(2.00 \mathrm{~g}, 9.04 \mathrm{mmol})$ in tetrahydrofuran (6 mL) gave carbene $25(3.24 \mathrm{~g}, 90 \%)$ obtained as yellowish oil and as a 3.4 : 1.0 mixture of rotamers. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 10.95$ (s) and 10.79 (s) (1 H , rotamers), 5.93-5.84 (m, 1H), 5.76-5.63 (m, 2H), 3.97-3.87 (m) and $3.56(\mathrm{t}, J=7.2 \mathrm{~Hz})(2 \mathrm{H}$, rotamers), $3.83(\mathrm{~d}, J$ $=8.3 \mathrm{~Hz})$ and $3.37(\mathrm{~d}, J=7.7 \mathrm{~Hz})(2 \mathrm{H}$, rotamers $), 2.25-1.72(\mathrm{~m}, 9 \mathrm{H}), 1.03(\mathrm{~d}, J=6.6 \mathrm{~Hz})$ and $0.90(\mathrm{~d}, J$ $=6.6 \mathrm{~Hz})\left(6 \mathrm{H}\right.$, rotamers). ${ }^{13} \mathbf{C}$ NMR $\left(100.7 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 263.4(\mathrm{~d}), 262.6(\mathrm{~d}), 224.2(\mathrm{~s}), 218.0$ (s$), 217.8$ (s$), 137.7$ (s$), 136.9$ (s$), 124.7$ (d), 124.6 (d), 124.5 (d), 120.3 (d), 119.8 (d), 72.0 (t), 63.7 (t), $63.1(\mathrm{t}), 57.2(\mathrm{t}), 34.4(\mathrm{t}), 33.7(\mathrm{t}), 27.4(\mathrm{~d}), 27.0(\mathrm{t}), 26.5(\mathrm{t}), 26.3(\mathrm{t}), 26.0(\mathrm{t}), 23.1(\mathrm{t}), 23.0(\mathrm{t}), 19.7(\mathrm{q})$, 19.6 (q). IR (neat) $v\left(\mathrm{~cm}^{-1}\right)$ 2963, 2934, 2873, 2055, 1973, 1908. LRMS (m / z, relative intensity): 397 $\left(\mathrm{M}^{+}, 8\right), 341\left(\left(\mathrm{M}-(\mathrm{CO})_{2}\right)^{+}, 8\right), 285\left(\left(\mathrm{M}-(\mathrm{CO})_{4}\right)^{+}, 12\right), 257\left(\left(\mathrm{M}-(\mathrm{CO})_{5}\right)^{+}, 100\right), 162(60), 84$ (98). Exact Mass calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{5} \mathrm{Cr}$: 397.0981, found: 397.0988.

Synthesis of chromium aminocarbene (31)

(E)-1-(hepta-4,6-dienyl)pyrrolidin-2-one (59)

KHMDS ($4.92 \mathrm{~mL}, 2.46 \mathrm{mmol}, 0.5 \mathrm{M}$ in toluene) was slowly added to a solution of pyrrolidin-2-one 58 in THF (9 mL) at rt. The reaction mixture was stirred for 1 h . A solution of the iodide $\mathbf{1 7 a}$ (546 mg , 2.46 mmol) in THF (3 mL) was added slowly. The reaction mixture was heated to reflux temperature for 6 h . Water (20 mL) was then added and the mixture was extracted with ethyl acetate (3 x 20 mL). The combined organic layers were dried over anhydrous magnesium sulfate, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography on a silica gel column using a solution of acetone in hexanes (40:60) as eluent. Amide 59 ($319 \mathrm{mg}, 72 \%$) was obtained as colorless oil. ${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 6.29(\mathrm{dt}, 1 \mathrm{H}, J=16.8,10.2 \mathrm{~Hz}), 6.06(\mathrm{dd}, 1 \mathrm{H}, J=$ $15.2,10.3 \mathrm{~Hz}), 5.68(\mathrm{dt}, 1 \mathrm{H}, J=15.2,7.1 \mathrm{~Hz}), 5.09(\mathrm{~d}, 1 \mathrm{H}, J=16.8 \mathrm{~Hz}), 4.97(\mathrm{~d}, 1 \mathrm{H}, J=10.3 \mathrm{~Hz}), 3.37$ $(\mathrm{t}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}), 3.28(\mathrm{t}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}), 2.38(\mathrm{t}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}), 2.09(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 2.01$ (quint, $2 \mathrm{H}, J=7.3 \mathrm{~Hz}$), 1.62 (quint, $2 \mathrm{H}, J=7.4 \mathrm{~Hz}$). ${ }^{13} \mathbf{C} \mathbf{N M R}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 174.8(\mathrm{~s})$, 136.9 (d), 133.7 (d), $131.4(\mathrm{~d}), 115.1(\mathrm{t}), 47.0(\mathrm{t}), 42.0(\mathrm{t}), 30.9(\mathrm{t}), 29.7(\mathrm{t}), 26.6(\mathrm{t}), 17.8(\mathrm{t})$. IR (neat) v $\left(\mathrm{cm}^{-1}\right) 3084,2928,2864,1680,1428,1287,1006$. LRMS (m / z, relative intensity) $202\left((\mathrm{M}+\mathrm{Na})^{+}, 100\right)$. Exact Mass calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NNaO}$: 202.1202, found: 202.1207.

Chromium aminocarbene (31)

Following the procedure as per the preparation of complex 13c, amide $59(308 \mathrm{mg}, 1.72 \mathrm{mmol})$ in tetrahydrofuran (6 mL) gave carbene $31(550 \mathrm{mg}, 90 \%)$ obtained as yellow oil. ${ }^{1} \mathbf{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 6.32(\mathrm{dt}, 1 \mathrm{H}, J=16.9,10.3 \mathrm{~Hz}), 6.12(\mathrm{dd}, 1 \mathrm{H}, J=15.0,10.3 \mathrm{~Hz}), 5.70(\mathrm{dt}, 1 \mathrm{H}, J=$ $15.0,7.0 \mathrm{~Hz}), 5.14(\mathrm{~d}, 1 \mathrm{H}, J=16.9 \mathrm{~Hz}), 5.02(\mathrm{~d}, 1 \mathrm{H}, J=10.3 \mathrm{~Hz}), 4.01(\mathrm{t}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}), 3.74(\mathrm{t}, 2 \mathrm{H}$, $J=7.5 \mathrm{~Hz}), 3.33(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 2.24(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 1.94-1.86(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100.7 $\left.\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta(\mathrm{ppm}) 264.0(\mathrm{~s}), 223.4(\mathrm{~s}), 218.6(\mathrm{~s}), 137.0(\mathrm{~d}), 132.6(\mathrm{~d}), 132.6(\mathrm{~d}), 115.8(\mathrm{t}), 58.2(\mathrm{t})$, $56.2(\mathrm{t}), 54.8(\mathrm{t}), 29.6(\mathrm{t}), 27.4(\mathrm{t}), 20.4(\mathrm{t})$. IR (neat) $v\left(\mathrm{~cm}^{-1}\right) 3085,3037,2949,2882,2053,2012-1774$
(br), 1526, 1005. LRMS (m / z, relative intensity) $378\left((\mathrm{M}+\mathrm{Na})^{+}, 20\right), 322\left((\mathrm{M}+\mathrm{Na}-2 \mathrm{CO})^{+}, 100\right)$. Exact Mass calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{CrNNaO}_{5}$: 378.0410, found: 378.0407.

Synthesis of chromium aminocarbene (33)

60

17c

61

33

1-(Pent-4-enyl)piperidin-2-one (61)

To a magnetically stirred suspension of $\mathrm{NaH}(0.177 \mathrm{~g}, 1.1 \mathrm{eq}$.$) in THF (13 \mathrm{~mL}$) and DMF (7 mL) was added valerolactam $60(0.397 \mathrm{~g}, 4.00 \mathrm{mmol})$, resulting in a thick white sludge. The reaction mixture was stirred at rt for 0.5 h and then treated with a solution of 5-iodopent-1-ene $\mathbf{1 7 \mathrm { c }}(0.941 \mathrm{~g}, 4.80 \mathrm{mmol})$. The resulting mixture was heated to $60{ }^{\circ} \mathrm{C}$ for 2.5 h and then allowed to cool to $\mathrm{rt} . \mathrm{NH}_{4} \mathrm{Cl}$ (sat. aq. solution) was added and the separated aqueous layer extracted with EtOAc (2x). The combined organic layers were washed with water (3 x) and brine, then dried over MgSO_{4}, filtered and concentrated under reduced pressure to give the crude product as a pale-yellow liquid. The crude material was subjected to flash column chromatography (silica gel, EtOAc elution) to give the title formamide 61 ($0.365 \mathrm{~g}, 55 \%$) as colourless oil. ${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.80(\mathrm{~m}, 1 \mathrm{H}), 5.01(\mathrm{dq}, J=17.1$ and $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.95$ $(\mathrm{dq}, J=10.2$ and $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{app} \mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.25(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{~m}, 2 \mathrm{H}), 2.05(\mathrm{q}, J=6.9$ $\mathrm{Hz}, 2 \mathrm{H}$), $1.82-1.73$ (complex m, 4H), 1.63 (quintet, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathbf{C} \mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $169.6(\mathrm{CO}), 137.9(\mathrm{CH}), 114.8\left(\mathrm{CH}_{2}\right), 47.9\left(\mathrm{CH}_{2}\right), 46.8\left(\mathrm{CH}_{2}\right), 32.3\left(\mathrm{CH}_{2}\right), 31.0\left(\mathrm{CH}_{2}\right), 26.2\left(\mathrm{CH}_{2}\right), 23.2$ $\left(\mathrm{CH}_{2}\right), 21.3\left(\mathrm{CH}_{2}\right)$; IR (NaCl$) v 3531,3072,2935,2863,1650,1494,1466,1352$. HRMS $(\mathrm{m} / \mathrm{z}$, relative intensity) $190\left(\mathrm{MNa}^{+}\right)$. Exact Mass calcd for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{NONa}: 190.1208$, found : 190.1209.

Chromium aminocarbene (33)

Following the procedure as per the preparation of complex $\mathbf{1 3 c}$, amide $\mathbf{6 1}(0.350 \mathrm{~g}, 2.09 \mathrm{mmol})$ in tetrahydrofuran (6 mL) gave carbene $33(0.547 \mathrm{~g}, 76 \%)$ obtained as air-sensitive yellow oil. ${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.82(\mathrm{~m}, 1 \mathrm{H}), 5.06$ (app. m, 2H), 4.07 (app. s, 2H), 3.45 (app. s, 2H), 3.16 (app. s, 2H), 2.20 (app. s, 2H), 1.87 (app. s, 2H), 1.78 (app. s, 2H), 1.55 (app. s, 2H); ${ }^{13} \mathbf{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 269.9(\mathrm{CCr}), 223.4(\mathrm{CO}), 218.0(\mathrm{CO}), 136.8(\mathrm{CH}), 116.0\left(\mathrm{CH}_{2}\right), 64.2\left(\mathrm{CH}_{2}\right), 50.9\left(\mathrm{CH}_{2}\right), 49.6$ $\left(\mathrm{CH}_{2}\right), 30.6\left(\mathrm{CH}_{2}\right), 27.8\left(\mathrm{CH}_{2}\right), 21.6\left(\mathrm{CH}_{2}\right), 17.1\left(\mathrm{CH}_{2}\right) ;$ IR $(\mathrm{NaCl}) v 3076,2948,2878,2051,1902$, 1521, 674, 657. HRMS (m / z, relative intensity) $366\left(\mathrm{MNa}^{+}\right.$). Exact Mass calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{CrNO}_{5} \mathrm{Na}$: 366.0410, found : 366.0413.

Synthesis of chromium aminocarbene (37)

(E)-N-(2-(1H-indol-3-yl)ethyl)hepta-4,6-dien-1-amine (63)

Tryptamine ($3.00 \mathrm{~g}, 18.7 \mathrm{mmol}$) was charged in a dry sealed screw-cap vial followed by anhydrous ethanol (50 mL), $\mathrm{Na}_{2} \mathrm{CO}_{3}(1.99 \mathrm{~g}, 18.7 \mathrm{mmol})$ and iodide $17 \mathrm{a}(2.08 \mathrm{~g}, 9.37 \mathrm{mmol})$. The vial was shut sealed and the mixture was heated to $110{ }^{\circ} \mathrm{C}$ for 18 h . The vial was opened, and the solvent was evaporated, the product was solubilised in dichloromethane (30 mL), and water was added (30 mL). The aqueous phase was then washed with dichloromethane (3 x 20 mL). The organic fractions were combined and the solvent was evaporated to obtain the crude product $(3.09 \mathrm{~g})$. The product $\mathbf{6 3}$ is difficult to purify and the crude mixture was used directly for the next reaction. However, for characterisation purposes, 250 mg were transferred on a silica gel column (2% solution of \mathbf{A} in dichloromethane; $\mathbf{A}=5 \% \mathrm{NH}_{4} \mathrm{OH}$ in MeOH) to afford pure amine $\mathbf{6 3}$ as colorless oil ($47.0 \mathrm{mg}, 21 \%$). ${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 7.97(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.24-7.06(\mathrm{~m}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{dt}, J=16.9,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{dd}, J=22.2,11.1$ $\mathrm{Hz}, 1 \mathrm{H}), 5.71(\mathrm{dt}, J=22.2,7.5,1 \mathrm{H}), 5.10(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.95-2.74$ $(\mathrm{m}, 4 \mathrm{H}), 2.55(\mathrm{t}, J=7.3,2 \mathrm{H}), 2.12(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.59$ (quint, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 137.2$ (d), 136.2 (s), 135.0 (d), 131.2 (d), 127.5 (s), 121.8 (d), 121.6 (d), 119.1 (d), $118.8(\mathrm{~d}), 114.9(\mathrm{t}), 114.4(\mathrm{~s}), 111.2(\mathrm{~d}), 54.7(\mathrm{t}), 53.6(\mathrm{t}), 30.5(\mathrm{t}), 26.6(\mathrm{t}), 22.9(\mathrm{t})$. IR (NaCl$) v$ $\left(\mathrm{cm}^{-1}\right) 3419,3140-2859$ (br), 1650. LRMS (m / z, relative intensity) $255\left(\mathrm{MH}^{+}, 100\right), 144$ (5). Exact Mass cacld for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{2}$: $255.1856\left(\mathrm{MH}^{+}\right)$, found: $255.1866\left(\mathrm{MH}^{+}\right)$

(E)-N-(2-(1H-indol-3-yl)ethyl)-N-(hepta-4,6-dienyl)formamide (64)

1 H -Benzo [d][1,2,3]triazole-1-carbaldehyde ($120 \mathrm{mg}, 1.33 \mathrm{mmol}$) in dry 1,4-dioxane (5.0 mL) was added to the crude N-alkyltryptamine $63(260 \mathrm{mg}, 1.02 \mathrm{mmol})$ in dry 1,4 -dioxane (5.0 mL). The solution was heated in a sealed screw-cap vial at $110^{\circ} \mathrm{C}$ for 18 h . A solution of $\mathrm{NaOH} 1 \mathrm{~N}(10 \mathrm{~mL})$ was then added and the reaction mixture was agitated for 30 min . Water was added and the aqueous solution
was extracted with dichloromethane (3 x 20 mL). Organic fractions were combined and dried over magnesium sulfate, filtered, and the solvent was evaporated under reduced pressure to afford crue oil. The crude product was subjected to silica gel column chromatography (A 2.5% solution of \mathbf{A} in dichloromethane; $\mathbf{A}=5 \% \mathrm{NH}_{4} \mathrm{OH}$ in MeOH) to afford the pure product $\mathbf{6 4}$ as colorless oil $(135 \mathrm{mg}, 96$ $\%)$ and as a mixture of rotamers. ${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.66(\mathrm{~s}, 1 \mathrm{H}), 8.58(\mathrm{~s}, 1 \mathrm{H}), 8.10(\mathrm{~s}, 1 \mathrm{H})$, $7.78(\mathrm{~s}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.08(\mathrm{~m}$, $4 \mathrm{H}), 6.99(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.43-6.23(\mathrm{~m}, 2 \mathrm{H}), 6.16-5.99(\mathrm{~m}, 2 \mathrm{H}), 5.84-$ $5.49(\mathrm{~m}, 2 \mathrm{H}), 5.14(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.02(\mathrm{dd}, J=10.1,4.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.64(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.52$ (t, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.40(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.17(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.10-2.93(\mathrm{~m}, 4 \mathrm{H}), 2.20-1.99(\mathrm{~m}$, 4H), 1.81-1.51 (m, 4H). ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.3$ (d), 163.2 (d), 137.2 (d), 137.0 (d), 136.6 (s), 136.5 (s), 134.0 (d), 133.2 (d), 132.4 (d), 132.0 (d), 127.5 (s$), 127.1$ (s$), 122.8$ (d), 122.4 (d), 122.3 (d), 122.2 (d), 119.8 (d), 119.6 (d), 118.8 (d), 118.4 (d), 116.0 (t), 115.6 (t), 112.9 (s$), 111.8$ (d), $111.5(\mathrm{~d}), 48.2(\mathrm{t}), 47.4(\mathrm{t}), 43.3(\mathrm{t}), 42.2(\mathrm{t}), 30.7(\mathrm{t}), 30.2(\mathrm{t}), 29.4(\mathrm{t}), 28.1(\mathrm{t}), 27.2(\mathrm{t}), 25.3(\mathrm{t}), 23.5$ (t). IR (NaCl disk) $v\left(\mathrm{~cm}^{-1}\right) 3288$ (br), 2935, 1663. Exact Mass m / z (relative intensity) $283(5)(\mathrm{MH})^{+}$, $305(100)(\mathrm{MNa})^{+}$. Exact Mass calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}: 305.1624(\mathrm{MNa})^{+}$, found : $305.1634(\mathrm{MNa})^{+}$

(E)-N-(2-(1-benzyl-1H-indol-3-yl)ethyl)-N-(hepta-4,6-dienyl)formamide (36)

KHMDS (0.5 M in toluene, $1.43 \mathrm{~mL}, 0.708 \mathrm{mmol}$) was added to a solution of formamide $\mathbf{6 4}(102 \mathrm{mg}$, 0.375 mmol) and $18-\mathrm{C}-6(49.0 \mathrm{mg}, 0.188 \mathrm{mmol})$ in THF $(1.00 \mathrm{~mL})$ at rt . After stirring 1.5 h at rt, benzylbromide ($0.09 \mathrm{~mL}, 0.7 \mathrm{mmol}$) was added. The resulting mixture was heated to reflux for 18 h . Solvent was removed under reduced pressure and water was added. The resulting aqueous phase was extracted with dichloromethane ($3 \times 20 \mathrm{~mL}$). The combined organic layers were washed with brine and dried over anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure to afford crude (235 $\mathrm{mg}, 175 \%$). The crude product was chromatographed on silica gel (A 1% solution of \mathbf{A} in dichloromethane; $\mathbf{A}=5 \% \mathrm{NH}_{4} \mathrm{OH}$ in MeOH) to give pure product 36 as yellow wax ($118 \mathrm{mg}, 87 \%$). For the mixture of rotamers: ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 8.06(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{~d}, \mathrm{~J}$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.03(\mathrm{~m}, 16 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H}), 6.30(\mathrm{dt}, \mathrm{J}=$
$18.6,10.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.06(\mathrm{dd}, \mathrm{J}=14.6,10.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.75-5.53(\mathrm{~m}, 2 \mathrm{H}), 5.25(\mathrm{~s}, 4 \mathrm{H}), 5.12(\mathrm{~d}, \mathrm{~J}=18.6$ $\mathrm{Hz}, 2 \mathrm{H}), 5.05-4.95(\mathrm{~m}, 2 \mathrm{H}), 3.67-3.57(\mathrm{~m}, 2 \mathrm{H}), 3.51(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.41-3.31(\mathrm{~m}, 2 \mathrm{H}), 3.13(\mathrm{t}, \mathrm{J}=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.08-2.93(\mathrm{~m}, 4 \mathrm{H}), 2.16-1.99(\mathrm{~m}, 4 \mathrm{H}), 1.76-1.54(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 163.2$ (d), 163.1 (d), 137.9 (s), 137.7 (s), 137.3 (s), 137.0 (d), 136.9 (s), 134.0 (d), 133.2 (d), 132.5 (d), 132.0 (d), 129.1 (d), 129.0 (d), 128.3(s), 127.9 (d), 127.9 (d), 127.1 (d), 127.0 (d), 126.8 (d), 126.4 (d), 122.4 (d), 122.2 (d), 119.6 (d), 119.5 (d), 119.2 (d), 118.8 (d), 116.0 (t), 115.6 (t), 112.4 (s$)$, $111.2(\mathrm{~s}), 110.3(\mathrm{~d}), 110.0(\mathrm{~d}), 50.1(\mathrm{t}), 48.2(\mathrm{t}), 47.5(\mathrm{t}), 43.5(\mathrm{t}), 42.3(\mathrm{t}), 30.2(\mathrm{t}), 29.4(\mathrm{t}), 28.2(\mathrm{t}), 27.2$ (t , 25.5 (t), 23.6 (t). IR (NaCl disk) $v\left(\mathrm{~cm}^{-1}\right.$) 3029, 2929, 2860, 1669. Exact Mass m / z (relative intensity) 395 (70) (MNa^{+}), 373 (10) (MH^{+}). Exact Mass calcd for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}: 395.2094\left(\mathrm{MNa}^{+}\right)$, found : $395.2108\left(\mathrm{MNa}^{+}\right)$.

Chromium aminocarbene (37)

Following the procedure as per the preparation of complex 13c, formamide $36(1.14 \mathrm{~g}, 2.60 \mathrm{mmol})$ in tetrahydrofuran (10 mL) gave carbene $33(1.20 \mathrm{~g}, 72 \%)$ obtained as air-sensitive yellow oil. ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta(\mathrm{ppm}) 10.96(\mathrm{~s}, 1 \mathrm{H}), 10.35(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.36-7.02(\mathrm{~m}, 17 \mathrm{H}), 6.88(\mathrm{~s}, 1 \mathrm{H}), 6.39-6.22(\mathrm{~m}, 2 \mathrm{H}), 6.17-6.01(\mathrm{~m}, 2 \mathrm{H}), 5.73-5.51(\mathrm{~m}, 2 \mathrm{H}), 5.41$ (t, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.31(\mathrm{~s}, 2 \mathrm{H}), 5.26(\mathrm{~s}, 2 \mathrm{H}), 5.15(\mathrm{dd}, \mathrm{J}=10.1,4.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.05(\mathrm{dd}, \mathrm{J}=10.1,4.0 \mathrm{~Hz}$, $2 \mathrm{H}), 4.31-4.21(\mathrm{~m}, 2 \mathrm{H}), 3.93-3.82(\mathrm{~m}, 2 \mathrm{H}), 3.57(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.34-3.22(\mathrm{~m}, 2 \mathrm{H}), 3.08(\mathrm{t}, J=6.4$ $\mathrm{Hz}, 2 \mathrm{H}), 2.27-2.15(\mathrm{~m}, 2 \mathrm{H}), 2.06(\mathrm{q}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.94-1.70(\mathrm{~m}, 4 \mathrm{H}){ }^{13} \mathbf{C} \mathbf{N M R}(75 \mathrm{MHz}, \mathrm{CDCl} 3) \delta$ (ppm) 263.0 (s), 262.0 (s), 233.4 (s), 224.1 (s), 217.8 (d), 217.7 (d), 137.5 (s), 137.0 (d), 136.9 (s), 136.8 (s), 136.6 (d), 133.1 (d), 132.6 (d), 132.6 (d), 131.9 (d), 128.9 (d), 128.9 (d), 127.8 (d), 127.8 (d), 127.0 (d), 126.9 (d), 126.9 (d), 126.8 (d), 122.4 (d), 122.3 (d), 119.8 (d), 119.7 (d), 118.5 (d), 118.2 (d), 116.5 (t$), 116.1$ (t$), 110.5$ (d), 110.5 (s$), 110.3$ (d), 109.6 (s$), 94.5(\mathrm{~s}), 92.9(\mathrm{~s}), 89.7(\mathrm{~s}), 63.9(\mathrm{t}), 63.8(\mathrm{t})$, $57.5(\mathrm{t}), 56.9(\mathrm{t}), 50.2(\mathrm{t}), 50.1(\mathrm{t}), 29.6(\mathrm{t}), 29.0(\mathrm{t}), 28.4(\mathrm{t}), 28.3(\mathrm{t}), 25.4(\mathrm{t}), 25.1(\mathrm{t}) . \operatorname{IR}(\mathrm{NaCl}$ disk) v (cm^{-1}) 3965, 3031, 2939, 2054 (sharp), 1938 (broad). Exact Mass m / z (relative intensity) 435 (50, $\mathrm{MH}^{+}-4 \mathrm{CO}$), 408 (50). Exact Mass calcd for $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{CrO}_{5}: 408.1658$, found : 408.1669.

Cycloadducts

General procedure for the thermolysis of chromium aminocarbenes

The chromium carbene and PPh_{3} (1.2 equiv.) were diluted in dry toluene (0.01 M) and the solution was degassed three times by freeze-thaw cycles under reduced pressure for 2 minutes and put back under argon at $-78{ }^{\circ} \mathrm{C}$. After the reaction was warmed up to rt , it was heated to reflux temperature for several hours (the reaction was monitored by NMR). The reaction mixture was cooled, filtered on celite and the filtrate was evaporated under reduced pressure. The crude product was purified by chromatography on silica gel.

(E)-1-Benzyl-5-(prop-1-enyl)-1,2,3,4-tetrahydropyridine 15a

Same as per the general procedure with aminocarbene $\mathbf{1 8 a}(85 \mathrm{mg}, 0.21 \mathrm{mmol})$ and triphenylphosphine ($64 \mathrm{mg}, 0.25 \mathrm{mmol}$). Quantitative conversion by NMR, the product could not be purified. ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 7.35-7.20(\mathrm{~m}, 5 \mathrm{H}), 6.07(\mathrm{~s}, 1 \mathrm{H}), 5.98(\mathrm{~d}, 1 \mathrm{H}, J=14.9 \mathrm{~Hz}), 5.16(\mathrm{dq}, 1 \mathrm{H}, J=$ $14.9,5.9 \mathrm{~Hz}), 4.02(\mathrm{~s}, 2 \mathrm{H}), 2.86(\mathrm{t}, 2 \mathrm{H}, J=5.5 \mathrm{~Hz}), 2.12(\mathrm{t}, 2 \mathrm{H}, J=6.1 \mathrm{~Hz}), 1.95-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.54(\mathrm{~d}$, $3 \mathrm{H}, J=5.9 \mathrm{~Hz}$). LRMS (m / z, relative intensity) $213\left((\mathrm{MH})^{+}, 100\right), 198$ (15), 91 (100). Exact mass calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}: 213.1517$, found: 213.1515.

(E)-1-Cyclopropylmethyl-5-(prop-1-enyl)-1,2,3,4-tetrahydropyridine 15b

Same as per the general procedure with aminocarbene $\mathbf{1 8 b}(83 \mathrm{mg}, 0.20 \mathrm{mmol})$ and triphenylphosphine ($64 \mathrm{mg}, 0.25 \mathrm{mmol}$). Quantitative conversion by NMR, the product could not be purified. ${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 5.97(\mathrm{~d}, 1 \mathrm{H}, J=15.4 \mathrm{~Hz}), 5.95(\mathrm{~s}, 1 \mathrm{H}), 5.08(\mathrm{dq}, 1 \mathrm{H}, J=15.4,6.7 \mathrm{~Hz}), 2.95$
$(\mathrm{t}, 2 \mathrm{H}, J=5.6 \mathrm{~Hz}), 2.68(\mathrm{~d}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 2.12(\mathrm{t}, 2 \mathrm{H}, J=5.1 \mathrm{~Hz}), 1.89$ (quint, $2 \mathrm{H}, J=6.0 \mathrm{~Hz}$), 1.70 (d, $3 \mathrm{H}, J=6.7 \mathrm{~Hz}$), 1.70-1.59 (m, 5 H), 1.35-1.05 (m, 4H), 0.90-0.77 (m, 2H). LRMS (m / z, relative intensity) 219 ((MH) $\left.{ }^{+}, 25\right), 136(100)$. Exact mass calcd for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{~N}$: 219.1987, found: 219.1982.

(E)-1-Cyclohexyl-5-(prop-1-enyl)-1,2,3,4-tetrahydropyridine 15c

To chromium aminocarbene $\mathbf{1 8 c}(81 \mathrm{mg}, 0.20 \mathrm{mmol})$ and triphenylphosphine ($64 \mathrm{mg}, 0.25 \mathrm{mmol}$) was added toluene (20 mL). The solution was put under vacuum for 5 minutes at $-78^{\circ} \mathrm{C}$ and put back under argon to degass solvent. This procedure was done 3 times. The solution was then refluxed for 3 h and the solvent was evaporated. NMR analysis of the crude product indicated the presence of the dienamine 15c as the major product which proved unstable to purification. Tricarbonyl $\left(\eta^{6}\right.$-toluene)chromium and phosphine derivatives were also found as other major components. The dienamine was characterized as the crude product. ${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta(\mathrm{ppm}) 6.27(\mathrm{~d}, 1 \mathrm{H}, J=15.2 \mathrm{~Hz}), 6.08(\mathrm{~s}, 1 \mathrm{H}), 5.33(\mathrm{dq}$, $1 \mathrm{H}, J=15.2,6.6 \mathrm{~Hz}), 2.78(\mathrm{t}, 2 \mathrm{H}, J=5.5 \mathrm{~Hz}), 2.47(\mathrm{tt}, 1 \mathrm{H}, J=11.3,3.2 \mathrm{~Hz}), 2.26(\mathrm{t}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz})$, $1.95(\mathrm{dd}, 1 \mathrm{H}, J=6.6,1.3 \mathrm{~Hz}), 1.78$ (quint, $2 \mathrm{H}, J=6.0 \mathrm{~Hz}$), $1.70-1.59(\mathrm{~m}, 4 \mathrm{H}), 1.55-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.26-$ $0.86(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(75.5 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ note : two sp^{2} carbons are not reported since they can not be recognized from phosphine derivatives carbons. $\delta(\mathrm{ppm}) 112.0(\mathrm{~d}), 108.0(\mathrm{~s}), 63.0(\mathrm{~d}), 44.2(\mathrm{t}), 31.1(\mathrm{t})$, 26.3 (t), 26.1 (t), 23.1 (t$), 22.5$ (t), 18.7 (q). LRMS (m / z, relative intensity) 206 ((MH) ${ }^{+}$, 100). Exact mass calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{~N}$: 206.1903, found: 206.1914.

5-Benzyl-1-isobutyl-1,2,3,4-tetrahydropyridine 15i

A solution of chromium carbene $13 \mathrm{i}(161.3 \mathrm{mg}, 0.38 \mathrm{mmol})$ in dried and degassed toluene $(0.03 \mathrm{M}$ solution) was treated with polymer-bound triphenylphosphine, (100-200 mesh, extent of labeling: ~ 3.0
$\mathrm{mmol} / \mathrm{g}$ loading, 2% cross-linked with divinylbenzene, 2 eq) and was heated to $110{ }^{\circ} \mathrm{C}$ while monitoring by TLC. The mixture was filtered and concentrated under reduced pressure. The ${ }^{1} \mathrm{H}$ NMR of the crude showed a complete conversion to a fairly clean product. Purification by flash chromatography (100% hexane with silica gel pretreated with $\mathrm{Et}_{3} \mathrm{~N}$) yielded 29.1 mg of adduct $\mathbf{1 5 i} \mathbf{(3 3 \%)}$) as yellow oil. The low yield is due to the instability of the enamine to silica. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta(\mathrm{ppm}) 7.18$ (m, 5H), $5.74(\mathrm{~s}, 1 \mathrm{H}), 3.26(\mathrm{~s}, 2 \mathrm{H}), 2.67-2.56(\mathrm{~m}, 2 \mathrm{H}), 2.37(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.86(\mathrm{t}, J=6.3 \mathrm{~Hz}$, $2 \mathrm{H}), 1.67(\mathrm{dt}, J=10.1,6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.39-1.26(\mathrm{~m}, 1 \mathrm{H}), 0.79(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (75 MHz , $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta(\mathrm{ppm}) 142.13$ (s$), 134.12$ (d), 129.08 (d), 128.51 (d), 126.07 (d), 106.35 (s$), 63.84(\mathrm{t}), 47.58(\mathrm{t})$, 42.60 (t , 27.23 (d), 24.94 (t), 23.25 (t$), 20.42$ (q$)$. IR (KBr) $v\left(\mathrm{~cm}^{-1}\right)$: 3025, 2952, 1663. LRMS (m / z, relative intensity) $230\left(\mathrm{MNa}^{+}, 100\right)$. Exact Mass calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NNa} 230.1903$, found: 230.1913.

methyl 2-(1-isobutyl-1,4,5,6-tetrahydropyridin-3-yl)acetate 15j

Same procedure as per compound $\mathbf{1 5 i}$ using chromium aminocarbene $\mathbf{1 3 j}$ ($110.6 \mathrm{mg}, 0.27 \mathrm{mmol}$). The mixture was filtered and concentrated under reduced pressure. The ${ }^{1} \mathrm{H}$ NMR of the crude showed a complete conversion to a fairly clean product. Purification by flash chromatography (100% hexane with silica gel pre-treated with $E t_{3} \mathrm{~N}$) gave 14 mg of product $\mathbf{1 5 j}$ in an isolated yield of 24% as yellow oil. The low yield is due to the instability of the enamine to silica. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 5.70$ (s, $1 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 2.89(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.62(\mathrm{dd}, J=7.1,3.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.31(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.11$ $(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.77-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.52(\mathrm{~m}, 1 \mathrm{H}), 0.75(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta(\mathrm{ppm}) 172.64(\mathrm{~s}), 135.63(\mathrm{~d}), 99.35(\mathrm{~s}), 63.58(\mathrm{t}), 51.03(\mathrm{q}), 47.14(\mathrm{t}), 41.15(\mathrm{t}), 27.28$ (d), 25.44 (t , 23.08 (t), 20.33 (q). IR (KBr) $v\left(\mathrm{~cm}^{-1}\right): 2951,1738,1663$. LRMS (m / z, relative intensity) $212\left(\mathrm{MNa}^{+}, 100\right)$. Exact Mass calcd for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{Na} 212.1645$, found: 212.1650.

1-isobutyl-5-(3-(triisopropylsilyl)prop-2-ynyl)-1,2,3,4-tetrahydropyridine 15k

Same procedure as per compound $\mathbf{1 5 i}$ using chromium aminocarbene $\mathbf{1 3 k}(94.2 \mathrm{mg}, 0.18 \mathrm{mmol})$. The mixture was filtered and concentrated under reduced pressure. The ${ }^{1} \mathrm{H}$ NMR of the crude showed a complete conversion to a fairly clean product. Purification by flash chromatography (100 \% hexane with silica gel pretreated with $\mathrm{Et}_{3} \mathrm{~N}$) isolated yield ($20.6 \mathrm{mg}, 34 \%$) of product $\mathbf{1 5 k}$ as colorless oil. The low yield is due to the instability of the enamine to silica. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 6.02(\mathrm{~m}, 1 \mathrm{H})$, $2.89(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.68-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.40(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.97(\mathrm{dd}, J=14.2,6.5 \mathrm{~Hz}, 2 \mathrm{H})$, $1.72(\mathrm{td}, J=11.3,6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.64(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.27-1.05(\mathrm{~m}, 2 \mathrm{H}), 1.22(\mathrm{~d}, J=6 \mathrm{~Hz}, 18 \mathrm{H})$, $0.81(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 133.62$ (d), 108.19 (s), 101.20 (s$), 81.43$ (s), 63.83 (t), 47.68 (t), 27.36 (d), $26.40(t), 25.30(t), 23.20(t), 20.41$ (d), $19.00(q), 11.81$ (q). IR (KBr) v $\left(\mathrm{cm}^{-1}\right): 2953,2170,2062,1940,1669$. LRMS (m/z, relative intensity) $334\left(\mathrm{MH}^{+}\right)$. Exact Mass calculated for $\mathrm{C}_{21} \mathrm{H}_{39} \mathrm{NSi} 334.2925[\mathrm{MH}]^{+}$, found: $334.2937[\mathrm{MH}]^{+}$.

(E)-8-(prop-1-enyl)-1,2,3,5,6,7-hexahydroindolizine 19d

Following the general procedure for the thermolysis of chromium aminocarbenes, chromium carbene 13d ($200 \mathrm{mg}, 0.539 \mathrm{mmol}$) and $\mathrm{PPh}_{3}(170 \mathrm{mg}, 0.647 \mathrm{mmol})$ were reacted to give adduct 19d. Flash column chromatography (silica gel, $\mathrm{DCM}-\mathrm{DCM} / \mathrm{MeOH} v / \mathrm{v} 4: 1$ gradient elution) of the crude material yielded the title amine $\mathbf{1 9 d}(67 \mathrm{mg}, 69 \%)$ as a colourless oil that quickly turns dark-orange. ${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.74(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.04(\mathrm{~s}, 2 \mathrm{H}), 2.60(\mathrm{t}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.38-2.18$ (complex $\mathrm{m}, 1 \mathrm{H}), 2.14(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.89(\mathrm{~m}, 2 \mathrm{H}), 1.79(\mathrm{~m}, 2 \mathrm{H}), 1.32-1.15$ (complex m, 6H); ${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 144.8(\mathrm{C}), 109.3\left(\mathrm{CH}_{2}\right), 63.6(\mathrm{CH}), 56.3\left(\mathrm{CH}_{2}\right), 49.2\left(\mathrm{CH}_{2}\right), 44.6\left(\mathrm{CH}_{2}\right), 33.0$ $\left(\mathrm{CH}_{2}\right), 32.2\left(\mathrm{CH}_{2}\right), 28.6\left(\mathrm{CH}_{2}\right), 26.3\left(\mathrm{CH}_{2}\right), 26.0\left(\mathrm{CH}_{2}\right)$; IR $(\mathrm{NaCl}) v 3072,2929,2853,2789,1659$,

1451, 886. LRMS (m/z, relative intensity) $180\left(\mathrm{MH}^{+}\right)$. Exact Mass $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{~N}$, calc. 180.1752, found 180.1750 .

(E)-8-(Prop-1-enyl)-1,2,3,5,6,7-hexahydroindolizine 19e

Following the general procedure for the thermolysis of chromium aminocarbenes, chromium carbene 13e ($330 \mathrm{mg}, 0.924 \mathrm{mmol}$) and $\mathrm{PPh}_{3}(288 \mathrm{mg}, 1.10 \mathrm{mmol})$ were reacted to give adduct 19e. Flash column chromatography (silica gel, $\mathrm{DCM}-\mathrm{DCM} / \mathrm{MeOH} \mathrm{v} / \mathrm{v} 4: 1$ gradient elution) of the crude material yielded the title amine $\mathbf{1 9 e}(64 \mathrm{mg}, 42 \%)$ as a colourless oil that quickly turns dark-orange. ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.39$ (bs, 2H), 3.38 (s, 2H), 2.85 (bs, 2H), 2.56 (app. s, 2H), 2.21 (m, 1H), 1.89 (m, $2 \mathrm{H}), 1.77(\mathrm{~m}, 2 \mathrm{H}), 1.62(\mathrm{~m}, 1 \mathrm{H}), 1.42-1.12($ complex m, 5 H$) ;{ }^{13} \mathbf{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 106.1$ $\left(\mathrm{CH}_{2}\right), 64.1(\mathrm{CH}), 56.6\left(\mathrm{CH}_{2}\right), 51.6\left(\mathrm{CH}_{2}\right), 31.1\left(\mathrm{CH}_{2}\right), 31.0\left(\mathrm{CH}_{2}\right), 25.7\left(\mathrm{CH}_{2}\right), 24.9\left(\mathrm{CH}_{2}\right)$, the quaternary carbon signal is obscured; IR (NaCl) v 3068, 2929, 2853, 2781, 1659, 1451, 886. LRMS $\left(\mathrm{m} / \mathrm{z}\right.$, relative intensity) $166\left(\mathrm{MH}^{+}\right)$. Exact Mass calcd for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{~N}: 166.1590$, found : 166.1586.

(E)-8-(prop-1-enyl)-1,2,3,5,6,7-hexahydroindolizine 19g

A solution of chromium aminocarbene $13 \mathrm{~g}(0.050 \mathrm{~g}, 0.145 \mathrm{mmol})$ in toluene without additive was heated at $100{ }^{\circ} \mathrm{C}$ for 2.5 h . Flash column chromatography (NEt_{3}-treated silica gel, pentanepentane/ether 95:5 gradient elution) of the crude material yielded the title amine $\mathbf{1 9 g}(20 \mathrm{mg}, 90 \%)$ as a colourless oil that quickly turned bright-red. A trace of enamine $\mathbf{1 5 g}$ was visible in the ${ }^{1} \mathrm{H}$ NMR spectrum of the product (signal at 5.95 ppm). Characterization for $\mathbf{1 9 g}:{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $4.73(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.02(\mathrm{~s}, 2 \mathrm{H}), 2.59(\mathrm{t}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.13(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.65(\mathrm{~m}, 1 \mathrm{H})$, $1.09(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.8(\mathrm{C}), 108.8\left(\mathrm{CH}_{2}\right), 53.4\left(\mathrm{CH}_{2}\right), 46.3\left(\mathrm{CH}_{2}\right), 33.0$ $\left(\mathrm{CH}_{2}\right)$, $27.2\left(\mathrm{CH}_{2}\right), 26.0\left(\mathrm{CH}_{3}\right)$, the signal due to the aliphatic quaternary carbon is covered or obscured;

IR (NaCl) v 3072, 2975, 2931, 2860, 2785, 1654, 1359, 1204, 886. LRMS (m/z, relative intensity) 154 $\left(\mathrm{MH}^{+}\right)$. Exact Mass calcd for $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{~N}$: 154.1590, found : 154.1597.

(E)-8-(prop-1-enyl)-1,2,3,5,6,7-hexahydroindolizine 19h

Following the general procedure for the thermolysis of chromium aminocarbenes, chromium carbene 13h $(0.200 \mathrm{~g}, 0.557 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(175 \mathrm{mg}, 0.668 \mathrm{mmol})$ were reacted to give adduct $\mathbf{1 9 h}$. Flash column chromatography (silica gel, $\mathrm{DCM}-\mathrm{DCM} / \mathrm{MeOH} \mathrm{v} / \mathrm{v} 4: 1$ gradient elution) of the crude material yielded the title amine $\mathbf{1 9 h}(67 \mathrm{mg}, 72 \%$) as a colourless oil that quickly turns dark-orange. A trace of the enamine $\mathbf{1 5 h}$ could be seen in the ${ }^{1} \mathrm{H}$ NMR (signal at 5.96 ppm). Characterization for $\mathbf{1 9 h}:{ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.24(\mathrm{~m}, 1 \mathrm{H}), 2.90(\mathrm{~s}, 2 \mathrm{H}), 2.55(\mathrm{~m}, 2 \mathrm{H}), 2.07(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.56(\mathrm{~m}$, $2 \mathrm{H}), 1.51(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{~s}, 9 \mathrm{H}){ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 136.2(\mathrm{C}), 118.0(\mathrm{CH}), 55.1$ $\left(\mathrm{CH}_{2}\right), 46.9\left(\mathrm{CH}_{2}\right), 26.6\left(\mathrm{CH}_{2}\right), 26.2\left(\mathrm{CH}_{2}\right), 25.9\left(\mathrm{CH}_{3}\right), 12.8\left(\mathrm{CH}_{3}\right)$, the signal due to the aliphatic quaternary carbon is obscured; IR (NaCl) v 2969, 2933, 2781, 1654, 1359, 1204. LRMS (m/z, relative intensity) $168\left(\mathrm{MH}^{+}\right)$. Exact Mass calcd for $\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{~N}: 168.1747$, found : 168.1754.

(E)-6-(prop-1-enyl)-1,2,3,7,8,8a-hexahydroindolizine 21

Following the general procedure for the thermolysis of chromium aminocarbenes, chromium carbene $\mathbf{2 0}$ $(113 \mathrm{mg}, 0.319 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(101 \mathrm{mg}, 0.383 \mathrm{mmol})$ were reacted to give dienamine 21, which could not be purified because of its instability. It was characterized as the crude product as well as its DielsAlder adduct 66 (see below)

Crude 21 : ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta(\mathrm{ppm}) 6.15(\mathrm{~d}, 1 \mathrm{H}, J=15.2 \mathrm{~Hz}), 6.06(\mathrm{~s}, 1 \mathrm{H}), 5.26(\mathrm{dq}, 1 \mathrm{H}, J$ $=15.2,6.6 \mathrm{~Hz}), 2.97-2.89(\mathrm{~m}, 1 \mathrm{H}), 2.85(\mathrm{ddd}, 1 \mathrm{H}, J=8.7,7.0,3.7 \mathrm{~Hz}), 2.71(\mathrm{q}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}), 2.27$ (ddd, $1 \mathrm{H}, J=16.4,5.2,1.5 \mathrm{~Hz}), 2.16-2.08(\mathrm{~m}, 1 \mathrm{H}), 1.83(\mathrm{dd}, 3 \mathrm{H}, J=6.6,1.4 \mathrm{~Hz}), 1.70-1.60(\mathrm{~m}, 2 \mathrm{H})$, 1.42-1.30 (m, 2H), 1.18-1.04 (m, 2H). ${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta(\mathrm{ppm})$ Note : two sp^{2} carbons are missing because of overlaping signals with phosphine derivatives. 112.1 (d), 108.4 (s), 56.3 (d), 49.8 $(\mathrm{t}), 32.6(\mathrm{t}), 28.1(\mathrm{t}), 24.2(\mathrm{t}), 22.8(\mathrm{t}), 18.6(\mathrm{q})$. LRMS (m / z, relative intensity) $196\left(\mathrm{MNa}^{+}, 15\right), 164$ $\left(\mathrm{MH}^{+}, 100\right)$. Exact Mass calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{~N}: 164.1434$, found: 164.1440.

Adduct 66 was obtained as follows: After heating chromium carbene 20 in toluene at reflux for 6.5 h , a solution of N-phenylmaleimide (4 equiv.) in toluene (3 mL) was added and the reflux was maintained for 13 h . The reaction was cooled and the solvent evaporated. The crude product was purified by flash chromatography on silica gel column using a 5:95 solution of $\left(\mathrm{NH}_{4} \mathrm{OH}: \mathrm{MeOH}\right)$ in dichloromethane (2:98 to $5: 95$) as the eluent. The compound ($10.2 \mathrm{mg}, 15 \%$) was obtained as a single diastereomer. ${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl_{3}) $\delta(\mathrm{ppm}) 7.49-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.19-7.15(\mathrm{~m}, 2 \mathrm{H}), 5.48(\mathrm{~s}, 1 \mathrm{H}), 5.74-5.69(\mathrm{~m}$, $1 \mathrm{H}), 3.43$ (dd, $1 \mathrm{H}, J=8.3,7.3 \mathrm{~Hz}), 3.11(\mathrm{dd}, 1 \mathrm{H}, J=8.3,5.2 \mathrm{~Hz}), 2.92(\mathrm{~d}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}), 2.54-2.41$ $(\mathrm{m}, 2 \mathrm{H}), 2.29-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.17-2.09(\mathrm{~m}, 1 \mathrm{H}), 2.03-1.87(\mathrm{~m}, 3 \mathrm{H}), 1.85-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.45(\mathrm{~m}$, 2H), $1.51(\mathrm{~d}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}){ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 176.9$ (s), 174.7 (s), 139.0 (s), 132.4 (s), 129.3 (d), 129.1 (d), 128.5 (d), 126.8 (d), 126.6 (d), 126.1 (d), 63.7 (d), 62.3 (d), 52.6 (t), 46.0 (d), 44.5 (d), 31.8 (t), 30.5 (d), 28.4 (t , 27.3 (t), 22.0 (t), 17.6 (q). IR (neat) $v\left(\mathrm{~cm}^{-1}\right) 3068,3037,2966$, 2932, 2875, 1712, 1500, 1380, 1179. LRMS (m / z, relative intensity) 337 ($\mathrm{MH}^{+}, 100$). Exact Mass calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}$: 337.1911, found: 337.1912.
(R)-6-methyleneoctahydroindolizine (23a) and (3aR)-octahydro-1H-cyclopropa[e]indolizine (23b)

Degassed (freeze and thaw) benzene (11 mL) was added to chromium aminocarbene $22(36.5 \mathrm{mg}, 0.111$ $\mathrm{mmol})$ and $\mathrm{PPh}_{3}(32.0 \mathrm{mg}, 0.122 \mathrm{mmol})$ in a sealed tube. The reaction was heated at $111{ }^{\circ} \mathrm{C}$ for 18 hours. The reaction was evaporated under reduce pressure without heating (products are volatile). After evaporation of the solvent, alkene 23a and cyclopropane 23b (ratio 23a:23b $=1: 3$) were the only
products present (along with phosphine derivatives). They were caracterised as a crude mixture du to their instability to purification.

Alkene 23a: ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 4.85-4.82(\mathrm{~m}, 1 \mathrm{H}), 4.81-4.79(\mathrm{~m}, 1 \mathrm{H}), 3.51(\mathrm{~d}, 1 \mathrm{H}, J$ $=11.4 \mathrm{~Hz}), 2.65(\mathrm{~d}, 1 \mathrm{H}, J=11.4 \mathrm{~Hz}), 2.45-1.11(\mathrm{~m}, 11 \mathrm{H})$ (this large multiplet was reported due to the incapacity to distinguish alkene 23a signals from cyclopropane 23b signals). ${ }^{13} \mathbf{C}$ NMR (75.5 MHz , CDCl_{3}) note: The quaternary carbon is missing since it overlaps with triphenylphosphine derivatives. δ
 intensity) $138\left(\mathrm{MH}^{+}, 100\right)$. Exact mass calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{~N}: 138.1283$, found: 138.1279.

Cyclopropane 23b: ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$ 3.18-3.05 (m, 1H), 2.55 (dddd, $1 \mathrm{H}, J=6.9$, $6.9,6.9,4.5 \mathrm{~Hz}), 2.45-1.11(\mathrm{~m}, 9 \mathrm{H})$ (this large multiplet was reported du to the incapacity to distinguish cyclopropane 23a signals from alkene 23b signals), $1.02-0.84(\mathrm{~m}, 2 \mathrm{H}), 0.40(\mathrm{q}, 1 \mathrm{H}, J=5.4 \mathrm{~Hz}), 0.30$ (ddd, $1 \mathrm{H}, J=12.3,6.9,5.4 \mathrm{~Hz}) .{ }^{13} \mathbf{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 55.4$ (d), 52.3 (t), 35.8 (d), 30.0 (t), 27.5 (t , , 23.3 (t), 20.5 (t$), 6.8$ (d), 5.9 (t$)$. LRMS (m / z, relative intensity) $138\left(\mathrm{MH}^{+}, 100\right)$. Exact mass calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{~N}: 138.1283$, found: 138.1279.

Piperidine 26

26
A solution of aminocarbene $25(1.05 \mathrm{~g}, 2.64 \mathrm{mmol})$ in toluene was degassed by putting the flask under vacuum at $-78{ }^{\circ} \mathrm{C}$ for 2 min and by subsequently purging the flask with argon. This procedure was repeated three times. Then, triphenylphosphine ($728 \mathrm{mg}, 2.77 \mathrm{mmol}$) the reaction mixture was heated to reflux. Upon completion of the reaction, the mixture was cooled to rt . The solution was concentrated under reduced pressure and the crude product was purified by flash chromatography on a silica gel column saturated with triethylamine eluting with 0% to 30% of diethyl ether in hexanes to yield 326 mg (60%) 26 as colorless oil. ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 5.88-5.56(m, 4H), 2.47-1.90 (m, 5H), 2.03 (dd, $1 \mathrm{H}, J=17.6,4.4 \mathrm{~Hz}$), $1.97(\mathrm{~d}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}$), 1.74 (sept, $1 \mathrm{H}, J=7.0 \mathrm{~Hz}$), 1.63-1.44 (m, 3H), 1.39$1.16(\mathrm{~m}, 1 \mathrm{H}), 0.86(\mathrm{~d}, 6 \mathrm{H}, J=7.0 \mathrm{~Hz}) .{ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) 5.91-5.80(m, 3H), 5.72-5.62(m, 1 H), 2.56-1.86 (m, 5H), 2.01 (dd, $1 \mathrm{H}, J=17.3,3.6 \mathrm{~Hz}$), $1.92(\mathrm{~d}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}$), 1.67 (sept, $1 \mathrm{H}, J=7.2$ $\mathrm{Hz}), 1.63-1.39(\mathrm{~m}, 3 \mathrm{H}), 1.34-1.16(\mathrm{~m}, 1 \mathrm{H}), 0.92-0.88(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$
135.4 (d), 125.3 (d), 123.3 (d), 122.5 (d), $67.0(t), 62.2(t), 55.3(t), 35.5(t), 33.9(t), 25.6(d), 22.1(t)$, $20.8(q), 20.8(q)$ (one aromatic quaternary carbon is missing). IR (neat) $v\left(\mathrm{~cm}^{-1}\right) 3037,2951,2933$, 2868, 2802, 2773, 1465, 1377, 1101. LRMS (m / z, relative intensity): $205\left(\mathrm{M}^{+}, 5\right), 162\left(\left(\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{7}\right)^{+}\right.$, 100), 100 (57), 91 (61). Exact Mass calcd for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{~N}: 205.1830$, found: 205.1828.

(E)-8-(prop-1-enyl)-1,2,3,5,6,7-hexahydroindolizine 32

Following the general procedure for the thermolysis of chromium aminocarbenes, chromium carbene 31 ($85 \mathrm{mg}, 0.24 \mathrm{mmol}$) and $\mathrm{PPh}_{3}(75 \mathrm{mg}, 0.29 \mathrm{mmol})$ were reacted to give dienamine 32, which could not be purified because of its instability. It was characterized as the crude product. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(300 \mathrm{MHz}$, $\left.\mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm}) 6.19(\mathrm{~d}, 1 \mathrm{H}, J=15.3 \mathrm{~Hz}), 5.09(\mathrm{dq}, 1 \mathrm{H}, J=15.3,6.6 \mathrm{~Hz}), 2.99(\mathrm{t}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz})$, $2.94(\mathrm{t}, 2 \mathrm{H}, J=5.8 \mathrm{~Hz}), 2.57(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 2.11(\mathrm{t}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}), 1.93$ (quint, $2 \mathrm{H}, J=6.1 \mathrm{~Hz}$), 1.84 (quint, $2 \mathrm{H}, J=7.2 \mathrm{~Hz}$), $1.77(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}) .{ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathbf{C}_{6} \mathbf{D}_{6}\right) \delta(\mathrm{ppm}) 6.40(\mathrm{~d}, 1 \mathrm{H}$, $J=15.1 \mathrm{~Hz}), 5.26(\mathrm{dq}, 1 \mathrm{H}, J=15.1,6.6 \mathrm{~Hz}), 2.67(\mathrm{t}, 2 \mathrm{H}, J=5.5 \mathrm{~Hz}), 2.62(\mathrm{t}, 2 \mathrm{H}, J=6.5 \mathrm{~Hz}), 2.36(\mathrm{t}$, $2 \mathrm{H}, J=7.6 \mathrm{~Hz}$), $2.22(\mathrm{t}, 2 \mathrm{H}, J=6.5 \mathrm{~Hz}$), 1.99 (quint, $2 \mathrm{H}, J=7.0 \mathrm{~Hz}$), $1.92(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}), 1.80$ (quint, $2 \mathrm{H}, J=6.5 \mathrm{~Hz}){ }^{13} \mathbf{C} \mathbf{N M R}\left(75.5 \mathrm{MHz}, \mathbf{C}_{6} \mathbf{D}_{6}\right) \delta(\mathrm{ppm}) 143.9$ (s), 112.2 (d), 110.4 (d), 100.0 (s), $53.2(\mathrm{t}), 46.3(\mathrm{t}), 30.8(\mathrm{t}), 27.8(\mathrm{t}), 22.9(\mathrm{t}), 22.2(\mathrm{t}), 21.8(\mathrm{t}), 19.0(\mathrm{q})$. LRMS (m / z, relative intensity) $196\left((\mathrm{M}+\mathrm{Na})^{+}, 95\right), 164\left(\mathrm{MH}^{+}, 100\right)$. Exact mass calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{~N}: 164.1434$, found: 164.1433.

l-methyleneoctahydro-1H-quinolizine 34

Following the general procedure for the thermolysis of chromium aminocarbenes, chromium carbene $13 \mathrm{i}(0.200 \mathrm{~g}, 0.580 \mathrm{mmol})$ but only 0.3 equiv. of $\mathrm{PPh}_{3}(46 \mathrm{mg}, 0.174 \mathrm{mmol})$ were reacted to give adduct 19i. Flash column chromatography $\left(\mathrm{NEt}_{3}\right.$-treated silica gel, pentane-pentane/ether $95: 5$ gradient elution) of the crude material yielded the title amine $34(61 \mathrm{mg}, 69 \%)$ as a colourless oil that quickly turned dark-orange. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.76(\mathrm{~s}, 2 \mathrm{H}), 2.88(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{~d}, J=$
$11.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{~m}, 2 \mathrm{H}), 2.04(\mathrm{~m}, 2 \mathrm{H}), 1.80(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.40(\operatorname{covered} 5 \mathrm{H}), 1.28(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 148.3(\mathrm{C}), 106.9\left(\mathrm{CH}_{2}\right), 64.6(\mathrm{CH}), 57.3\left(\mathrm{CH}_{2}\right), 56.8\left(\mathrm{CH}_{2}\right), 35.1\left(\mathrm{CH}_{2}\right)$, $28.5\left(\mathrm{CH}_{2}\right), 26.9\left(\mathrm{CH}_{2}\right), 25.7\left(\mathrm{CH}_{2}\right), 24.5\left(\mathrm{CH}_{2}\right) ;$ IR $(\mathrm{NaCl}) v 3085,2935,2851,2745,2679,1647$, 1438, 1281, 891. LRMS (m/z, relative intensity) $152\left(\mathrm{MH}^{+}\right)$. Exact Mass calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{~N}$: 152.1439, found : 152.1434 .

(E)-1-benzyl-3-(2-(5-(prop-1-enyl)-3,4-dihydropyridin-1(2H)-yl)ethyl)-1H-indole 38

Following the general procedure for the thermolysis of chromium aminocarbenes, chromium carbene 37 ($220 \mathrm{mg}, 0.39 \mathrm{mmol}$) and $\mathrm{PPh}_{3}(120 \mathrm{mg}, 0.44 \mathrm{mmol})$ were reacted to give adduct 38, which proved too unstable to purify. ${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta(\mathrm{ppm}) 7.56-7.30(\mathrm{~m}, 9 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 6.12(\mathrm{~d}, J=$ $15.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{~s}, 1 \mathrm{H}), 5.26(\mathrm{dq}, J=15.3,6.4 \mathrm{~Hz} 1 \mathrm{H}), 4.73(\mathrm{~s}, 2 \mathrm{H}), 3.17-2.96(\mathrm{~m}, 4 \mathrm{H}), 2.87-2.66$ (m, 4H), $1.86(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.78-1.61(\mathrm{~m}, 4 \mathrm{H})$. IR (NaCl disk) $v\left(\mathrm{~cm}^{-1}\right) 3055,2927,1923,1886$. LRMS m / z (relative intensity) $357\left(\mathrm{MH}^{+}, 100\right), 345$ (30). Exact Mass calculated for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{2}$: $357.5106\left(\mathrm{MH}^{+}\right)$, found : $357.2340\left(\mathrm{MH}^{+}\right)$.

1-Benzyl-3-(2-((4aS,7aR)-4,4a-dihydro-1H-cyclopenta[c]pyridin-2(3H,7H,7aH)-yl)ethyl)-1H-indole 39

In a flask were added the chromium aminocarbene $37(220 \mathrm{mg}, 0.39 \mathrm{mmol})$ in dry toluene $(40 \mathrm{~mL})$. The mixture was degassed 3 times with freeze-thaw cycles under reduced pressure at $-78{ }^{\circ} \mathrm{C}$ for 5 min . The mixture was heated to reflux until reaction was complete (24h). The mixture was cooled to rt and the solvent was evaporated under reduced pressure. The product was chromatographed on silica gel (A solution of A 2% in $\mathrm{DCM} ; \mathbf{A}=5 \% \mathrm{NH}_{4} \mathrm{OH}$ in MeOH) to give pure product 39 as a colorless paste (50 $\mathrm{mg}, 58 \%){ }^{1}{ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta(\mathrm{ppm}) 7.64(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.04(\mathrm{~m}, 8 \mathrm{H}), 6.97(\mathrm{~s}$, $1 \mathrm{H}), 5.86(\mathrm{~d}, \mathrm{~J}=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.78-5.71(\mathrm{~m}, 1 \mathrm{H}), 5.27(\mathrm{~s}, 2 \mathrm{H}), 3.45(\mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.10-2.91(\mathrm{~m}$,
$2 \mathrm{H}), 2.88-2.71(\mathrm{~m}, 2 \mathrm{H}), 2.67-2.32(\mathrm{~m}, 2 \mathrm{H}), 2.23-2.11(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.50(\mathrm{~m}, 2 \mathrm{H})$, 1.24-1.03 (m, 1H). ${ }^{13}$ C NMR (75 MHz, CDCl3) $\delta(\mathrm{ppm}) 137.9(\mathrm{~s}), 136.7$ (s), 136.4 (d), 128.9 (s), 128.7 (d), 128.3 (s$), 127.7$ (d), 126.9 (d), 125.9 (d), 121.9 (d), 119.2 (d), 119.1 (d), 109.8 (d), 62.6 (d), $57.1(\mathrm{t}), 50.0(\mathrm{t}), 48.2(\mathrm{t}), 42.2(\mathrm{~d}), 29.1(\mathrm{t}), 27.4(\mathrm{t}), 23.2(\mathrm{t})$. IR (NaCl disk) $v\left(\mathrm{~cm}^{-1}\right) 3051,2927,1926$, 1668, 1466. LRMS m / z (relative intensity) 357 (100) $\left(\mathrm{MH}^{+}\right), 356\left(10, \mathrm{M}^{+}\right)$. Exact Mass calcd for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{2}: 357.5106$, found : 357.2335 .

${ }^{1}$ H NMR SPECTRA

In numerical order
(E)-Pentacarbonyl[(N-(benzyl)-N-(hepta-4,6-dienyl)amino)methylene]chromium(0) (13a)

(E)-Pentacarbonyl [(N-(cyclohexylmethyl)-N-(hepta-4, 6-dienyl)amino)methylenelchromium(0) (13b)

(E)-Pentacarbonyl[(N-cyclohexyl-N-(4-penten-1-yl)amino)methylene]chromium(0) (13d)

(E)-Pentacarbonyl[(N-cyclohexyl-N-(3-buten-1-yl)amino)methylenelchromium(0) (13e)

(E)-Pentacarbonyl/(N-isobutyl-N-(4-penten-1-yl)amino)methylene]chromium(0) (13f)

(E)-Pentacarbonyl[(N-tert-butyl-N-(4-penten-1-yl)amino)methylene]chromium(0) (13g)

Pentacarbonyl[(N-isobutyl-N-(5-phenyl-4-penten-1-yl amino)methylene]chromium(0) (13i)

Pentacarbonyl[(N-isobutyl-N-(5-methylcarboxy-4-penten-l-yl)amino)methylene]chromium(0) (13j)

Pentacarbonyl[(N-isobutyl-N-(7-triisopropylsilyl-4-hepten-6-yn-1-yl) amino)methylene]chromium(0) (13k)

(E)-1-Cyclopropylmethyl-5-(prop-1-enyl)-1,2,3,4-tetrahydropyridine 15b

(E)-1-cyclohexyl-5-(prop-1-enyl)-1,2,3,4-tetrahydropyridine 15c

N-tert-Butyl-1,2,3,4-tetrahydropyridine 15g

5-Benzyl-1-isobutyl-1,2,3,4-tetrahydropyridine 15i

methyl 2-(1-isobutyl-1,4,5,6-tetrahydropyridin-3-yl)acetate 15j

1-isobutyl-5-(3-(triisopropylsilyl)prop-2-ynyl)-1,2,3,4-tetrahydropyridine 15k

(E)- N-(Benzyl)- N-(hepta-4,6-dienyl)formamide (18a)

(E)-N-(Cyclohexylmethyl)- N-(hepta-4, 6-dienyl)formamide (18b)

(E)-N-cyclohexyl-N-(hepta-4,6-dien-1-yl)formamide (18c)

N-Cyclohexyl-N(4-penten-1-yl) formamide (18d)

N-cyclohexyl-N-(3-buten-1-yl)formamide (18e)

N-Isobutyl-N(4-penten-1-yl) formamide (18f)

N-tert-butyl-N(4-penten-1-yl) formamide (189)

N-Isobutyl-N(4-hexen-1-yl) formamide (18h)

(E)-N-isobutyl-N-(7-(triisopropylsilyl)hept-4-en-6-ynyl)formamide (18k)

N-cyclohexyl-N-(5-methyl-4-hexen-1-yl)formamide (18I)

(E)-8-(Prop-1-enyl)-1,2,3,5,6,7-hexahydroindolizine 19e

(E)-8-(prop-1-enyl)-1,2,3,5,6,7-hexahydroindolizine 19g

(E)-8-(prop-1-enyl)-1,2,3,5,6,7-hexahydroindolizine 19h

(R,E)-6-(prop-1-enyl)-1,2,3,7,8,8a-hexahydroindolizine (21)

(R)-Pentacarbonyl[(3-buten-1-yl)pyrrolidine)methylene]chromium(0) (22)

(R)-6-methyleneoctahydroindolizine (23a) and (3aR)-octahydro-1H-cyclopropale\indolizine (23b)

Mixture of E and $Z(R)$-pentacarbonyl[(2-(3-methylhexa-3,5-dienyl)pyrrolidine)methylene]chromium(0) (24)

Pentacarbonyl [(N-(3-(Cyclohexa-1, 3-dienyl)propyl)-N-(2-
methylpropyl)amino)methylenelchromium(0) (25)

Piperidine 26

Chromium aminocarbene (31)

(E)-8-(prop-1-enyl)-1,2,3,5,6,7-hexahydroindolizine (32) in $C_{6} D_{6}$

Chromium aminocarbene (33)

1-Methyleneoctahydro-1H-quinolizine (34)

(S)-2-(iodomethyl)pyrrolidine-1-carbaldehyde (45)

(R)-2-(but-3-enyl)pyrrolidine-1-carbaldehyde (47)

(R)-2-(3-methylbut-3-enyl)pyrrolidine-1-carbaldehyde (51)

(2S)-2-(3,4-Dibromo-3-methylbutyl)pyrrolidine-1-carbaldehyde (52)

(R)-2-(4-bromo-3-methylbut-3-enyl)pyrrolidine-1-carbaldehyde (53)

3-(Cyclohexa-1, 3-dienyl)-1-iodopropane (56)

N-(3-(Cyclohexa-1, 3-dienyl)propyl)-N-(2-methylpropyl)formamide (57)

(E)-1-(hepta-4,6-dienyl)pyrrolidin-2-one (59)

1-(Pent-4-enyl)piperidin-2-one (61)

(E)-N-(2-(1H-indol-3-yl)ethyl)-N-(hepta-4,6-dienyl)formamide (64)

Pentacarbonyl[((E)-N-(2-(1-benzyl-1H-indol-3-yl)ethyl)-N-(hepta-4,6-
dienyl)amino)methylenelchromium(0) (37)

(E)-1-benzyl-3-(2-(5-(prop-1-enyl)-3,4-dihydropyridin-1(2H)-yl)ethyl)-1H-indole (38)

(7aR)-4-methyl-2-phenyl-3a,4,6,7,7a,8,9,10,11a,11b-decahydro-1H-dipyrrolo[1,2-a:3',4'-h]quinoline-1,3(2H)-dione (66)

${ }^{13}$ C NMR SPECTRA

In numerical order

(E)-Pentacarbonyl [(N-cyclohexyl-N-(3-buten-1-yl)amino)methylenelchromium(0) (13e)

(E)-Pentacarbonyl[(N-isobutyl-N-(4-penten-1-yl)amino)methylene]chromium(0) (13f)

(E)-Pentacarbonyl[(N-tert-butyl-N-(4-penten-1-yl)amino)methylene]chromium(0) (13g)

Pentacarbonyl/(N-isobutyl-N-(5-phenyl-4-penten-1-yl)amino)methylene]chromium(0) (13i)

Pentacarbonyl[(N-isobutyl-N-(7-triisopropylsilyl-4-hepten-6-yn-1-yl)amino)methylene]chromium(0) (13k)

Pentacarbonyl/(N-cyclohexyl-N-(5-methyl-4-hexen-1-yl)amino)methylene]chromium(0) (13I)

$29<I Z$
$69<I 2$
62

(E)-1-cyclohexyl-5-(prop-1-enyl)-1,2,3,4-tetrahydropyridine 15c

N-tert-Butyl-1,2,3,4-tetrahydropyridine 15g

5-Benzyl-1-isobutyl-1,2,3,4-tetrahydropyridine 15i

KA-2-32-pdtc

methyl 2-(1-isobutyl-1,4,5,6-tetrahydropyridin-3-yl)acetate 15j

1-isobutyl-5-(3-(triisopropylsilyl)prop-2-ynyl)-1,2,3,4-tetrahydropyridine 15k

(E)- N-(Benzyl)- N-(hepta-4,6-dienyl)formamide (18a)

$$
\left.\begin{array}{llllll}
0 & 0 & t & \mathcal{E} & \cdot & 9 \\
\mathcal{S} & 0 & I & \mathcal{E} & \angle & Z \\
\angle & 6 & 8 & 0 & 6 & Z \\
L & 9 & \mathcal{E} & L & 6 & Z
\end{array}\right]
$$

(E)-N-(Cyclohexylmethyl)-N-(hepta-4, 6-dienyl)formamide (18b)

(E)-N-cyclohexyl-N-(hepta-4,6-dien-1-yl)formamide (18c)

N-Cyclohexyl-N(4-penten-1-yl) formamide (18d)

(E)-N-cyclohexyl-N-(3-buten-1-yl)formamide (18e)

N-Isobutyl-N(4-penten-1-yl) formamide (18f)

N-tert-butyl-N(4-penten-1-yl) formamide (18g)

N-Isobutyl-N(4-hexen-1-yl) formamide (18h)

(E)-N-isobutyl-N-(7-(triisopropylsilyl)hept-4-en-6-ynyl)formamide (18k)

N-cyclohexyl-N-(5-methyl-4-hexen-1-yl)formamide (18I)

(E)-8-(Prop-1-enyl)-1,2,3,5,6,7-hexahydroindolizine 19e

(E)-8-(prop-1-enyl)-1,2,3,5,6,7-hexahydroindolizine 19g

(
(E)-8-(prop-1-enyl)-1,2,3,5,6,7-hexahydroindolizine 19h

(R,E)-6-(prop-1-enyl)-1,2,3,7,8,8a-hexahydroindolizine (21)

Mixture of E and $Z(R)$-pentacarbonyl [(2-(3-methylhexa-3,5-dienyl)pyrrolidine)methylene]chromium(0) (24)

Pentacarbonyl [(N-(3-(Cyclohexa-1, 3-dienyl)propyl)-N-(2-
methylpropyl)amino)methylenelchromium(0) (25)

Piperidine 26

$$
\begin{aligned}
& 0 t 8 t \cdot \tau Z I- \\
& \begin{array}{llllll}
I & \mathcal{S} & Z \mathcal{E} & \cdot \mathcal{E} & Z & I \\
8 & 0 & \mathcal{E} & \mathcal{E} & \mathcal{S} & Z \\
I
\end{array} \\
& 0 カ Z t^{〔} \mathcal{E} I-
\end{aligned}
$$

Chromium aminocarbene (31)

(E)-8-(prop-1-enyl)-1,2,3,5,6,7-hexahydroindolizine (32)

Chromium aminocarbene (33)

1-methyleneoctahydro-1H-quinolizine (34)

bt'69T-

0<I

(S)-2-(iodomethyl)pyrrolidine-1-carbaldehyde (45)

(R)-2-(but-3-enyl)pyrrolidine-1-carbaldehyde (47)

Mixture of E and $Z(R)$-2-(hexa-3,5-dienyl)pyrrolidine-1-carbaldehyde (49)

(R)-2-(3-methylbut-3-enyl)pyrrolidine-1-carbaldehyde (51)

(R)-2-(4-bromo-3-methylbut-3-enyl)pyrrolidine-1-carbaldehyde (53)

(R)-2-(3-methylhexa-3,5-dienyl)pyrrolidine-1-carbaldehyde (54)

3-(Cyclohexa-1, 3-dienyl)-1-iodopropane (56)

N-(3-(Cyclohexa-1, 3-dienyl)propyl)-N-(2-methylpropyl)formamide (57)

$86 \mathrm{SL} \cdot 29 I=$

(E)-1-(hepta-4,6-dienyl)pyrrolidin-2-one (59)

1-(Pent-4-enyl)piperidin-2-one (61)

(E)-N-(2-(1H-indol-3-yl)ethyl)hepta-4,6-dien-1-amine (63)

(E)-N-(2-(1H-indol-3-yl)ethyl)-N-(hepta-4,6-dienyl)formamide (64)

(E)-N-(2-(1-benzyl-1H-indol-3-yl)ethyl)-N-(hepta-4,6-dienyl)formamide (36)

Pentacarbonyl/((E)-N-(2-(1-benzyl-1H-indol-3-yl)ethyl)-N-(hepta-4,6-
dienyl)amino)methylenelchromium(0) (37)

R3-4p2Car
(7aR)-4-methyl-2-phenyl-3a,4,6,7,7a,8,9,10,11a,11b-decahydro-1H-dipyrrolo[1,2-a:3',4'-h]quinoline-1,3(2H)-dione (66)

COSY SPECTRA

(R,E)-6-(prop-1-enyl)-1,2,3,7,8,8a-hexahydroindolizine (21) in $C_{6} \underline{D_{6}}$

(7aR)-4-methyl-2-phenyl-3a, 4,6,7,7a,8,9,10,11a,11b-decahydro-1H-dipyrrolo[1,2-a:3',4'-h]quinoline-1,3(2H)-dione (66) in CDCl_{3}

References and notes

${ }^{1}$ Freudenreich, C.; Samana, J.-P.; Biellmann, J.-F. J. Am. Chem. Soc. 1984, 106, 3344-3353.
${ }^{2}$ Schindler, J. F.; Berst, K. B.; Plapp, B. V. J. Med. Chem. 1998, 41, 1696-1701.
${ }^{3}$ Ramaswamy, S.; Scholze, M.; Plapp, B. V. Biochemistry, 1997, 36, 3522.
${ }^{4}$ Johnson, A. P.; Luke, R. W. A.; Boa, A. N. J. Chem. Soc. Perkin. Trans. 1. 1996, 895-906
${ }^{5}$ Todo, H.; Terao, J.; Watanabe, H.; Kuniyasu, H.; N. Chem. Commun., 2008, 1332-1334.
${ }^{6}$ Seebach, D.; Kalinowski, H.-O.; Bastani, B.; Crass, G.; Daum, H.; Dörr, H.; Dupreez, N. P.; Ehrig, V.; Langer, W.; Nüssler, C.; Oei, H.-A.; Schmidt, M. Helv. Chim. Acta 1977, 60, 301.
${ }^{7}$ Andersson, P. G.; Nilsson, Y. I. M.; Bäckvall, J.-E. Tetrahedron, 1994, 50, 559

