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ABSTRACT: A step- and atom-economic protocol for the
synthesis of 6-acylated pyrido[2,1-a]isoindoles from 2-
arylpyridines and γ-substituted tert-propargyl alcohols has
been developed.

Alkynes are a recurring functional group in numerous
natural products, bioactive compounds, and organic

materials.1 Transition-metal-mediated cross-coupling reactions
play a prominent role among the methods for the incorporation
of alkynyl functionality into organic molecules.2 For CSP−CSP

coupling, one of the most valuable transformations in this
context is the Glaser coupling3 and related reaction involving
terminal alkynes,4 alkynyltrifluoroborates,5 or alkynyltellurides,6

etc. For CSP−CSP
2 coupling, arguably the most widely used

methods are Sonogashira7 and related alkynylation reactions8

involving terminal alkynes reacting with aryl or vinyl halides.
For CSP−CSP

3 coupling, a significant contribution in this field
was made by Lei’s group, as they succeeded in the palladium-
catalyzed oxidative cross-coupling of alkylzinc halides with
alkynylstannanes9 or even terminal alkynes.10 From a step- and
atom-economic point of view, direct C−H alkynylation of
polyfluoroarenes,11 phenols,12 anilines,13 electron-rich arenes,14

and heterocycles15 was achieved by using the alkynyl source
derived from terminal alkynes in recent years. Despite such
progress, the direct catalytic o-phenyl C−H alkynylation of 2-
arlypyridines remains a great challenge, although the
introduction of various fuctional groups has emerged.16

On the other hand, the alkynyl coupling partner plays an
important role for the direct o-phenyl C−H alkynylation of 2-
arylpyridines. Because of polymerization under high temper-
ature and insertion to the cyclcometaled C−M bond to afford
the alkenyl products,17 terminal alkynes could rarely be
employed in this transformation. In 2005, Miura18 reported a
[Rh(OH)(COD)]2 (COD: 1,5-cyclooctadiene) catalyzed
regio- and stereoselective homocoupling of γ-arylated tert-
propargyl alcohols via β-carbon elimination with liberation of a
ketone. In such a coupling, an alkynylmetal intermediate
generated in situ by selective cleavage of one of the three C−C
bonds of the tert-propargyl alcohols, which offers possibility of
utilizing tert-propargyl alcohols as alkyne-coupling partner.
With our ongoing efforts on o-phenyl C−H functionalizations
of 2-arlypyridines, we envision that under transition-metal

catalysis, tert-propargyl alcohols might also be available for
direct o-phenyl C−H alkynylation of 2-arylpyridines.
To test the viability of our hypothesis, 2-phenylpyridine 1a

and 2-methyl-4-phenyl-3-butyn-2-ol 2a were chosen as model
substrates. No desired alkynyl product was obtained after a
series of transition-metal catalysts were screened (entries 1−4,
Table 1). To our surprise, when [Cp*RhCl2]2 (Cp*:

pentamethylcyclopentadienyl) and excess Cu(OAc)2·H2O
(2.5 equiv) were employed as the catalytic system, 3aa was
isolated in 43% yield along with a small amount of 1,4-
diphenylbuta-1,3-diyne (8%) instead of alkynyl product (entry
5, Table 1). To our knowledge, only a few examples for the
construction of 6-acylated pyrido[2,1-a]isoindoles,19 a recurring
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Table 1. Screening of Reaction Conditionsa

entry [M] solvent yield (%)

1 Pd(OAc)2 toluene 0
2 [IrCl(COD)]2 toluene 0
3 [Ru(p-cymene)Cl2]2 toluene 0
4 [Os(p-cymene)Cl2]2 toluene 0
5 [Cp*RhCl2]2 toluene 43b

6 [RhCl(COD)]2 toluene 61
7 [RhCl(COD)]2 toluene/t-AmOH(4:1) 72

aConditions: 1a (1.0 mmol), 2a (1.5 mmol), [M] (2.5 mol %), [Ox.]:
Cu(OAc)2·H2O (2.5 mmol) and solvent (10 mL) under air at 130 °C
(bath temperature) for 24 h, t-AmOH: tert-amyl alcohol, yield of
isolated products based on 1a. b1,4-Diphenylbuta-1,3-diyne was also
isolated as a minor byproduct.
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structural motif found in many pharmaceuticals20 and func-
tional materials,21 have been reported up to now. Further
studies showed that [RhCl(COD)]2/Cu(OAc)2·H2O might be
promising system for the transformation (entry 6, Table 1). In
order to increase the solubility of Cu(OAc)2·H2O, t-AmOH
was added to the reaction mixture, and the satisfactory
conditions came to light, that is, the reaction should be
promoted by [RhCl(COD)]2/Cu(OAc)2·H2O system in the
mixed solvent of toluene/t-AmOH(4:1) at 130 °C under air
(entry 7, Table 1).
With the optimized conditions in hand, a number of 2-

arylpyridines as well as γ-substituted tert-propargyl alcohols
were explored to examine the scope of this method (Scheme
1). First, with regard to the reaction of 1 and 2a, 2-arlypyridines
with various substitution patterns such as Me, NHBoc, and
CO2Et at the C-4 position of the pyridine ring all gave the
expected products in moderate to good yields (3ba−da);

notably, 3-fluoro-2-phenylpyridine also worked comparatively
well (3ea). When the phenyl ring was fixed with OMe at the
para position, substrates with Me at the C-3, C-4, or C-5
positions of the pyridine ring afforded the corresponding
products in moderate yields (3fa−ha); however, when it came
to the C-6 position, 3ia was not obtained due to steric
hindrance. 2-Arylpyridines with OMe at the ortho- and para-
positions of the phenyl ring proceeded well together with
regiomeric mixture of products at meta-position (3ja−la), then
substrates bearing electron-donating substituents such as OMe
and Ph and electron-withdrawing groups including CN, NO2,
F, and Ac at the para position of the phenyl ring were studied,
and acceptable yields were achieved, respectively (3la, 3ma−
ra); 2-(o-tolyl)pyridine, 2-(naphthalen-1-yl)pyridine, and 2-(4-
methoxyphenyl)quinoline were fairly effective (3sa−ua).
Second, as for the reaction of 2-phenylpyridine 1a and γ-
substituted tert-propargyl alcohols, several γ-substituted tert-
propargyl alcohols were investigated under the standard
conditions, γ-arylated tert-propargyl alcohols with OMe at
meta- and para-position of the phenyl ring were tolerated
except for ortho-position owing to steric hindrance (3ab−ad),
and substrates bearing Me, OMe, CF3, and F at the para-
position of the phenyl ring afforded the corresponding
benzoylpyrido[2,1-a]isoindoles in reasonable yields (3ad−ag).
What’s more, 2-methyloct-3-yn-2-ol underwent this trans-
formation smoothly (3ah). Finally, the structure of all the
obtained products was unambiguously confirmed by single-
crystal X-ray diffraction analysis of compound 3ma (see the
Supporting Information).
A plausible mechanism for this fascinating process is depicted

in Scheme 2. Take the reaction of 1a and 2a ,for example.

Initially, oxidiation of [RhCl(COD)]2 by Cu(OAc)2·H2O
occurs, generating the [Rh(III)](OAc)3 precursor I.22 Then,
with the help of elimination of HOAc, the hydroxy group of
tert-propargyl alcohol coordinates to the active species I to
afford rhodium alcoholate II, which could easily undergo
selective cleavage of one of the three C−C bonds with
liberation of acetone to form an alkynylrhodium III. Trans-
metalation of the alkynl group from Rh to Cu generated the
alkynylcopper IV, which could undergo Glaser coupling2b to

Scheme 1. Substrate Scopea

aConditions: 1 (1.0 mmol), 2 (1.5 mmol), [RhCl(COD)]2 (2.5 mol
%), Cu(OAc)2·H2O (2.5 mmol) in toluene/t-AmOH (4:1, 10 mL)
under air at 130 °C (bath temperature) for 24 h, yield of isolated
products based on 1.

Scheme 2. Proposed Mechanism
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afford conjugate diyne 4 as a byproduct. The next step could
involve electrophilic deprotonation of the o-phenyl C−H bond
of 1a with the help of elimination of HOAc and transmetalation
of the alkynl group from Cu to Rh to form an intermediate V.
Then, reductive elimination of V would afford an alkyne 5 and
extrude [Rh(I)]OAc, which could be reoxidized by Cu(II) to
the catalytically active species I to complete the catalytic cycle.
Cu(II) might also regenerate from Cu(I) with O2 in the air.
The resulting alkyne 5 could undergo a radical annulation and
oxygenation mediated by excess Cu(II) in the reaction system
to yield the final product 3aa. Recently, Zhu23 described a new
copper-catalyzed intramolecular dehydrogenative aminooxyge-
nation of N-allyl-2-aminopyridines to imidazo[1,2-a]pyridine-3-
carbaldehydes. Moreover, Chiba24 demonstrated a copper-
catalyzed aerobic intramolecular carbo- and amino-oxygenation
of alkynes for the synthesis of azaheterocycles. In their process,
peroxy-Cu(III) intermediate generated by single-electron
transfer from Cu to O2 makes a crucial rule. Although the
detailed mechanism is not clear so far, we reason that
annulation and oxygenation of alkyne 5 might also involve
the similar pathway.
To gain insight into the above-mentioned mechanism, the

reaction of 1a with acetylene were performed under the
standard conditions (eq 1). We found that 3aa was obtained in
35% yield along with 38% of 1a recovered. Of note, 1,4-
diphenylbuta-1,3-diyne 4 was afforded in a relatively higher
yield (24%).

In summary, we have developed a novel, highly efficient
rhodium-catalyzed cascade protocol to afford 6-acylated
pyrido[2,1-a]isoindoles from 2-arylpyridines and γ-substituted
tert-propargyl alcohols. These reactions proceed in satisfactory
to excellent yields with high regioselectivities. Further
investigation on detailed mechanism and synthetic applications
is currently underway.
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