SUPPORTING INFORMATION Direct Macrolactonization of Seco Acids via Hafnium(IV) Catalysis.

Mylène de Léséleuc and Shawn K. Collins*
Département de Chimie, Centre for Green Chemistry and Catalysis, Université de Montréal, CP 6128 Station Downtown, Montréal, Québec, CANADA H3C 3J7 shawn.collins@umontreal.ca

SUPPORTING INFORMATION

TABLE OF CONTENTS:

GENERAL	S2
SYNTHESIS OF MACROCYCLIZATION PRECURSORS	S 3
SYNTHESIS OF MACROCYCLES	S 14
SYNTHESIS OF ESTERIFICATION PRECURSORS	S 19
SYNTHESIS OF ESTERS	S 19
TABULAR DATA	S 26
COMPETITION EXPERIMENTS	S 28
SPECTRAL DATA	S 29
REFERENCES	S 69

General:

All reactions that were carried out under anhydrous conditions were performed under an inert argon or nitrogen atmosphere in glassware that had previously been dried overnight at $120{ }^{\circ} \mathrm{C}$ or had been flame dried and cooled under a stream of argon or nitrogen. ${ }^{1}$ All chemical products were obtained from Sigma-Aldrich Chemical Company or Strem Chemicals and were reagent quality. Technical solvents were obtained from VWR International Co. Methyl 3-iodobenzoate ${ }^{2}$, 9-(tert-butyldimethylsilyloxy)non-1-yne ${ }^{3}$, 11-(tert-butyldimethylsilyloxy)undec-1-yne ${ }^{4}$, 20-heneicosan-1-ol ${ }^{5}$, 8(triisopropylsilyloxy)octanol ${ }^{6}$, 8-(tert-butyldimethylsilyloxy)octanol ${ }^{7}$, (2,2-dimethyl-1,3-dioxolan-4-yl) methanol ${ }^{8}$, 15-(tert-butyldimethylsilyloxy)pentadecanoic acid ${ }^{9}$, methyl (15-hydroxypentadecyl)- L-phenylalanyl- L-phenylalaninium \quad trifluoroacetate ${ }^{10}$, $\quad 8$ -hydroxyoctan-1-ol acetate ${ }^{11}$ and 12 -oxooctadecanoic acid ${ }^{12}$ were prepared according to literature procedure. Anhydrous solvents $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{Et}_{2} \mathrm{O}, \mathrm{THF}, \mathrm{DMF}\right.$, toluene, and nhexane) were dried and deoxygenated using a GlassContour system (Irvine, CA). Isolated yields reflect the mass obtained following flash column silica gel chromatography. Organic compounds were purified using the method reported by W. C. Still ${ }^{13}$ and using silica gel obtained from Silicycle Chemical division (40-63 nm; 230-240 mesh). Analytical thin-layer chromatography (TLC) was performed on glass-backed silica gel 60 coated with a fluorescence indicator (Silicycle Chemical division, $0.25 \mathrm{~mm}, \mathrm{~F}_{254}$.). Visualization of TLC plate was performed by UV (254 nm), KMnO_{4} or p-anisaldehyde stains. All mixed solvent eluents are reported as v / v solutions. Concentration refers to removal of volatiles at low pressure on a rotary evaporator. All reported compounds were homogeneous by thin layer chromatography (TLC) and by ${ }^{1} \mathrm{H}$ NMR. NMR spectra were taken in deuterated CDCl_{3} using Bruker AV-300 and AV-400 instruments unless otherwise noted. Signals due to the solvent served as the internal standard $\left(\mathrm{CHCl}_{3}: \delta 7.27\right.$ for ${ }^{1} \mathrm{H}, \delta 77.0$ for ${ }^{13} \mathrm{C}$). The acquisition parameters are shown on all spectra. The ${ }^{1} \mathrm{H}$ NMR chemical shifts and coupling constants were determined assuming first-order behavior. Multiplicity is indicated by one or more of the following: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), br (broad); the list of couplings constants (J) corresponds to the order of the multiplicity assignment. High resolution mass spectroscopy (HRMS) was done by the Centre régional de spectrométrie de masse at the Département de Chimie, Université de Montréal from an Agilent LC-MSD TOF system using ESI mode of ionization unless otherwise noted.

SYNTHETIS OF MACROCYCLE PRECURSORS

54 \%
Methyl 3-(9-hydroxynon-1-yl)benzoate (S1): Methyl 3-iodobenzoate (500 mg, 1.91 mmol, 1.0 equiv.) was dissolved in tetrahydrofuran ($10 \mathrm{~mL}, 0.2 \mathrm{M}$). $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(67$ $\mathrm{mg}, 0.096 \mathrm{mmol}, 0.05$ equiv.) and $\mathrm{CuI}(18.3 \mathrm{mg}, 0.096 \mathrm{mmol}, 0.05$ equiv.) were added to the solution and the reaction mixture was purged under N_{2} for 5 minutes. Triethylamine ($1.59 \mathrm{~mL}, 11.46 \mathrm{mmol}, 6.0$ equiv.) and the alkyne ($592 \mathrm{mg}, 2.10 \mathrm{mmol}, 1.1$ equiv.) were added and the reaction mixture was stirred at room temperature for 18 h . Silica ($\sim 10 \mathrm{~mL}$) was added and the slurry was concentrated under reduce pressure and passed through a short pad of silica (20% EtOAc in hexanes). The crude was dissolved in a mixture of methanol (5 mL) and tetrahydrofuran (5 mL). $\mathrm{Pd} / \mathrm{C}(405 \mathrm{mg}, 5 \% \mathrm{w} / \mathrm{w}, 0.191 \mathrm{mmol}, 0.1$ equiv.) was added and the reaction mixture was purged with H_{2} for 10 minutes. A balloon filled with H_{2} equipped with a syringe was put on the septum and the reaction mixture was stirred at room temperature for 18 hours. The reaction mixture was passed through a short pad of Celite ${ }^{\circledR}$ and concentrated under reduced pressure. Purification by flash chromatography (10% to 30% EtOAc in hexanes) was performed to afford the desired product as a colorless oil ($253 \mathrm{mg}, 54 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.86(\mathrm{~m}, 2 \mathrm{H})$, $7.36(\mathrm{~m}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{t}, J=6.8 \mathrm{~Hz}), 2.65(\mathrm{t}, J=8.0 \mathrm{~Hz}) 1.65-1.55(\mathrm{~m}, 4 \mathrm{H}), 1.38-$ $1.31(\mathrm{~m}, 10 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.3,143.2,133.1,130.0,129.5$, 128.2, 126.9, 63.0, 52.0, 35.7, 32.7, 31.3, 29.4, 29.3, 29.3, 29.1, 25.7 ppm; HRMS (ESI+) for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$calculated: 278.1882 found: 278.1893.

3-(9-Hydroxynon-1-yl)benzoic acid (S2): Methyl 3-(9-hydroxynon-1-yl)benzoate (253 $\mathrm{mg}, 0.91 \mathrm{mmol}, 1.0$ equiv.) was dissolved in tetrahydrofuran (4.8 mL). LiOH ($87 \mathrm{mg}, 3.64$ mmol, 4.0 equiv.) was added as an aqueous solution (1.2 mL). The reaction mixture was stirred at $65{ }^{\circ} \mathrm{C}$ for 6 h . The reaction mixture was cooled down to room temperature and HCl 1 M was added until the mixture was neutralized ($\mathrm{pH}=7$). Extraction with EtOAc (3 X 5 mL) was performed and the combined organic phases were washed with brine (15 mL). The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to afford the desired product as a white solid ($145 \mathrm{mg}, 61 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.94(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.36(\mathrm{~m}, 2 \mathrm{H}), 6.78(\mathrm{br} \mathrm{s}, 1 \mathrm{H}(\mathrm{OH})), 3.66(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H})$, $2.67(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.66-1.55(\mathrm{~m}, 4 \mathrm{H}), 1.31(\mathrm{~m}, 10 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz ,
CDCl_{3}) $\delta 171.8,143.3,133.8,130.0,129.4,128.4,127.5,63.0,35.6,32.6,31.2,29.4$, 29.32, 29.29, 29.1, 25.7 ppm ; HRMS (ESI +) for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$calculated: 264.1725 found: 264.1738.

Methyl 3-(11-hydroxyundec-1-yl)benzoate (S3): Methyl 3-iodobenzoate ($300 \mathrm{mg}, 1.15$ mmol, 1.0 equiv.) was dissolved in tetrahydrofuran ($6 \mathrm{~mL}, 0.2 \mathrm{M}$). $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(40 \mathrm{mg}$, $0.057 \mathrm{mmol}, 0.05$ equiv.) and $\mathrm{CuI}(11 \mathrm{mg}, 0.057 \mathrm{mmol}, 0.05$ equiv.) were added to the solution and the reaction mixture was purged under N_{2} for 5 minutes. Triethylamine (0.95 $\mathrm{mL}, 6.87 \mathrm{mmol}, 6.0$ equiv.) and the alkyne ($355 \mathrm{mg}, 1.26 \mathrm{mmol}, 1.1$ equiv.) were added and the reaction mixture was stirred at room temperature for 18 h . Silica ($\sim 10 \mathrm{~mL}$) was added and the slurry was concentrated under reduce pressure and passed through a short padof silica (20% EtOAc in hexanes). The crude was dissolved in a mixture of methanol $(5 \mathrm{~mL})$ and tetrahydrofuran $(5 \mathrm{~mL}) . \mathrm{Pd} / \mathrm{C}(244 \mathrm{mg}, 5 \% \mathrm{w} / \mathrm{w}, 1.15 \mathrm{mmol}, 0.1$ equiv.) was added and the reaction mixture was purged with H_{2} for 10 minutes. A balloon filled with H_{2} equipped with a syringe was put on the septum and the reaction mixture was stirred at room temperature for 18 hours. The reaction mixture was passed through a short pad of Celite ${ }^{\circledR}$ and concentrated under reduced pressure. Purification by flash chromatography (10% to 30% EtOAc in hexanes) was performed to the desired product as a colorless oil ($154 \mathrm{mg}, 44 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.86(\mathrm{~m}, 2 \mathrm{H}), 7.36(\mathrm{~m}, 2 \mathrm{H}), 3.92(\mathrm{~s} .3 \mathrm{H})$, $3.64(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.65(\mathrm{t}, J=7.2 \mathrm{~Hz}), 1.65-1.55(\mathrm{~m}, 4 \mathrm{H}), 1.31-1.27(\mathrm{~m}, 14 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.3,143.2,133.1,130.0,129.5,128.2,126.963 .1,52.0$, $35.7,32.8,31.3,29.55,29.51,29.48,29.42,29.38,29.2,25.7 \mathrm{ppm}$; HRMS (ESI +) for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$calculated: 306.2195 found: 306.2207.

85%
3-(11-Hydroxyundec-1-yl)benzoic acid (S4): Methyl 3-(11-hydroxyundec-1-yl)benzoate $(154 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0 \mathrm{eq})$ was dissolved in tetrahydrofuran $(4 \mathrm{~mL}) . \mathrm{LiOH}(48 \mathrm{mg}, 2.01$ $\mathrm{mmol}, 4.0 \mathrm{eq})$ was added as an aqueous solution $(1 \mathrm{~mL})$. The reaction mixture was stirred at $65^{\circ} \mathrm{C}$ for 3 h . The reaction mixture was cooled down to room temperature and HCl 1 M was added until the mixture was neutralized $(\mathrm{pH}=7)$. Extraction with EtOAc (3 X 5 mL) was performed and the combined organic phases were washed with brine (15 mL). The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to afford
the desired product acid as a white solid ($125 \mathrm{mg}, 85 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.94(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.37(\mathrm{~m}, 2 \mathrm{H}), 3.67(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.68(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.67-$ $1.55(\mathrm{~m}, 4 \mathrm{H}), 1.33-1.28(\mathrm{~m}, 14 \mathrm{H}) \mathrm{ppm}{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.9,143.3,133.9$, 130.1, 129.1, 128.4, 127.5, 63.1, 35.6, 32.7, 31.2, 29.5, 29.44, 29.42, 29.38, 29.3, 29.0, 25.7 ppm ; HRMS (ESI +) for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$calculated: 293.2111 found: 293.2110 .

39 \%
Methyl 3-(11-hydroxyundec-1-yn-1-yl)benzoate (S5): Methyl 3-iodobenzoate (165 mg , $0.629 \mathrm{mmol}, 1.0$ equiv.) was dissolved in tetrahydrofuran ($3 \mathrm{~mL}, 0.2 \mathrm{M}$). $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{2}(22$ $\mathrm{mg}, 0.032 \mathrm{mmol}, 0.05$ equiv.) and $\mathrm{CuI}(6.1 \mathrm{mg}, 0.032 \mathrm{mmol}, 0.05$ equiv.) were added to the solution and the reaction mixture was purged under N_{2} for 5 minutes. Triethylamine ($0.53 \mathrm{~mL}, 3.77 \mathrm{mmol}, 6.0$ equiv.) and the alkyne ($195 \mathrm{mg}, 0.691 \mathrm{mmol}, 1.1$ equiv.) were added and the reaction mixture was stirred at room temperature for 18 h . Silica ($\sim 10 \mathrm{~mL}$) was added and the slurry was concentrated under reduce pressure and passed through a short pad of silica (20% EtOAc in hexanes). The crude was dissolved in THF (12 mL) and TBAF (2.43 mL as 1 M solution in THF, $2.43 \mathrm{mmol}, 4.0$ equiv.) was added to the solution. The reaction mixture was stirred at room temperature for 3 hours and was then quenched by adding $\mathrm{NH}_{4} \mathrm{Cl}$ saturated solution (10 mL). Extraction with EtOAc was performed ($2 \times 10 \mathrm{~mL}$) and the organic phase was washed with water $(20 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$. The organic phase was then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude was purified by flash chromatography (20% EtOAc in hexanes) to afford the desired product as a colorless oil ($74 \mathrm{mg}, 39 \%$ over two steps). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.07(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{dd}, J=$ $7.6 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.65-1.55$ $(\mathrm{m}, 4 \mathrm{H}), 1.50-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.34(\mathrm{~m}, 8 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 166.6, 135.7, 132.7, $130.2128 .4,128.3,124.5,91.5,79.6,63.0,52.2,32.8,29.4,29.3,29.0,28.8$, 28.6, 25.7, 19.3 ppm ; HRMS (ESI +) for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$calculated: 303.1955, found: 303.1965 .

3-(11-Hydroxyundec-1-yn-1-yl)benzoic acid (S6): Methyl 3-(11-hydroxyundec-1-yn-1yl)benzoate ($74 \mathrm{mg}, 0.243 \mathrm{mmol}, 1.0 \mathrm{eq}$) was dissolved in tetrahydrofuran (3.2 mL). LiOH
($23 \mathrm{mg}, 0.972 \mathrm{mmol}, 4.0 \mathrm{eq}$) was added as an aqueous solution $(0.8 \mathrm{~mL})$. The reaction mixture was stirred at $65^{\circ} \mathrm{C}$ for 3 h . The reaction mixture was cooled down to room temperature and HCl 1 M was added until the mixture was neutralized $(\mathrm{pH}=7)$. Extraction with EtOAc (3 X 5 mL) was performed and the combined organic phases were washed with brine $(15 \mathrm{~mL})$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to afford the desired product as a white solid ($39 \mathrm{mg}, 56 \%$) (Note: Seco acid S6 is highly insoluble in CDCl_{3} which made it difficult to obtain quality ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.14(\mathrm{~s}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, \mathrm{~J}=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J=8.0 \mathrm{~Hz}, 8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{br} \mathrm{s}, 1 \mathrm{H}(\mathrm{OH})), 3.67(\mathrm{t}, J=6.4 \mathrm{~Hz}$, $2 \mathrm{H}), 2.42(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.64-1.58(4 \mathrm{H}), 1.50-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{~m}, 10 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.8,136.4,133.3,129.0,128.4,124.7,91.8,79.6,63.0,32.6$, 29.4, 29.3, 29.0, 28.8, 28.5, 25.7, 19.3 ppm ; HRMS (ESI +) for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$ calculated: 289.1798, found: 289.1800 .

(\pm)-erythro-Methyl 16-tert-butyldimethylsilyloxy-9,10-dihydroxyhexadecanoate (S7) (\pm)-erythro-aleuritic acid ($500 \mathrm{mg}, 1.64 \mathrm{mmol}, 1.0$ equiv.) was dissolved in MeOH (40 mL). Concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ ($5-10$ drops) was added to the solution. The reaction mixture was heated to reflux for 18 hours and then brought back to room temperature and quenched by the addition of a $\mathrm{K}_{2} \mathrm{CO}_{3}$ saturated solution (until $\mathrm{pH}=7$). Extraction was performed by the addition of EtOAc $(100 \mathrm{~mL})$ and water $(50 \mathrm{~mL})$. The aqueous phase was extracted with EtOAc ($2 \times 50 \mathrm{~mL}$). The combined organic phases were washed with $\mathrm{H}_{2} \mathrm{O}$ $(100 \mathrm{~mL})$ and brine (75 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduce pressure. The crude was the dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$. $\mathrm{TBSCl}(260 \mathrm{mg}, 1.72 \mathrm{mmol}, 1.05$ equiv.) and imidazole ($117 \mathrm{mg}, 1.72 \mathrm{mmol}, 1.05$ equiv.) were added to the solution. The reaction mixture was stirred at room temperature for 3 hours and was quenched by the addition of water (10 mL). Extraction was performed with EtOAc ($2 \times 25 \mathrm{~mL}$) and the combined organic phases were washed with water $(20 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$. Silica gel was added $(10 \mathrm{~mL})$ and the slurry was concentrated under reduced pressure. Flash chromatography was performed ($25 \% \mathrm{EtOAc}$ in hexanes) to afford the desired product as a white solid $\left(534 \mathrm{mg}, 84 \%\right.$ over two steps). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{t}$, $\mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.42-3.40(\mathrm{~m}, 2 \mathrm{H}), 2.32(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.08-2.04(\mathrm{br} \mathrm{s}, 2 \mathrm{H}(\mathrm{OH})), 1.65-$ $1.62(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.34(\mathrm{~m}, 20 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 174.3,74.5,74.4,63.2,51.4,34.0,33.6$ (2C), 32.8, 29.5, 29.4, 29.1, 29.0, 26.0, 25.8, 25.6, 25.5, 24.9, 18.4, -5.3 ppm ; HRMS (ESI +) for $\mathrm{C}_{23} \mathrm{H}_{49} \mathrm{O}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$calculated : 433.3344 found: 433.3364 .

(\pm)-erythro-Methyl 8-((6-tert-butyldimethylsilyloxy)hexyl-2-thioxo-1,3-dioxolan-4yl)octanoate (S8). The diol S7 ($200 \mathrm{mg}, 0.462 \mathrm{mmol}, 1.0$ equiv.) was dissolved in PhMe $(3.0 \mathrm{~mL})$ in a sealed tube. TCDI was added ($90.4 \mathrm{mg}, 0.508 \mathrm{mmol}, 1.1$ equiv.) and the reaction vial was sealed and the mixture was stirred at $130^{\circ} \mathrm{C}$ for 18 hours. The solution was cooled down to room temperature and silica gel $(10 \mathrm{~mL})$ was added and the slurry was concentrated under reduced pressure. Flash chromatography was performed (5-10 \% EtOAc in hexanes) to afford the desired product ($215 \mathrm{mg}, 98 \%$) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.46-4.44(\mathrm{~m}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.80-1.60(\mathrm{~m}, 6 \mathrm{H}), 1.53-1.50(\mathrm{~m}, 4 \mathrm{H}), 1.40-1.30(\mathrm{~m}, 12 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H})$, $0.05(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191,7,174.2,86.8$ (2C), 63.0, 51.5, 34.0, $33.25,33.21,32.6,29.0,28.92$ (2C), 28.90, 25.9, 25.6, 24.8, 24.64, 24.59, 18.4, -5.3 ppm; HRMS (ESI+) for $\mathrm{C}_{24} \mathrm{H}_{47} \mathrm{O}_{5} \mathrm{SSi}[\mathrm{M}+\mathrm{H}]^{+}$calculated: 475.2908 found: 475.2927.

Methyl (Z)-16-(tert-butyldimethylsilyloxy)hexadec-9-enoate (S9) The thiocarbonate S8 ($200 \mathrm{mg}, 0.423 \mathrm{mmol}, 1.0$ equiv.) was dissolved in trimethylphosphite $(10 \mathrm{~mL}$) in a sealed tube. The reaction mixture was stirred at $140^{\circ} \mathrm{C}$ for 24 hours. The solution was cooled to room temperature and concentrated under reduced pressure. Flash chromatrography (3 \% EtOAc in hexanes) was performed to afford the desired product as a colorless oil (101 mg , $62 \%){ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.39-5.38(\mathrm{~m}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{t}, J=6.4 \mathrm{~Hz}$, $2 \mathrm{H}), 2.31(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.94(\mathrm{~m}, 4 \mathrm{H}), 1.35-1.30(\mathrm{~m}, 4 \mathrm{H}), 1,30(\mathrm{~m}, 14 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H})$, 0.05 (s, 6H) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.3,130.3$ (2C), 63.3, 51.4, 34.1, 32.8, 32.54, 32.52, 29.6, 29.5, 29.1 (2C), 28.9(2C), 26.0, 25.6, 24.9, 18.4, -5.3 ppm ; HRMS (ESI +) for $\mathrm{C}_{23} \mathrm{H}_{47} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$calculated: 399.3289 found: 399.3301.

Methyl (Z)-16-hydroxyhexadec-9-enoate (S10) Compound S9 (100 mg, $0.263 \mathrm{mmol}, 1.0$ equiv.) was dissolved in THF (4 mL). A solution of TBAF (1 M in THF) ($1.05 \mathrm{~mL}, 4.0$ equiv.) was added and the mixture was stirred at room temperature for 3 hours. The reaction was quenched by the addition of water (5 mL). Extraction with EtOAc (2×10
mL) was performed and the combined organic layers were washed with water (20 mL) and brine (20 mL). The organic phase was then dried under $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (40 \% EtOAc in hexanes) was performed to afford the desired product as a colorless oil ($41 \mathrm{mg}, 58 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 5.38-5.36 (m, 2H), $3.66(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.96$, (m, $4 \mathrm{H}), 1.62-1.54(\mathrm{~m}, 4 \mathrm{H}), 1.35-1.28(\mathrm{~m}, 14 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.3$, 130.3, 130.2, 63.0, 51.4, 34.1, 32.7, 32.5, 32.4, 29.50, 29.48, 29.1 (2C), 28.9, 28.8, 25.6, 24.9 ppm ; HRMS (ESI +) for $\mathrm{C}_{17} \mathrm{H}_{33} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$calculated: 285.2424 found: 285.2436.

(Z)-16-hydroxyhexadec-9-enoic acid (S11) The methyl ester S10 (41 mg, 0.152 mmol , 1.0 equiv.) was dissolved in THF (1.6 mL). LiOH ($15 \mathrm{mg}, 0.608 \mathrm{mmol}, 4.0$ equiv.) was dissolved in water $(0.4 \mathrm{~mL})$ and added to the previous mixture. The solution was stirred at reflux for 18 hours. The reaction mixture was cooled down to room temperature and HCl 1 M was added until the mixture was neutralized $(\mathrm{pH}=7$). Extraction with EtOAc (3 X 5 mL) was performed and the combined organic phases were washed with brine (15 mL). The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to afford the product as a white solid ($39 \mathrm{mg}, 96 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.38-5.37$ ($\mathrm{m}, 2 \mathrm{H}$), $3.65(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.99-1.96(\mathrm{~m}, 4 \mathrm{H}), 1.63-1.57(\mathrm{~m}$, $4 \mathrm{H}), 1.40-1.25(\mathrm{~m}, 14 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.9,130.4,130.3,63.0$, 34.0, 32.6, 32.45, 32.43, 29.5, 29.03, 29.00, 28.8, 28.7, 25.6, 24.7 ppm ; HRMS (ESI+) for $\mathrm{C}_{16} \mathrm{H}_{31} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$calculated 271.2268 found: 271.2273.

(\pm)-erythro-Methyl 16-(tert-butyldimethylsilyloxy)heptadecane-8,9-diyl[bis(2,2dimethylpropanoate)]oate (S12) The diol $\mathbf{S 7}$ ($206 \mathrm{mg}, 0.476 \mathrm{mmol}, 1.0$ equiv.) was dissolved in $\mathrm{PhMe}(5 \mathrm{~mL})$ in a sealed tube. $\mathrm{Et}_{3} \mathrm{~N}(0.33 \mathrm{~mL}, 2.30 \mathrm{mmol}, 5.0$ equiv.) was added followed by $\operatorname{PivCl}(0.23 \mathrm{~mL}, 1.90 \mathrm{mmol}, 4.0$ equiv.). The reaction mixture was stirred at $120{ }^{\circ} \mathrm{C}$ for 18 hours. The reaction was quenched by addition of water (5 mL). Extraction with EtOAc was performed ($2 \times 5 \mathrm{~mL}$) and the combined organic layers were washed with brine (10 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduce pressure. Flash chromatography (10% EtOAc in hexanes) was performed to afford the desired product ($252 \mathrm{mg}, 88 \%$) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.98(\mathrm{~m}, 2 \mathrm{H})$, $3.67(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.63-1.48(\mathrm{~m}, 8 \mathrm{H}), 1.30-1.23$ $(\mathrm{m}, 12 \mathrm{H}), 1.22(\mathrm{~s}, 18 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.8(2 \mathrm{C}), 174.2,73.3$ (2C),
63.1, 51.4, 38.9 (2C), 34.1, 32.7, 30.8, 29.23, 29.20, 29.02, 29.00, $27.2\left(2 \times \mathbf{C}\left(\mathbf{C H}_{3}\right)_{3}\right)$, $26.0,25.6,25.0,24.9,18.4,-5.3 \mathrm{ppm} ;$ HRMS (ESI+) for $\mathrm{C}_{33} \mathrm{H}_{64} \mathrm{O}_{7} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$ calculated 623.4314 found: 623.4310 .

(\pm)-erythro-Methyl 16-hydroxyheptadecane-9,10-diyl[bis(2,2-dimethylpropanoate)] oate (S13) Compound S12 ($163 \mathrm{mg}, 0.272 \mathrm{mmol}, 1.0$ equiv.) was dissolved in THF (1.5 mL). A solution of TBAF (1 M in THF) ($1.09 \mathrm{~mL}, 4.0$ equiv.) was added and the mixture was stirred at room temperature for 3 hours. The reaction was quenched by the addition of water (5 mL). Extraction with EtOAc (2 x 10 mL) was performed and the combined organic layers were washed with water $(20 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$. The organic phase was then dried under $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduce pressure. Flash chromatography ($40 \% \mathrm{EtOAc}$ in hexanes) was performed to afford the desired product as a colorless oil ($93 \mathrm{mg}, 70 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.98(\mathrm{~m}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{t}, \mathrm{J}=$ $6.6 \mathrm{~Hz}, 2 \mathrm{H}$), $2.29(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.65-1.50(\mathrm{~m}, 8 \mathrm{H}), 1.45-1.30(\mathrm{~m}, 16 \mathrm{H}), 1.22(\mathrm{~s}, 18 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.8$ (2C), 174.3, 73.2 (2C), 62.9, 51.4, 38.9 (2C), 34.0, 32.6, 30.8, 30.7, 29.2, 29.1, 29.01, 29.00, $27.2\left(2 \times \mathbf{C}\left(\mathbf{C H}_{3}\right)_{3}\right), 25.5,25.0,24.9 \mathrm{ppm}$; HRMS (ESI+) for $\mathrm{C}_{27} \mathrm{H}_{51} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+}$calculated 487.3629 found: 487.3652

(\pm)-erythro-16-Hydroxyheptadecane-9,10-diyl[bis(2,2-dimethylpropanoate)]oic acid (S14) Compound S13 ($93 \mathrm{mg}, 0.191 \mathrm{mmol}, 1.0$ equiv.) was dissolved in THF (2.0 mL). LiOH ($16 \mathrm{mg}, 0.382 \mathrm{mmol}, 2.0$ equiv.) was dissolved in water $(0.5 \mathrm{~mL})$ and added to the THF solution of $\mathbf{S 1 3}$. The solution was stirred at $50{ }^{\circ} \mathrm{C}$ for 3 hours. The reaction mixture was cooled down to room temperature and HCl 1 M was added until the mixture was neutralized ($\mathrm{pH}=7$). Extraction with EtOAc (3 X 5 mL) was performed and the combined organic phases were washed with brine $(15 \mathrm{~mL})$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to afford the desired product as a colorless oil ($52 \mathrm{mg}, 58 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.99-4.96(\mathrm{~m}, 2 \mathrm{H}), 3.63(\mathrm{t}, \mathrm{J}=$ $6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.64-1.23(\mathrm{~m}, 24 \mathrm{H}), 1.21(\mathrm{~s}, 18 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.9,177.9$ (2C), 73.2 (2C), $62.8,38.9$ (2C), 33.9, 32.4, 30.7, 30.6, 29.0 (2C), 28.9, 28.8, $27.2\left(2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.4,24.9,24.6 \mathrm{ppm}$; HRMS (ESI+) for $\mathrm{C}_{26} \mathrm{H}_{48} \mathrm{O}_{7} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}$calculated 495.3292 found: 495.3306 .

Methyl 3-(21-hydroxyheneicosan-1-yn-1-yl)benzoate (S15) Methyl 3-iodobenzoate (218 $\mathrm{mg}, 0.832 \mathrm{mmol}, 1.0$ equiv.) was dissolved in tetrahydrofuran ($5 \mathrm{~mL}, 0.2 \mathrm{M}$). $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(29 \mathrm{mg}, 0.042 \mathrm{mmol}, 0.05$ equiv.) and $\mathrm{CuI}(8.0 \mathrm{mg}, 0.042 \mathrm{mmol}, 0.05$ equiv.) were added to the solution and the reaction mixture was purged under N_{2} for 5 minutes. Triethylamine ($0.69 \mathrm{~mL}, 4.99 \mathrm{mmol}, 6.0$ equiv.) and the alkyne ($256 \mathrm{mg}, 0.832 \mathrm{mmol}, 1.0$ eq) were added and the reaction mixture was stirred at room temperature for 18 h . Silica (\sim 5 mL) was added and the slurry was concentrated under reduce pressure. Flash chromatography (5 to 20% EtOAc in hexanes) was performed to afford the desired product ($261 \mathrm{mg}, 71 \%$) as a yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.07$ (dd, $J=1.6$ $\mathrm{Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.93 (dd, $J=7.6 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.56$ (ddd, $J=7.6 \mathrm{~Hz}, 7.6 \mathrm{~Hz}$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{dd}, J=7.6 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.41$ ($\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.65-1.52(\mathrm{~m}, 4 \mathrm{H}), 1.48-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{~m}, 28 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.6,135.7,132.7,130.2,128.4,128.3,124.5,91.6,79.6,63.1,52.2$, 32.8, 29.7 (4C), 29.62, 29.59, 29.58, 29.5, 29.4, 29.1, 28.9, 28.6, 25.7, 19.4 ppm; HRMS $(\mathrm{ESI}+)$ for $\mathrm{C}_{29} \mathrm{H}_{47} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$calculated: 443.3520 found: 443.3520 .

3-(21-Hydroxyheneicosan-1-yn-1-yl)benzoic acid (S16) The methyl ester S15 (100 mg , $0.226 \mathrm{mmol}, 1.0$ equiv.) was dissolved in THF (4.0 mL) . LiOH ($38 \mathrm{mg}, 0.903 \mathrm{mmol}, 4.0$ equiv.) was dissolved in water (1.0 mL) and added to the previous mixture. The solution was stirred at reflux for 4 hours. The reaction mixture was cooled down to room temperature and HCl 1 M was added until the mixture was neutralized ($\mathrm{pH}=7$). Extraction with EtOAc (3 X 5 mL) was performed and the combined organic phases were washed with brine $(15 \mathrm{~mL})$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to afford the desired product as white solid ($94 \mathrm{mg}, 97 \%$).(Note: Seco acid S16 is highly insoluble in CDCl_{3} which made it difficult to obtain quality ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.12(\mathrm{~s}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, \mathrm{~J}=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{dd}, J=7.7 \mathrm{~Hz}, 7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $2 \mathrm{H}), 1.64-1.58(\mathrm{~m}, 4 \mathrm{H}), 1.52-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.22(\mathrm{~m}, 26 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (175 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 168.4,136.3,133.2,129.2,129.0,128.4,124.7,91.8,79.5,63.2,32.7,29.64$, 29.63, 29.62, 29.61, 29.60 (2C), 29.58 (2C) 29.6, 29.55, 29.47, 29.4, 29.1, 28.9, 28.6,
25.7, 19.4 ppm ; HRMS (ESI +) for $\mathrm{C}_{28} \mathrm{H}_{44} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$calculated: 451.3191 found: 451.3183.

86 \%
20-Hydroxyicosa-10,12-diynoic acid (S17) The macrolactone ${ }^{14}$ ($150 \mathrm{mg}, 0.47 \mathrm{mmol}, 1.0$ equiv) was dissolved in tetrahydrofuran (8.0 mL). $\mathrm{LiOH}(79 \mathrm{mg}, 1.88 \mathrm{mmol}, 4.0$ equiv.) was added as dissolved in water $(2.0 \mathrm{~mL})$ and added to the previous mixture. The solution was stirred at reflux for 18 hours. The reaction mixture was cooled down to room temperature and HCl 1 M was added until the mixture was neutralized $(\mathrm{pH}=7)$. Extraction with EtOAc ($3 \times 10 \mathrm{~mL}$) was performed and the combined organic phases were washed with brine (25 mL). The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to afford the desired product as a white solid ($130 \mathrm{mg}, 86 \%$). (Note: Seco acid $\mathbf{S 1 7}$ is highly insoluble in CDCl_{3} which made it difficult to obtain quality ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.46(\mathrm{bs}, \mathrm{OH}), 3.66(\mathrm{t}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H})$, 2.45-2.32 (m, 2H), $2.25(\mathrm{t}, \mathrm{J}=5.6 \mathrm{~Hz}, 4 \mathrm{H}), 1.72-1.46(\mathrm{~m}, 6 \mathrm{H}), 1.43-1.22(\mathrm{~m}, 16 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 179.6, 77.42 (2C), 65.3 (2C), 63.0, 33.9, 32.6, 29.7, 29.0 (2C), 28.9, 28.8, 28.7, 28.2 (2C), 25.5, 24.6, 24.5, 19.2 ppm ; HRMS (ESI+) for $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{O}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+}$calculated: 321.2426 found: 321.2424.

Methyl (15-hydroxypentadecanoyl)-L-isoleucinate (S18) The isoleucine salt (500 mg , $2.75 \mathrm{mmol}, 1.2$ equiv.) and $\mathrm{Et}_{3} \mathrm{~N}\left(0.86 \mathrm{~mL}, 6.18 \mathrm{mmol}, 2.7\right.$ equiv.) were added in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(10 \mathrm{~mL})$ and the mixture was stirred at room temperature upon complete dissolution. 15-(tert-butyldimethylsilyloxy)pentadecanoic acid was added ($854 \mathrm{mg}, 2.29 \mathrm{mmol}, 1.0$ equiv.) to the solution followed by $\mathrm{HOBt}(464 \mathrm{mg}, 3.44 \mathrm{mmol}, 1.5$ equiv.) and $\mathrm{EDC} \bullet \mathrm{HCl}$ ($660 \mathrm{mg}, 3.44 \mathrm{mmol}, 1.5$ equiv.) and the mixture was stirred at room temperature for 18 hours. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and washed with a $5 \% \mathrm{w} / \mathrm{w}$ citric acid aqueous solution $(10 \mathrm{~mL})$ and a NaHCO_{3} saturated aqueous solution $(10 \mathrm{~mL})$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (10 to 40% EtOAc in hexanes) was performed to afford the in-situ TBSdeprotected product ($640 \mathrm{mg}, 73 \%$) as a white solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.08$
$(\mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}(\mathrm{NH})), 4.59(\mathrm{dd}, \mathrm{J}=8.7 \mathrm{~Hz}, 5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}$, $2 \mathrm{H}), 2.20(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.90(\mathrm{br}, \mathrm{s}, 1 \mathrm{H}(\mathrm{OH})$), 1.89-1.80 (m, 1H), 1.65-1.50 (m, 4H), $1.48-1.35(\mathrm{~m}, 1 \mathrm{H}), 1.34-1.20(\mathrm{~m}, 20 \mathrm{H}), 1.19-1.05(\mathrm{~m}, 1 \mathrm{H}), 0.92-0.86(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.9,172.7,62.8,56.1,51.9,37.9,36.6,32.7,29.5$ (2C), 29.4 (3C), 29.35, 29.33, 29.2, 29.1, 25.7, 25.6, 25.1., 15.3, 11.4 ppm ; HRMS (ESI+) for $\mathrm{C}_{22} \mathrm{H}_{44} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$calculated 386.3265 found: 386.3282 .

(15-hydroxypentadecanoyl)-L-isoleucine (S19) The methyl ester S18 (527 mg, 1.37 mmol, 1.0 equiv.) was dissolved in THF (20 mL). $\mathrm{LiOH}(230 \mathrm{mg}, 548 \mathrm{mmol}, 4.0$ equiv.) was dissolved in $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and was added to the previous solution. The reaction mixture was stirred at $50{ }^{\circ} \mathrm{C}$ for 18 hours and was then cooled down to room temperature. HCl 1 M was added until the mixture was neutralized ($\mathrm{pH}=7$). Extraction with EtOAc ($3 \times 25 \mathrm{~mL}$) was performed and the combined organic phases were washed with brine (100 mL). The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to afford the desired product as a white solid ($421 \mathrm{mg}, 83 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.17$ (d, J=8.5 Hz, 1H (NH)), 5.64 (br s, 1H (OH), $4.61(\mathrm{dd}, \mathrm{J}=8.5 \mathrm{~Hz}, 4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.66$ (t, J= $6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.25(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.97-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.45(\mathrm{~m}, 5 \mathrm{H}), 1.40-1.12(\mathrm{~m}$, $21 \mathrm{H}), 0.95-0.92(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.8,173.8,63.0,56.4$, 37.6, 36.6, 32.6, 29.5, 29.43 (2C), 29.41 (2C), 29.32, 29.30, 29.1, 29.1, 25.6 (2C), 25.1, 15.4, 11.6 ppm ; HRMS (ESI+) for $\mathrm{C}_{21} \mathrm{H}_{40} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$calculated 370.2963 found: 370.2962 .

Methyl (15-hydroxypendecyl)-L-phenylalanyl-L-phenylalaninate (S20) Phe-Phe methyl ester TFA salt ($343 \mathrm{mg}, 0.780 \mathrm{mmol}, 1.0$ equiv.) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$. 15-(tert-butyldimethylsilyloxy)pentadecanoic acid was added ($290 \mathrm{mg}, 0.780 \mathrm{mmol}, 1.0$ equiv.) to the solution followed by $\mathrm{HOBt}(158 \mathrm{mg}, 1.17 \mathrm{mmol}, 1.5$ equiv.), $\mathrm{EDC} \bullet \mathrm{HCl}$ ($225 \mathrm{mg}, 1.17 \mathrm{mmol}, 1.5$ equiv.) and $\mathrm{Et}_{3} \mathrm{~N}(0.33 \mathrm{~mL}, 2.34 \mathrm{mmol}, 3.0$ equiv.) and the
mixture was stirred at room temperature for 18 hours. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and washed with a $5 \% \mathrm{w} / \mathrm{w}$ citric acid aqueous solution (10 mL) and a NaHCO_{3} saturated aqueous solution $(10 \mathrm{~mL})$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (30% to $100 \% \mathrm{EtOAc}$ in hexanes) was performed to afford the desired product ($237 \mathrm{mg}, 54 \%$) as a white solid. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.29-7.18(\mathrm{~m}, 8 \mathrm{H}), 7.02-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.39(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{~d}$, $\mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{ddd}, \mathrm{J}=7.4 \mathrm{~Hz}, 7.4 \mathrm{~Hz}, 6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{ddd}, \mathrm{J}=7.6 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 7.1 \mathrm{~Hz}$, 1 H), $3.68(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.10-2.94(\mathrm{~m}, 4 \mathrm{H}), 2.11(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.60-1.48(\mathrm{~m}$, $4 \mathrm{H})$, 1.37-1.20 (m, 20H) ppm; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 173.0,171.2,170.6,136.4,135.6$, 129.3, 129.1, 128.54, 128.50, 127.1, 126.9, 63.0, 54.0, 53.4, 52.2, 38.0, 37.8, 36.5, 32.8, 29.51 (2C), 29.49 (2C), 29.37, 29.35, 29.2, 29.1, 25.7, 25.5 ppm ; HRMS (ESI +) for $\mathrm{C}_{34} \mathrm{H}_{51} \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{M}+$ H^{+}) calculated mass : 567.3793, found 567.3805 .

(15-hydroxypentadecyl)-L-phenylalanyl-L-phenylalanine (S21) The methyl ester S20 ($210 \mathrm{mg}, 0.371 \mathrm{mmol}, 1.0$ equiv.) was dissolved in THF (6 mL). LiOH ($62 \mathrm{mg}, 1.48$ mmol, 4.0 equiv.) was dissolved in $\mathrm{H}_{2} \mathrm{O}(1.5 \mathrm{~mL})$ and was added to the previous solution. The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for 18 hours and was then cooled down to room temperature. HCl 1 M was added until the mixture was neutralized $(\mathrm{pH}=7)$. Extraction with EtOAc ($3 \times 10 \mathrm{~mL}$) was performed and the combined organic phases were washed with brine $(20 \mathrm{~mL})$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to afford the desired product as a white solid ($120 \mathrm{mg}, 59 \%$). ${ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 400 \mathrm{MHz}\right) \delta 12.71(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.19(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-$ 7.15 (m, 10H), 4.55 (ddd, J= $7.8 \mathrm{~Hz}, 5.2 \mathrm{~Hz}, 4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.44 (ddd, J= $10.4 \mathrm{~Hz}, 8.7 \mathrm{~Hz}, 8.4 \mathrm{~Hz}$, 1 H), 4.33 (br s, 1H), 3.37 (t, J=6.6 Hz, 2H), 3.08 (dd, J= $13.9 \mathrm{~Hz}, 5.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.98 (dd, J= 14.0 $\mathrm{Hz}, 4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{dd}, \mathrm{J}=13.6 \mathrm{~Hz}, 8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{dd}, \mathrm{J}=13.9 \mathrm{~Hz}, 10.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{t}, \mathrm{J}=$ $6.8 \mathrm{~Hz}, 2 \mathrm{H}$), 1.41-1.02 (m, 24 H) ppm; ${ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.{ }_{6}, 100 \mathrm{MHz}\right) \delta 172.7,171.9,171.5$, 138.0, 137.4, 129.1 (2C), 128.1, 127.8, 126.4, 126.1, 60.7, 53.4, 37.4, 36.6, 35.2, 32.5, 29.11, 29.06 (2C), 29.04 (3C), 28.97, 28.89, 28.8, 28.4, 25.5, 25.2 ppm ; HRMS (ESI +) for $\mathrm{C}_{33} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$calculated mass : 575.3455, found 575.3460.

SYNTHESIS OF MACROLACTONES

1-Oxacyclohexadecan-2-one (2) 15-Hydroxypentadecanoic acid ($26 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv.) was dissolved in toluene $(20 \mathrm{~mL}, 5 \mathrm{mM}) . \mathrm{Hf}(\mathrm{OTf})_{4}(3.9 \mathrm{mg}, 0.005 \mathrm{mmol}, 0.05$ equiv.) was added to the solution and the reaction mixture heated to $110^{\circ} \mathrm{C}$. The reaction mixture was stirred at this temperature for 24 h . After cooling down to room temperature, silica gel ($\sim 1 \mathrm{~mL}$) was added and the slurry was concentrated under reduce pressure and purified by flash chromatography ($3 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes) to the desired product as a white solid ($20 \mathrm{mg}, 83 \%$). Spectral data were in accordance with those previously reported in the literature. ${ }^{9}$

1-Oxacyclotridecan-2-one (4) 12-Hydroxypentadecanoic acid ($22 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv.) was dissolved in toluene ($20 \mathrm{~mL}, 5 \mathrm{mM}$). $\mathrm{Hf}(\mathrm{OTf})_{4}(3.9 \mathrm{mg}, 0.005 \mathrm{mmol}$, 0.05 equiv.) was added to the solution and the reaction mixture heated to $110{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at this temperature for 24 h . After cooling down to room temperature, silica gel ($\sim 1 \mathrm{~mL}$) was added and the slurry was concentrated under reduced pressure and purified by flash chromatography ($3 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes) to afford the desired product as a colorless oil ($11 \mathrm{mg}, 56 \%$). Spectral data were in accordance with those previously reported in the literature. ${ }^{9}$

1-Oxacycloheptadecan-2-one (5)16-Hydroxypentadecanoic acid ($27 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv.) was dissolved in toluene ($20 \mathrm{~mL}, 5 \mathrm{mM}$). $\mathrm{Hf}(\mathrm{OTf})_{4}(3.9 \mathrm{mg}, 0.005 \mathrm{mmol}$, 0.05 equiv.) was added to the solution and the reaction mixture heated to $110{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at this temperature for 24 h . After cooling down to room temperature, silica gel ($\sim 1 \mathrm{~mL}$) was added and the slurry was concentrated under reduce pressure and purified by flash chromatography ($3 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes) to afford the desired
product as a white solid ($22 \mathrm{mg}, 87 \%$). Spectral data were in accordance with those previously reported in the literature. ${ }^{9}$

3-Oxabiclyclo[11.3.1]heptadeca-1(17),13,15-trien-2-one (6): 3-(9-Hydroxynon-1yl)benzoic acid ($26 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv.) was dissolved in toluene ($20 \mathrm{~mL}, 5 \mathrm{mM}$). $\mathrm{Hf}(\mathrm{OTf})_{4}(3.9 \mathrm{mg}, 0.005 \mathrm{mmol}, 0.05$ equiv.) was added to the solution and the reaction mixture heated to $110{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at this temperature for 24 h . After cooling down to room temperature, silica gel ($\sim 1 \mathrm{~mL}$) was added and the slurry was concentrated under reduce pressure and purified by flash chromatography (3 \% EtOAc in hexanes) to the desired product as a white solid ($22 \mathrm{mg}, 90 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.02(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.35(\mathrm{~m}, 2 \mathrm{H}), 4.38(\mathrm{t}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H})$, $2.81(\mathrm{t}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.82-1.78(\mathrm{~m}, 4 \mathrm{H}), 1.66-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.52(\mathrm{~m}, 6 \mathrm{H}), 1.38-1.36(\mathrm{~m}$, $2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.7,141.2,133.8,130.4,128.6,128.4,126.5$, 66.3, 31.8, 28.5, 27.9, 27.5, 26.7, 26.6, 25.1, 24.3 ppm ; HRMS (ESI +) for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{O}_{2}[\mathrm{M}+$ $\mathrm{H}]^{+}$calculated: 247.1693 found: 247.1693.

3-Oxabicyclo[13.3.1]nonadeca-1(19),15,17-trien-2-one (7) : 3-(11-Hydroxyundec-1yl)benzoic acid ($29 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv.) was dissolved in toluene ($20 \mathrm{~mL}, 5 \mathrm{mM}$). $\mathrm{Hf}(\mathrm{OTf})_{4}(3.9 \mathrm{mg}, 0.005 \mathrm{mmol}, 0.05$ equiv.) was added to the solution and the reaction mixture heated to $110{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at this temperature for 24 h . After cooling down to room temperature, silica gel ($\sim 1 \mathrm{~mL}$) was added and the slurry was concentrated under reduced pressure and purified by flash chromatography ($3 \% \mathrm{EtOAc}$ in hexanes) to afford the desired product ($23 \mathrm{mg}, 84 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.92-7.90 (m, 2H), 7.39-7.35 (m, 2H), $4.38(\mathrm{t}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.75(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H})$, 1.80-1.68 (m, 4H), 1.58-1.52 (m, 2H), 1.31-1.24 (m, 12H) ppm; ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 166.8,142.1,133.6,130.3,129.1,128.5,127.2,65.0,33.4,28.5,27.51,27.48$, 27.45, 27.37, 27.3, 26.9, 25.6, 25.4 ppm ; HRMS (ESI +) for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calculated: 275.2006 found: 275.2005 .

3-Oxobicyclo[13.3.1]nonadeca-1(19)-15,17-trien-13-yn-2-one (8) The hydroxyacid S6 ($29 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv.) was dissolved in toluene ($20 \mathrm{~mL}, 5 \mathrm{mM}$). $\mathrm{Hf}(\mathrm{OTf})_{4}(3.9$ $\mathrm{mg}, 0.005 \mathrm{mmol}, 0.05$ equiv.) was added to the solution and the reaction mixture heated to $110{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at this temperature for 24 h . After cooling down to room temperature, silica gel ($\sim 1 \mathrm{~mL}$) was added and the slurry was concentrated under reduced pressure and purified by flash chromatography ($3 \% \mathrm{EtOAc}$ in hexanes) to afford the desired product ($15 \mathrm{mg}, 56 \%$) as a white solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.30$ (dd, $J=1.5 \mathrm{~Hz}, 1.5 \mathrm{~Hz} 1 \mathrm{H}), 7.92(\mathrm{dd}, J=7.7 \mathrm{~Hz}, 7.7 \mathrm{~Hz}, 1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.49(\mathrm{~m}, 1 \mathrm{H})$, 7.34-7.42 (m, 1H), 4.34-4.41 (m, 2H), 2.41-2.48 (m, 2H), 1.82-1.80 (m, 2H), 1.77-1.65 $(\mathrm{m}, 8 \mathrm{H}), 1.57-1.41(\mathrm{~m}, 4 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=165.8,136.2,132.5$, 130.6, 128.6, 128.1, 124.5, 93.6, 82.1, 66.4, 30.6, 30.1, 29.9, 28.8, 28.4, 28.2, 27.7, 19.2 ppm; HRMS (ESI) m/z calculated for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 271.1693$; found 271.1693.

3-Oxobicyclo[23.3.1]nonacosa-1(29)-25,27-trien-23-yn-2-one (9) The hydroxyacid S16 ($43 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv.) was dissolved in toluene ($20 \mathrm{~mL}, 5 \mathrm{mM}$). $\mathrm{Hf}(\mathrm{OTf})_{4}(3.9$ $\mathrm{mg}, 0.005 \mathrm{mmol}, 0.05$ equiv.) was added to the solution and the reaction mixture heated to $110^{\circ} \mathrm{C}$. The reaction mixture was stirred at this temperature for 24 h . After cooling down to room temperature, silica gel ($\sim 1 \mathrm{~mL}$) was added and the slurry was concentrated under reduced pressure and purified by flash chromatography (3% EtOAc in hexanes) to afford the desired product as a white solid ($26 \mathrm{mg}, 63 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.06$ (dd, $J=1.6 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.96 (ddd, $J=8.0 \mathrm{~Hz}, 8.0 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.57 (ddd, $J=8.4$ $\mathrm{Hz}, 8.4 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{dd}, J=8.0 \mathrm{~Hz}, 8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.82-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.35(\mathrm{~m}, 4 \mathrm{H}), 1.27(\mathrm{~m}, 26 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.2,135.5,132.5,130.7,128.7,128.3,124.4,91.5$, 79.9, 65.3, 29.6, 28.96, 28.91, 28.84, 28.82, 28.80, 28.79, 28.77, 28.74, 28.72 (2C), 28.70, 28.65, 28.60, 28.4, 28.3, 26.0, 19.3 ppm ; HRMS (ESI+) for $\mathrm{C}_{28} \mathrm{H}_{42} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calculated: 411.3258 found: 411.3249 .

(9Z)-isoambrettolide (10) (Z)-16-Hydroxyhexadec-9-enoic acid ($27 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv.) was dissolved in toluene $(20 \mathrm{~mL}, 5 \mathrm{mM}) . \mathrm{Hf}(\mathrm{OTf})_{4}(3.9 \mathrm{mg}, 0.005 \mathrm{mmol}, 0.05$ equiv.) was added to the solution and the reaction mixture heated to $110{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at this temperature for 24 h . After cooling down to room temperature, silica gel ($\sim 1 \mathrm{~mL}$) was added and the slurry was concentrated under reduced pressure and purified by flash chromatography ($3 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes) to afford the desired product as a white solid ($18 \mathrm{mg}, 72 \%$). Spectral data were in accordance with those previously reported in the literature ${ }^{15}$.

(\pm)-erythro-10,11-Bis[2,2-(dimethyl)propanoate]oxaheptadecan-2-one (11) The hydroxyacid $\mathbf{S 1 4}$ ($47 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv.) was dissolved in toluene ($20 \mathrm{~mL}, 5 \mathrm{mM}$). $\mathrm{Hf}(\mathrm{OTf})_{4}(3.9 \mathrm{mg}, 0.005 \mathrm{mmol}, 0.05$ equiv.) was added to the solution and the reaction mixture heated to $110^{\circ} \mathrm{C}$. The reaction mixture was stirred at this temperature for 24 h . After cooling down to room temperature, silica gel ($\sim 1 \mathrm{~mL}$) was added and the slurry was concentrated under reduced pressure and purified by flash chromatography ($10 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes) to afford the desired product as a colorless oil ($33 \mathrm{mg}, 73 \%$). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.10-5.05(\mathrm{~m}, 1 \mathrm{H}), 5.03-4.98(\mathrm{~m}, 1 \mathrm{H}), 4.18-4.10(\mathrm{~m}, 2 \mathrm{H}), 2.34(\mathrm{t}, \mathrm{J}=6.4$ $\mathrm{Hz}, 2 \mathrm{H}), 1.75-1.25(\mathrm{~m}, 22 \mathrm{H}), 1.19(\mathrm{~s}, 9 \mathrm{H}), 1.18(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $177.8,177.7,174.0,73.2,72.3,64.1,38.8,34.6,30.0,29.2,28.6,28.1,28.0,27.7,27.5$, $27.22,27.20,25.6,25.0,23.7,22.7 \mathrm{ppm}$; HRMS (ESI+) for $\mathrm{C}_{26} \mathrm{H}_{46} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ calculated: 477.3187 found: 477.3166 .

86 \%
Oxacycloicosa-10,12-diyne-2-one (12) The hydroxyacid S17 (32 mg, $0.10 \mathrm{mmol}, 1.0$ equiv.) was dissolved in toluene ($20 \mathrm{~mL}, 5 \mathrm{mM}$). $\mathrm{Hf}(\mathrm{OTf})_{4}(3.9 \mathrm{mg}, 0.005 \mathrm{mmol}, 0.05$ equiv.) was added to the solution and the reaction mixture heated to $110^{\circ} \mathrm{C}$. The reaction mixture was stirred at this temperature for 24 h . After cooling down to room temperature, silica gel ($\sim 1 \mathrm{~mL}$) was added and the slurry was concentrated under reduced pressure and
purified by flash chromatography ($10 \% \mathrm{EtOAc}$ in hexanes) to afford the macrocycle as a white solid ($26 \mathrm{mg}, 86 \%$). Spectral data were in accordance with those previously reported in the literature ${ }^{14}$.

(S)-3-((S)-sec-butyl)-1-oxa-4-azacyclononadecane-2,5-dione (13)The hydroxyacid S19 ($64 \mathrm{mg}, 0.173 \mathrm{mmol}, 1.0$ equiv.) was dissolved in toluene ($35 \mathrm{~mL}, 5 \mathrm{mM}$). $\mathrm{Hf}(\mathrm{OTf})_{4}(6.7$ $\mathrm{mg}, 0.0087 \mathrm{mmol}, 0.05$ equiv.) was added to the solution and the reaction mixture heated to $110{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at this temperature for 24 h . After cooling down to room temperature, silica gel ($\sim 2 \mathrm{~mL}$) was added and the slurry was concentrated under reduced pressure and purified by flash chromatography (10 to 50% EtOAc in hexanes) to afford the macrocycle as a white solid ($45 \mathrm{mg}, 74 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 5.90(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}(\mathrm{NH})), 4.61(\mathrm{dd}, \mathrm{J}=8.7 \mathrm{~Hz}, 5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.40-4.34(\mathrm{~m}$, 1H), 3.99 (dt, J= $10.7 \mathrm{~Hz}, 5.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.33 (dt, J= $14.6 \mathrm{~Hz}, 6.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.19-2.12 (m, $1 \mathrm{H}), 1.92-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.50(\mathrm{~m}, 4 \mathrm{H}), 1.49-1.38(\mathrm{~m}, 1 \mathrm{H}), 1.37-1.20(\mathrm{~m}, 20 \mathrm{H}), 1.20-$ $1.10(\mathrm{~m}, 1 \mathrm{H}), 0.95-0.91(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.7,171.8,64.9$, 56.6, 38.0, 36.5, 28.5, 28.09, 28.07, 28.04, 28.01, 27.9, 27.5, 27.1, 27.0, 25.20, 25.19, $25.0,15.4,11.5 \mathrm{ppm}$; HRMS (ESI+) for $\mathrm{C}_{21} \mathrm{H}_{40} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$calculated: 354.3003 found: 354.3008 .

(3S, 6S)-3,6-dibenzyl-1-oxa-4,7-diazacyclodocosane-2,5-dione (14) The hydroxyacid (S21) $(65 \mathrm{mg}, 0.1119 \mathrm{mmol}, 1.0$ equiv.) was dissolved in toluene ($24 \mathrm{~mL}, 5 \mathrm{mM}$). $\mathrm{Hf}(\mathrm{OTf})_{4}(4.6 \mathrm{mg}, 0.0056 \mathrm{mmol}, 0.05$ equiv.) was added to the solution and the reaction mixture heated to $110^{\circ} \mathrm{C}$. The reaction mixture was stirred at this temperature for 24 h . After cooling down to room temperature, silica gel ($\sim 2 \mathrm{~mL}$) was added and the slurry was concentrated under reduced pressure and purified by flash chromatography (10 to 60% EtOAc in hexanes) to afford the macrocycle as a white solid ($37 \mathrm{mg}, 57 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.37-7.19(\mathrm{~m}, 8 \mathrm{H}), 6.92-6.89(\mathrm{~m}, 2 \mathrm{H}), 6.26(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.83(\mathrm{~d}, \mathrm{~J}=7.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.67-4.58$ (m, 2H), 4.23-4.15 (m, 1H), 4.12-4.05 (m, 1H), 3.22-2.90 (m, 4H), 2.20-2.05
$(\mathrm{m}, 6 \mathrm{H}), 1.63-1.54(\mathrm{~m}, 8 \mathrm{H}), 1.28-1.25(\mathrm{~m}, 16 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 173.3,170.8$, 170.2, 136.8, 135.8, 129.5, 129.2, 128.8, 128.4, 127.2, 127.1, 65.4, 54.1, 53.9, 37.6, 37.4, 36.3, 28.09 (3C), 28.05 (2C), 28.01 (3C), 27.96, 27.91, 25.1 (2C) ppm; ; HRMS (ESI +) for $\mathrm{C}_{33} \mathrm{H}_{47} \mathrm{~N}_{2} \mathrm{O}_{4}$ $\left(\mathrm{M}+\mathrm{H}^{+}\right)$calculated mass : 535.3530, found 535.3529.

SYNTHESIS OF ESTERIFICATION PRECURSORS

8-(methoxymethoxy)octanol (S22) 1,8-octanediol ($1.00 \mathrm{~g}, 6.84 \mathrm{mmol}, 1.00$ equiv.) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(34 \mathrm{~mL})$. $\mathrm{iPr}_{2} \mathrm{NEt}(2.38 \mathrm{~mL}, 13.7 \mathrm{mmol}, 2.00$ equiv.) was added followed by $\mathrm{MOMCl}(0.52 \mathrm{~mL}, 6.8 \mathrm{mmol}, 1.0$ equiv.). The reaction mixture was stirred at room temperature for 24 h and was subsequently quenched by the addition of a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(25 \mathrm{~mL})$. Extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 30 \mathrm{~mL})$ was performed and the combined organic layers were washed with water $(30 \mathrm{~mL})$ and brine $(30 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic phase was the concentrated under reduced pressure and flash chromatography (20% EtOAc in hexanes) was performed to afford the product as a colorless oil ($775 \mathrm{mg}, 60 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.61(\mathrm{~s}, 2 \mathrm{H}), 3.62(\mathrm{t}, \mathrm{J}=6.6$ $\mathrm{Hz}, 2 \mathrm{H}), 3.51(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{br} \mathrm{s}, 1 \mathrm{H}(\mathrm{OH})$), $1.70-1.50(\mathrm{~m}, 4 \mathrm{H})$, 1.35-1.25 (m, 8H) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 96.3,67.8,62.9,55.0,32.7,29.6$, 29.32, 29.30, 26.1, 25.6 ppm ; HRMS (ESI +) for $\mathrm{C}_{10} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$calculated 213.1461 found: 213.1469 .

SYNTHESIS OF ESTERS

General procedure A: An open oven-dried sealable tube was charged with the carboxylic acid ($1.00 \mathrm{mmol}, 1.00$ equiv.) and dissolved in toluene ($1 \mathrm{~mL}, 1 \mathrm{M}$). $\mathrm{Hf}(\mathrm{OTf})_{4}(38 \mathrm{mg}$, $0.050 \mathrm{mmol}, 0.050$ equiv.) and the alcohol ($1.0 \mathrm{mmol}, 1.0$ equiv.) were then added to the mixture and the tube was sealed. The reaction mixture was stirred at $110^{\circ} \mathrm{C}$ for 24 h and then cooled down to room temperature. The tube was opened and silica gel ($\sim 5 \mathrm{~mL}$) was added. The slurry was concentrated under reduced pressure and purified by flash chromatography.

General procedure B: An open oven-dried sealable tube was charged with the carboxylic acid ($1.00 \mathrm{mmol}, 1.00$ equiv.), $\mathrm{iPr}_{2} \mathrm{NEt}(0.087 \mathrm{~mL}, 050 \mathrm{mmol}, 0.5$ equiv.) and dissolved toluene $(1 \mathrm{~mL}, 1 \mathrm{M}) . \mathrm{Hf}(\mathrm{OTf})_{4}(38 \mathrm{mg}, 0.050 \mathrm{mmol}, 0.050$ equiv. $)$ and the alcohol (1.0 mmol, 1.0 equiv.) were then added to the mixture and the tube was sealed. The reaction mixture was stirred at $110{ }^{\circ} \mathrm{C}$ for 24 h and then cooled down to room temperature. The tube was opened and silica gel ($\sim 5 \mathrm{~mL}$) was added. The slurry was concentrated under reduced pressure and purified by flash chromatography.

Pentyl pentanoate (15) Following general procedure A, flash chromatography (5 \% EtOAc in hexanes) afforded the product as a colorless oil ($171 \mathrm{mg},>99 \%$). Spectral data were in accordance with those previously reported in the literature. ${ }^{16}$

Pentyl ((tert-butyloxy)carbonyl)glycinate (16) Following general procedure A, flash chromatography ($15 \% \mathrm{EtOAc}$ in hexanes) was performed to afford the product as a colorless oil ($176 \mathrm{mg}, 72 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.09(\mathrm{br} \mathrm{s}, 1 \mathrm{H}(\mathrm{NH})$), $4.11(\mathrm{t}$, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.65-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.40(\mathrm{~m}, 11 \mathrm{H}), 1.35-1.28$ $(\mathrm{m}, 4 \mathrm{H}), 0.88(\mathrm{t}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.4,155.7,79.8$, 65.4, 42.3, 28.2, 28.1, 27.8, 22.2, 13.8 ppm ; HRMS (ESI +) for $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ calculated 268.1519 found: 268.1525 .

Pentyl N-(p-tosyl)glycinate (17) Following general procedure A, flash chromatography ($10 \% \mathrm{EtOAc}$ in hexanes) was performed to afford the product as a white solid (224 mg , 75%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.75(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $5.23(\mathrm{br} \mathrm{s}, 1 \mathrm{H}(\mathrm{NH})), 4.01(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 1.55-$ $1.50(\mathrm{~m}, 2 \mathrm{H}), 1.30-1.22(\mathrm{~m}, 4 \mathrm{H}), 0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta 168.8,143.7,136.2,129.7,127.2,65.9,44.1,28.0,27.7,22.1,21.4,13.8 \mathrm{ppm} ;$ HRMS (ESI+) for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$calculated 300.1264 found: 300.1278 .

Pentyl ((benzyloxy)carbonyl)glycinate (18) Following general procedure A, flash chromatography (10% EtOAc in hexanes) was performed to afford the product as a colorless oil ($220 \mathrm{mg}, 79 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33-7.28(\mathrm{~m}, 5 \mathrm{H}), 5.64$ (br s, $1 \mathrm{H}(\mathrm{NH})), 5.10(\mathrm{~s}, 2 \mathrm{H}), 4.11(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}), 3.92(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.65-1.55(\mathrm{~m}, 2 \mathrm{H})$, 1.35-1.25 (m, 4H), $0.90(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 170.0, $156.2,136.1,128.2,127.85,127.79,66.7,65.3,42.5,27.9,27.7,22.0,13.7 \mathrm{ppm}$; $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$calculated 280.1543 found: 280.1551.

8-(tert-Butyldimethylsilyloxy)octyl pentanoate (19) Following general procedure B, flash chromatography ($5 \% \mathrm{EtOAc}$ in hexanes) afforded the product as a colorless oil (178 $\mathrm{mg}, 66 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4 ., 06(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.61(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H})$, $2.31(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.64-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.30(\mathrm{~m}, 8 \mathrm{H}), 0.94-$ $0.90(\mathrm{~m}, 12 \mathrm{H}), 0.05(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.9,64.3,63.2,34.1$, $32.8,29.3,29.2,28.6,27.1,26.0,25.9,25.7,22.2,18.3,13.7,-5.3 \mathrm{ppm}$; HRMS (ESI+) for $\mathrm{C}_{19} \mathrm{H}_{41} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$calculated 345.2820 found: 345.2831 .

8-(Triisopropylsilyloxy)octyl pentanoate (20) Following general procedure B, flash chromatography ($5 \% \mathrm{EtOAc}$ in hexanes) afforded the product as a colorless oil (217 mg , $62 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.06(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.68(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.30$ $(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.65-1.50(\mathrm{~m}, 6 \mathrm{H}), 1.35-1.25(\mathrm{~m}, 10 \mathrm{H}), 1.09-1.06(\mathrm{~m}, 21 \mathrm{H}), 0.92(\mathrm{t}, \mathrm{J}=$ $7.3 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.9,64.3,63.4,34.1,33.0,29.3,29.2$, 28.6, 27.1, 25.9, 25.7, 22.2, 17.9, 13.6, 12.0 ppm ; HRMS (ESI +) for $\mathrm{C}_{22} \mathrm{H}_{46} \mathrm{O}_{3} \mathrm{SiNa}[\mathrm{M}+$ $\mathrm{Na}]^{+}$calculated 409.3108 found: 409.3128.

77%

8-(Methoxymethoxy)octyl pentanoate (21) Following general procedure B, flash chromatography (10% EtOAc in hexanes) afforded the product as a colorless oil (210 mg , $77 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.58(\mathrm{~s}, 2 \mathrm{H}), 4.02(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.48(\mathrm{t}, \mathrm{J}=$ $6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.60-1.50(\mathrm{~m}, 6 \mathrm{H}), 1.35-1.25(\mathrm{~m}, 10 \mathrm{H})$, $0.88(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.8,96.3,67.7,64.2,54.9$, 34.0, 29.6, 29.2, 29.1, 28.5, 27.0, 26.0, 25.8, 22.2, 13.6 ppm ; HRMS (ESI+) for $\mathrm{C}_{15} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$calculated 297.2036 found: 297.2047.

8-acetoxyoctyl pentanoate (22) Following general procedure B, flash chromatography (5 \% EtOAc in hexanes) afforded the product as a colorless oil ($129 \mathrm{mg}, 89 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.035(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.030(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.28(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.63-1.55(\mathrm{~m}, 6 \mathrm{H}), 1.35-1.25(\mathrm{~m}, 10 \mathrm{H}), 0.89(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.9,171.1,64.5,64.2,34.0,29.03,29.02,28.53,28,49,27.0$, 25.8, 25.7, 22.2, 20.9, 13.6 ppm ; HRMS (ESI +) for $\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{O}_{4}\left(\mathrm{M}+\mathrm{H}^{+}\right)$calculated mass: 273.2060, found 273.2059.

92 \%

Pentyl 12-oxooctadecanoate (23) Following general procedure A, flash chromatography (5% EtOAc in hexanes) afforded the product as a colorless solid ($170 \mathrm{mg}, 89 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.04(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.38-2.34(\mathrm{~m}, 4 \mathrm{H}), 2.27(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 1.70-1.50(\mathrm{~m}, 8 \mathrm{H}), 1.45-1.20(\mathrm{~m}, 22 \mathrm{H}), 0.90-0.84(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 211.6,173.9,64.3,42.7,34.3,31.6,29.3$ (3C), 29.2 (2C), 29.1, 28.9, 28.3, 28.0, 24.9, 23.81, 28.78, 22.4, 22.3, 13.95, 13.89 ppm ; HRMS (ESI+) for $\mathrm{C}_{23} \mathrm{H}_{45} \mathrm{O}_{3}(\mathrm{M}+$ H^{+}) calculated mass: 369.3363 , found 369.3369 .

(2,2-Dimethyl-1,3-dioxolan-4-yl)methyl pentanoate (24) Following general procedure B , flash chromatography ($15 \% \mathrm{EtOAc}$ in hexanes) afforded the product as a colorless oil $(130 \mathrm{mg}, 61 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.35-4.27(\mathrm{~m}, 1 \mathrm{H}), 4.19-4.05(\mathrm{~m}, 3 \mathrm{H})$, $3.74(\mathrm{dd}, J=8.4 \mathrm{~Hz}, 6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.66-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H})$, $1.40-1.30(\mathrm{~m}, 5 \mathrm{H}), 0.91(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.6$, 109.8, 73.6, 66.3, 64.5, 33.8, 26.9, 29.6, 25.4, 22.2, 13.6 ppm ; HRMS (ESI+) for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$calculated 239.1254 found: 239.1255.

78%

2-propargyl benzoate (25) Following general procedure A, flash chromatography (10 \% EtOAc in hexanes) afforded the product as a colorless oil ($124 \mathrm{mg}, 78 \%$). Spectral data were in accordance with those previously reported in the literature. ${ }^{17}$

Pentyl furan-3-carboxylate (26) Following general procedure A, flash chromatography ($10 \% \mathrm{EtOAc}$ in hexanes) afforded the product as a colorless oil ($144 \mathrm{mg}, 75 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{t}$,
$J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.70-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.30(\mathrm{~m}, 4 \mathrm{H}), 0.90(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.1,147.5,143.6,119.6,109.8,64.5,28.3,28.1,22.3,13.9$ ppm; HRMS (ESI+) for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$calculated 183.1016 found: 183.1015 .

Pentyl thiophen-3-carboxylate (27) Following general procedure A, flash chromatography ($10 \% \mathrm{EtOAc}$ in hexanes) afforded the product as a colorless oil $(177 \mathrm{mg}$, 89 \%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.10(\mathrm{dd}, J=3.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{dd}, J=5.0,1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.29(\mathrm{dd}, J=5.0,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.77-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.45-$ $1.30(\mathrm{~m}, 4 \mathrm{H}), 0.93(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.8,134.0$, $132.4,127.9,125.8,64.8,28.4,28.1,22.3,13.9 \mathrm{ppm}$; HRMS (ESI+) for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+$ $\mathrm{H}]^{+}$calculated 199.0787 found: 199.0790.

Pentan-3-yl pentanoate (36) Following general procedure A using $\mathrm{Dy}(\mathrm{OTf})_{3}(30.5 \mathrm{mg}$, $0.050 \mathrm{mmol}, 0.05$ equiv.), flash chromatography ($5 \% \mathrm{EtOAc}$ in hexanes) afforded the product as a colorless oil ($103 \mathrm{mg}, 60 \%$). Spectral data were in accordance with those previously reported in the literature. ${ }^{18}$

Nonyl benzoate (37) An open oven-dried sealable tube was charged with the benzamide acid ($121 \mathrm{mg} \mathrm{mL}, 1.00 \mathrm{mmol}, 1.00$ equiv.) and dissolved in toluene $(1 \mathrm{~mL}, 1 \mathrm{M}) . \mathrm{Hf}(\mathrm{OTf})_{4}$ ($38 \mathrm{mg}, 0.050 \mathrm{mmol}, 0.050$ equiv.) and nonanol ($0.174 \mathrm{~mL}, 1.0 \mathrm{mmol}, 1.0$ equiv.) were then added to the mixture and the tube was sealed. The reaction mixture was stirred at 110 ${ }^{\circ} \mathrm{C}$ for 24 h and then cooled down to room temperature. The tube was opened and silica gel ($\sim 5 \mathrm{~mL}$) was added. The slurry was concentrated under reduced pressure and purified by flash chromatography (5% EtOAc in hexanes) to afford the product as a colorless oil (145 $\mathrm{mg}, 58 \%)$. Spectral data were in accordance with those previously reported in the literature. ${ }^{19}$

TABULAR DATA

Table S1: Optimization of a Lewis acid catalyzed macrolactonization process.

1	AlCl_{3}	0	16	$\mathrm{ZrCl}_{4}(\mathrm{THF})_{2}$	13
2	$\mathrm{MgBr}_{2} \cdot \mathrm{OEt}_{2}$	0	17	$\mathrm{Zr}_{2}(\mathrm{tfacac})_{3}$	0
3	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	36	18	CuBr_{2}	0
4	$\mathrm{~B}(\mathrm{OH})_{3}$	0	19	CuCl_{2}	0
5	$\mathrm{TiCp}_{2} \mathrm{Cl}_{2}$	0	20	$\mathrm{Cu}(\mathrm{OAc})_{2}$	25
6	TiCl_{4}	0	21	$\mathrm{Cu}(\mathrm{OTf})_{2}$	54
7	$\mathrm{Fe}(\mathrm{acac})_{3}$	0	22	$\mathrm{Sc}(\mathrm{OTf})_{3}$	45
8	FeCl_{3}	0	23	$\mathrm{Sm}(\mathrm{OTf})_{3}$	21
9	$\mathrm{Fe}(\mathrm{OTf})_{2}$	0	24	$\mathrm{Dy}(\mathrm{OTf})_{3}$	13
10	$\mathrm{Fe}(\mathrm{OTf})_{3}$	0	25	$\mathrm{Yb}(\mathrm{OTf})_{3}$	38
11	$\mathrm{Pd}(\mathrm{TFA})_{3}$	0	26	$\mathrm{Hf}(\mathrm{OTf})_{4}$	83
12	$\mathrm{Ni}(\mathrm{acac})_{2}$	0	26	$\mathrm{HfCl}(\mathrm{THF})_{2}$	17
13	AgOTf	22	27	$\mathrm{Hf}(\mathrm{On}-\mathrm{Bu})_{4}$	12
14	$\mathrm{Zn}(\mathrm{OTf})_{2}$	0			
15	$\mathrm{Co}(\mathrm{OAc})_{2}$	0			

${ }^{a}$ Isolated yields following silica gel chromatography. Remaining mass balance is unreacted $\mathbf{1}$ unless otherwise noted. ${ }^{b}$ No trace of $\mathbf{1}$ was isolated. ${ }^{c}$ Polymerization of $\mathbf{1}$ is observed. ${ }^{d}$ Lower catalyst loadings provided lower yields. When $2.5 \mathrm{~mol} \% \mathrm{Hf}(\mathrm{OTf})_{4}$ was used 72% of $\mathbf{2}$ and 27% re-isolated $\mathbf{1}$ were obtained.

Table S2: Macrolactonization in the presence of excess water.

	Catalyst	Yield 2 $(\%)^{a}$		Catalyst	Yield 2 $(\%)^{a}$
1	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	17	7	$\mathrm{Sm}(\mathrm{OTf})_{3}$	0
2	AgOTf	4	8	$\mathrm{Yb}(\mathrm{OTf})_{3}$	0
3	$\mathrm{Cu}(\mathrm{OAc})_{2}$	0	9	$\mathrm{HfCl}_{4}(\mathrm{THF})_{2}$	0
4	$\mathrm{ZrCl}_{4}(\mathrm{THF})_{2}$	13	10	$\mathrm{Hf}(\mathrm{On}-\mathrm{Bu})_{4}$	0
5	$\mathrm{Cu}(\mathrm{OTf})_{2}$	<5	11	$\mathrm{Hf}(\mathrm{OTf})_{4}$	$83{ }^{\text {b }}$
6	$\mathrm{Sc}(\mathrm{OTf})_{3}$	0	12	$\mathrm{Dy}(\mathrm{OTf})_{3}$	0

${ }^{a}$ Isolated yields following silica gel chromatography. ${ }^{b}$ Increasing the water content to 400 equiv. resulted in a decrease in yield to 23% of 2.
Table S3: Ring-opening (hydrolysis) of macrolactone 2 under Lewis acid conditions.

	Catalyst	$\mathbf{2 (\%) ^ { a }}$		Catalyst	2 (\%) ${ }^{a}$
1	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	99	7	$\mathrm{Sm}(\mathrm{OTf})_{3}$	96
2	AgOTf	83	8	$\mathrm{Yb}(\mathrm{OTf})_{3}$	83
3	$\mathrm{Cu}(\mathrm{OAc})_{2}$	67	9	$\mathrm{HfCl}_{4}(\mathrm{THF})_{2}$	50
4	$\mathrm{ZrCl}_{4}(\mathrm{THF})_{2}$	99	10	$\mathrm{Hf}(\mathrm{On}-\mathrm{Bu})_{4}$	99
5	$\mathrm{Cu}(\mathrm{OTf})_{2}$	67	11	$\mathrm{Hf}(\mathrm{OTf})_{4}$	88^{b}
6	$\mathrm{Sc}(\mathrm{OTf})_{3}$	58	12	$\mathrm{Dy}(\mathrm{OTf})_{3}$	99

${ }^{a} \overline{\text { Yields of recovered } 2 \text { following silica gel chromatography. }{ }^{b} \text { The re-isolated yield of } 2}$ remained high ($>80 \%$) even when using 1000 equiv. of added $\mathrm{H}_{2} \mathrm{O}$.

COMPETITION EXPERIMENTS

Competition experiments confirmed selectivity for primary alcohols over secondary alcohols and amines.

Forcing conditions with secondary or tertiary alcohols did not afford the desired esters.

SPECTRAL DATA

Compound S1

Compound S2

Compound S3

Compound S5

Compound S10

Compound S11

Compound S12

Compound S13

Compound S15

Compound S16

Compound S18

Compound S19

Compound S20

Compound S21

Compound S22

Compound 6

Compound 7

Compound 8

Compound 9

Compound 11

Compound 13

Compound 14

Compound 20

Compound 21

Compound 24

Compound 26

Compound 17

Compound 18

Compound 16

Compound 22

Compound 23

${ }^{1}$ Shriver, D. F.; Drezdon, M. A. in The Manipulation of Air-Sensitive Compounds; Wiley-VCH: New York, 1986.
${ }^{2}$ Leatherbarrow, R. J.; Mo, B.; Offermann, D. A.; Sejberg, J. J. P.; Spivey, A. C.; McKendrick, J. E.; Beavil, A. J.; Holdom, M. D.; Sutton, B. J.; Helm, B. A. J. Org. Chem. 2012, 77, 3197-3214.
${ }^{3}$ Keinan, E.; Sinha, S. C.; Yazbak, A. J. Org. Chem. 1998, 63, 5863-5868.
${ }^{4}$ Naka, H.; Nishimura, T.; Noyori, R.; Tachinami, T.; Ushimaru, R. J. Am. Chem. Soc. 2013, 135, $50-53$.
${ }^{5}$ Lumbroso, A.; Abermil, N.; Breit, B. Chem. Sci. 2012, 3, 789.
${ }^{6}$ Delgado, M.; Martin, J. D. J. Org. Chem. 1999, 64, 4798-4816.
${ }^{7}$ Zhu, H.; Wickenden, J. G.; Campbell, N. E.; Leung, J. C. T.; Johnson, K. M.; Sammis, G. M. Org. Lett. 2009, 11, 2019, 2022.
${ }^{8}$ Karmee, S. K. Synth. Comm. 2013, 43, 450-455.
${ }^{9}$ Morales-Serna, J. A.; Sanchez, E.; Velazquez, R.; Bernal, J.; Garcia-Rios, E.; Gavino, R.; Negron-Silva, G.; Cardenas, J. Org. Biomol. Chem. 2010, 8, 4940-4948.
${ }^{10}$ Joshi, K. B.; Verma, S. Angew. Chem., Int. Ed. 2008, 47, 2860-2863.
${ }^{11}$ Framis, V.; Camps, F.; Clapes, P. Tetrahedron Lett. 2004, 45, 5031-5033.
${ }^{12}$ Abraham, S.; Lan, Y.; Lam, R. S. H.; Grahame, D. A. S.; Kim, J. J. H.; Weiss, R. G.; Rogers, M. A. Langmuir 2012, 28, 4955-4964.
${ }^{13}$ Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923-2925.
${ }^{14}$ Bédard, A.-C.; Collins, S. K. J. Am. Chem. Soc 2011, 133, 19976-19981.
${ }^{15}$ Delphis, C. Cis-isoambrettolide of High Degree of Isomer Purity and Use Thereof 2001, Patent No.: US 6,284,900 B1.
${ }^{16}$ Solvhoj, A; Madsen, R. Organometallics 2011, 30, 6044-6048.
${ }^{17}$ Pereira, G. R.; Brandao, G. C.; Arantes, L. M.; de Oliveira Jr., H. A.; de Paula, R. C.; do Nascimento, M. F. A.; dos Santos, F. M.; da Rocha, R. K.; Lopez, J. C. D.; de Oliveira, A. B. Eur. J. Med. Chem. 2014, 73, 295-309.
${ }^{18}$ Srimani, D.; Balarama, E.; Gnanaprakasam, B.; Ben-David, Y.; Milstein, D. Adv. Synth. Cat. 2012, 354 (13), 2403-2406.
${ }^{19}$ Ahmad, I.; Malik, A.; Afza, N.; Anis, I.; Fatima, I.; Nawaz, S. A.; Tareen, R. B.; Iqbal, C. Zeitschrift fur Naturforschung - Section B Journal of Chemical Sciences 2005, 60, 2403-2406.

