Supporting Information

Rh/ZrP₂O₇ as an Efficient Automotive Catalyst for NO_x Reduction under Slightly Lean Conditions

Yuki Nagao,^{†‡}* Yunosuke Nakahara,[†] Takahiro Sato,[†] Hironori Iwakura,[†] Shoya Takeshita,[‡] Saki Minami,[‡] Hiroshi Yoshida,^{‡§} Masato Machida^{‡§}*

[†] Catalysts Strategic Division, Engineered Materials Sector, Mitsui Mining & Smelting Co., Ltd.

[‡] Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University

[§] Unit of Elements Strategy Initiative for Catalysts & Batteries, Kyoto University

* E-mail: machida@kumamoto-u.ac.jp; y_nagao@mitsui-kinzoku.co.jp

Figure S1. XRD patterns of as-prepared a) AlPO₄, b) YPO₄, c) ZrP_2O_7 and d) LaPO₄. **Figure S2.** *In situ* diffuse reflectance FT-IR spectra of adsorbed species formed on ZrP_2O_7 and ZrO_2 powders in gas mixtures of a) 0.8% C₃H₆, 0.5% O₂, and He balance (rich), b) 0.35% C₃H₆ + 3.25% O₂, and He balance (lean), and c) 1% C₃H₆ and He balance at 300 °C.

Figure S3. Fourier transforms of k^3 -weighted Rh K-edge EXAFS of supported Rh catalysts without phase shift corrections.

Figure S4. FT-IR differential spectra of pyridine adsorbed onto ZrP_2O_7 and ZrO_2 at 50 °C and subsequent evacuation.

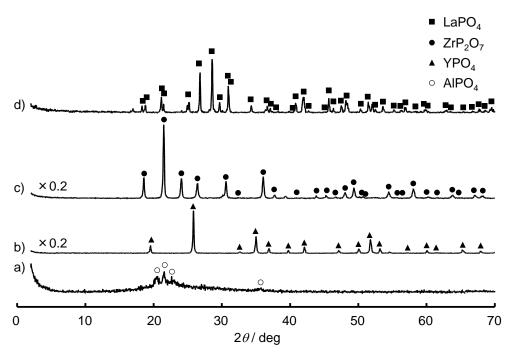

Table S1. Composition of simulated exhaust gas mixtures (NO-CO-C₃H₆-O₂-H₂-CO₂-H₂O) for $14.2 \leq A/F \leq 14.8$ in test mode A.

Table S2. Composition of simulated exhaust gas mixtures (NO-CO-C₃H₆-O₂-CO₂-H₂O) for 14.6 \leq A/F \leq 15.3 in test mode B.

Table S3. Composition of simulated exhaust gas mixtures (NO-CO-O₂-CO₂-H₂O) for $14.6 \leq A/F \leq 15.3$ in test mode C.

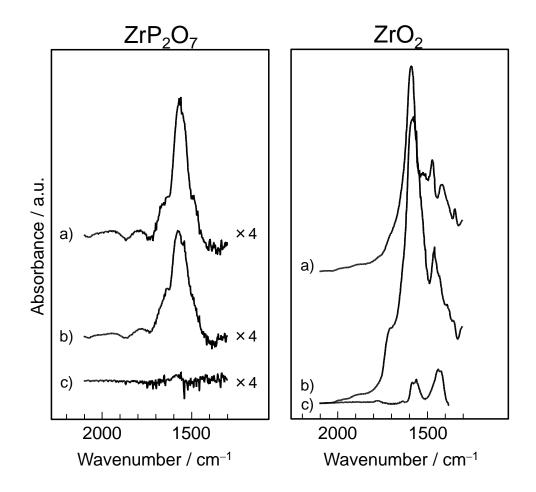

Table S4. Composition of simulated exhaust gas mixtures (NO-C₃H₆-O₂-CO₂-H₂O) for 14.6 \leq A/F \leq 15.3 in test mode D.

Table S5. Fitting results of Rh K-edge EXAFS analysis

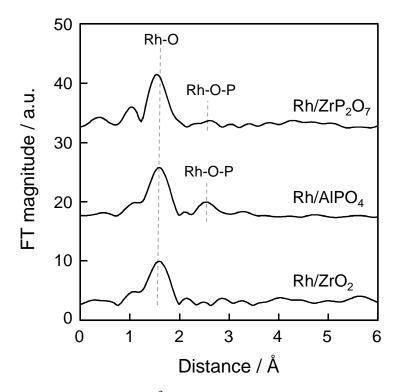

Figure S1. XRD patterns of as-prepared a) AlPO₄, b) YPO₄, c) ZrP₂O₇ and d) LaPO₄.

Figure S1 shows the XRD patterns of four types of metal phosphates after calcination. Diffraction peaks are attributed to monophasic metal phosphates with hexagonal AlPO₄ tridymite-type structure ($P6_3mc$, 5.097 Å, 8.344 Å)¹, tetragonal YPO₄ with xenotime-type structure, ($I4_1/amdZ$, 6.882 Å, 6.882 Å, 6.018 Å)², monoclinic LaPO₄ with monazite-type structure, ($P12_1/n$ 1, 6.825 Å, 7.057 Å, 6.482 Å, 103.2°)³ and cubic ZrP₂O₇ (Pa-3, 8.293 Å)⁴.

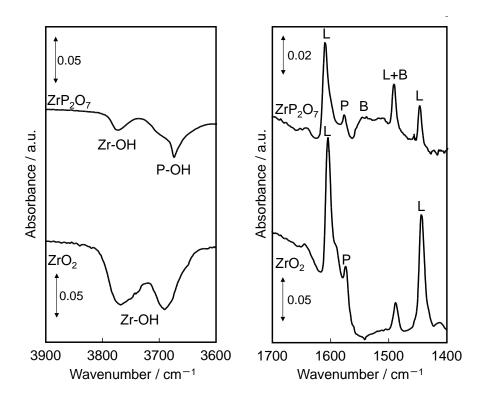


Figure S2. In situ diffuse reflectance FT-IR spectra of adsorbed species formed on ZrP_2O_7 and ZrO_2 powders in gas mixtures of a) 0.8% C_3H_6 , 0.5% O_2 , and He balance (rich), b) 0.35% C_3H_6 + 3.25% O_2 , and He balance (lean), and c) 1% C_3H_6 and He balance at 300 °C.

 C_3H_6 was adsorbed onto ZrP_2O_7 and ZrO_2 in the presence of O_2 to form aldehyde and carboxylate species, respectively. The intensity of observed bands for these Rh-unloaded support materials were as the same as those for Rh-loaded catalysts (**Figures 8** and 9). These partially oxidized species were therefore adsorbed on the surface of support materials. Also, these species were formed in a similar way under the rich and lean conditions (a and b), but they were significantly decreased in the absence of O_2 (c).

Figure S3. Fourier transforms of k^3 -weighted Rh K-edge EXAFS of supported Rh catalysts without phase shift corrections. See **Table S5** for curve-fitting results and explanation of this figure.

Figure S4. FT-IR differential spectra of pyridine adsorbed onto ZrP_2O_7 and ZrO_2 at 50 °C and subsequent evacuation. P: physisorbed pyridine, B: pyridine chemisorbed on Brønsted acid sites, L: pyridine chemisorbed on Lewis acid sites.

In situ FT-IR of pyridine chemisorption was carried out at 50 °C after dehydration at 500 °C in a He flow. The spectra obtained after subsequent evacuation at 50 °C were referenced to that of the sample in a He flow just before pyridine adsorption. ZrP_2O_7 yielded bands assignable to pyridine coordinated to Lewis acid site (L: 1610, 1492, and 1448 cm⁻¹) and to pyridinium ion adsorbed on Brønsted site (B: 1545, 1492 cm⁻¹) as reported by several researchers.⁵⁻⁷ Simultaneously with the appearance of these bands, P–OH (3676 cm⁻¹) and Zr–OH (3773 cm⁻¹) bands were weakened. These results suggest that surface hydroxyl groups of ZrP_2O_7 act as both Lewis and Brønsted acid sites. By contrast, ZrO_2 yielded bands assigned only to Lewis acid site (L: 1604, 1488, and 1444 cm⁻¹).

$\Pi_2(0)$ for $\Pi_2(2)$ and Π_2								
A/F ^a	14.2	14.4	14.5	14.6	14.7	14.8		
CO / %	1.00	0.73	0.60	0.50	0.44	0.40		
H ₂ / %	0.33	0.24	0.20	0.17	0.15	0.13		
C ₃ H ₆ / ppm	400	Ļ	\leftarrow	\leftarrow	Ļ	\leftarrow		
NO / ppm	500	\leftarrow	\leftarrow	\leftarrow	\leftarrow	\leftarrow		
O ₂ / %	0.35	0.41	0.45	0.50	0.55	0.60		
CO ₂ / %	14.0	Ļ	\leftarrow	\leftarrow	Ļ	\leftarrow		
H ₂ O / %	10.0	\leftarrow	\leftarrow	\leftarrow	\leftarrow	\leftarrow		

Table S1. Composition of simulated exhaust gas mixtures (NO-CO-C₃H₆-O₂-H₂-CO₂-H₂O) for $14.2 \leq A/F \leq 14.8$ in test mode A.

^a The A/F value is calculated according to the literature⁸ using following excess oxygen ratio of the simulated gas feed.

Amount of oxygen in gas feed Excess oxygen ratio $= \frac{\text{Amount of oxygen in gas recu$ $Amount of oxygen required for complete oxidation}$

 $=\frac{2 \times p_{02} + p_{N0}}{9 \times p_{C3H6} + p_{C0} + p_{H2}}$

Table S2. Composition of simulated exhaust gas mixtures (NO-CO-C₃H₆-O₂-CO₂-H₂O) for 14.6 \leq A/F \leq 15.3 in test mode B.

A/F ^a	14.6	14.7	14.8	14.9	15.0	15.1	15.2	15.3
CO / %	0.69	0.59	0.52	0.52	0.50	0.40	0.40	0.30
C ₃ H ₆ / ppm	400	\leftarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\leftarrow
NO / ppm	500	\leftarrow	Ļ	\downarrow	\downarrow	\downarrow	\downarrow	\leftarrow
O ₂ / %	0.50	0.55	0.60	0.69	0.81	0.84	0.96	0.93
CO ₂ / %	14.0	\leftarrow	Ļ	\downarrow	\downarrow	Ļ	Ļ	\leftarrow
H ₂ O / %	10.0	\leftarrow						

^{*a*} See Table S1.

A/F ^a	14.6	14.7	14.8	14.9	15.0	15.1	15.2	15.3
CO / %	0.69	0.59	0.52	0.52	0.50	0.40	0.40	0.30
NO / ppm	500	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	\leftarrow
O ₂ / %	0.32	0.33	0.34	0.40	0.46	0.43	0.49	0.41
CO ₂ / %	14.0	Ļ	Ļ	Ļ	\downarrow	Ļ	Ļ	\downarrow
H_2O / %	10.0	\leftarrow						

Table S3. Composition of simulated exhaust gas mixtures (NO-CO-O₂-CO₂-H₂O) for $14.6 \le A/F \le 15.3$ in test mode C.

^{*a*} See **Table S1**.

Table S4. Composition of simulated exhaust gas mixtures (NO-C₃H₆-O₂-CO₂-H₂O) for 14.6 \leq A/F \leq 15.3 in test mode D.

A/F ^a	14.6	14.7	14.8	14.9	15.0	15.1	15.2	15.3
C ₃ H ₆ / ppm	400	Ļ	\leftarrow	Ļ	Ļ	Ļ	Ļ	\leftarrow
NO / ppm	500	Ļ	\leftarrow	Ļ	Ļ	Ļ	Ļ	\leftarrow
O ₂ / %	0.16	0.19	0.23	0.27	0.33	0.38	0.44	0.50
CO ₂ / %	14.0	Ļ	\leftarrow	Ļ	Ļ	Ļ	\downarrow	\downarrow
H ₂ O / %	10.0	\leftarrow	\leftarrow	\leftarrow	\downarrow	\leftarrow	\leftarrow	\leftarrow

^{*a*} See **Table S1**.

Catalust	chall	CN ^{<i>a</i>}	r/Å ^b	$\sigma^2 / 10^{-2} \text{ Å}^{2 c}$
Catalyst	shell	(±0.2)	(±0.03)	(±0.02)
2 wt% Rh/ZrP ₂ O ₇	Rh–O	2.9	2.01	0.15
	Rh–O–P	0.89	3.12	0.36
0.4 wt% Rh/AlPO ₄	Rh–O	4.3	2.03	0.15
	Rh–Rh	0.32	2.69	0.42
	Rh–O–P	1.4	3.09	0.36
	Rh–O–Rh	0.19	3.54	0.64
2 wt% Rh/ZrO ₂	Rh–O	4.1	2.04	0.15

Table S5. Fitting results of Rh K-edge EXAFS analysis

Interval of *k*-space to *r*-space of FT is 3.0-14.0 Å⁻¹.

^{*a*}Coordination number.

^{*b*}Atomic distance.

^{*c*}Debye-Waller factor.

Table S5 compares structural parameters for as-prepared supported Rh catalysts in **Figure S3**. These catalysts showed an intense peak at approximately 0.2 nm, which was attributed to a Rh–O shell of Rh oxide (Rh₂O₃). In the second coordination, a contribution of the Rh–O–P shell was observed in Rh/ZrP₂O₇ as was reported for Rh/AlPO₄ in our previous manuscript,⁹ suggesting interfacial bonding between Rh and a phosphate unit (PO₄). Rh/ZrO₂ showed no such second coordination shell indicative of the metal-support bonding. The higher Rh loading (2 wt%) was used for Zr-containing supports to ensure the to ensure a good quality signal for curve fitting analysis.

References

1. Graetsch, H. A., Acta Crystallogr. Sect. C: Cryst. Struct. Commun. 2001, 57, 665-667.

 Milligan, W. O.; Mullica, D. F.; Beall, G. W.; Boatner, L. A., *Inorg. Chim. Acta* 1982, 60, 39-43.

3. Mullica, D. F.; Milligan, W. O.; Grossie, D. A.; Beall, G. W.; Boatner, L. A., *Inorg. Chim. Acta* **1984**, *95*, 231-236.

4. Khosrovani, N.; Korthuis, V.; Sleight, A. W.; Vogt, T., *Inorg. Chem.* **1996**, *35*, 485-489.

5. Peri, J. B., Discussions of the Faraday Society 1971, 52, 55-65.

Bautista, F. M.; Campelo, J. M.; Garcia, A.; Luna, D.; Marinas, J. M.; Romero,
A. A.; Navio, J. A.; Macias, M., *J. Catal.* **1994**, *145*, 107-125.

Campelo, J. M.; Garcia, A.; Herencia, J. F.; Luna, D.; Marinas, J. M.; Romero,
A. A., J. Catal. 1995, 151, 307-314.

8. Tanaka, H.; Hirotoshi, F.; Takahashi, I., SAE Paper 1995, 950256.

9. Machida, M.; Minami, S.; Ikeue, K.; Hinokuma, S.; Nagao, Y.; Sato, T.; Nakahara, Y., *Chem. Mater.* **2014**, *26*, 5799-5805.