Supporting Information

Hysteretic Gas and Vapor Sorption in Flexible Interpenetrated Lanthanide-based Metal-Organic Frameworks with Coordinated Molecular Gating via Reversible Single-Crystal to Single-Crystal

Transformation for Enhanced Selectivity

Chao Wang^{1,3,4}, Liangjun Li¹, Jon G. Bell², Xiaoxia Lv^{3,5}, Sifu Tang³, Xuebo Zhao^{1,3*}, K Mark Thomas²*

¹Research Institute of Unconventional Petroleum and Renewable Energy, China

University of Petroleum (East China), Qingdao, Shandong 266580, P. R. China

E-mail: zhaoxuebo@upc.edu.cn

²Wolfson Northern Carbon Reduction Laboratories, School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne, NE1 7RU,

U.K.

E-mail: mark.thomas@ncl.ac.uk

³Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, P. R. China

⁴University of Chinese Academy of Sciences, Beijing 100049, P. R. China

⁵ Present Address: School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China

Contents

S1. Synthetic, Spectroscopic and Analytical Information	4
1.1 Materials used	
1.2 Ligand Synthetic Scheme	5
1.3 Ligand and MOF Characterization Data	5
S2. X-ray Diffraction Studies and Additional Crystal Structure	
Information	11
2.1 Powder X-Ray Diffraction (PXRD) profiles	11
2.2 Single Crystal X-ray Diffraction	12
2.3 Additional Crystal Structure Descriptions	16
2.4 Heat Treatment Studies	22
2.5 Guest Exchange Studies	23
S3. Field Emission Scanning Electron Microscopy (FESEM)	28
S4. Thermogravimetric Analysis (TGA)	29
S5. Additional Gas Adsorption Isotherms	31
S6. Thermodynamic Analysis for CO ₂ Adsorption	33
S7. Adsorption Kinetics Analysis for Temperature Swing	
Adsorption of CO ₂	36
S8. Kinetic Profiles for CO ₂ Adsorption on <i>cis</i> -Sm(HL)(DMA) ₂	
at 273 K	40
S9. Comparison of Kinetic Profiles for Fickian Diffusion into	
a Sphere, Cylinder and One-dimensional Slab with the	
Stretched Exponential Model	42

S10. Calculation of Adsorption/Desorption Selectivity for Gas					
Adsorption	45				
S11. Calculation of Henry's Law Selectivity for Gas Adsorption	47				
References	50				

S1. Synthetic, Spectroscopic and Analytical Information

1.1. Materials used

All reagents and solvents were commercially available and used without further purification. 5-aminoisophthalic acid (98%), 1,2,4,5-tetramethylbenzene (99%) and lanthanide(III) nitrate hexahydrate $(Ln(NO_3)_3 \cdot 6H_2O)$, where Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Er) (99.9%) were purchased from Aladdin Industrial Inc. Methanol (\geq 99.5%), ethanol (\geq 99.7%), acetonitrile (\geq 99.0%), diethyl ether $(\geq 99.7\%)$, dichloromethane $(\geq 99.5\%)$, chloroform $(\geq 99.0\%)$ and 1,2-dichloroethane (≥ 99.0%), tetrahydrofuran (≥ 99.0%), N,N-dimethylacetamide (DMA) (\geq 99.0%), sulfuric acid (95.0% ~ 98.0%), hydrochloride acid (36.0%), nitric acid (65.0%), sodium hydroxide (\geq 96.0%), sodium sulfate (anhydrous, \geq 99.0%), sodium carbonate anhydrous (\geq 99.8%), potassium carbonate anhydrous (\geq 99.0%) and paraformaldehyde (\geq 95.0%) were purchased from Sinopharm Chemical Reagent Co., Ltd. Hydrobromic acid (33 wt% solution in acetic acid) was purchased from J&K Scientific Ltd. High purity (99.999%) gases of nitrogen, oxygen, hydrogen, methane and carbon dioxide and solid carbon dioxide were provided by Qingdao Heli Gas Co., Ltd, China.

1.2 Ligand Synthetic Scheme

Scheme S1. Synthesis of the tetracarboxylate ligand 2 (H₄L).

1.3 Ligand and MOF Characterization

1.3.1 Spectroscopic Data for the Ligand and Precursors

Figure S1. ¹H NMR spectrum of **1** (*tetraethyl 5,5'-(2,3,5,6-tetramethyl-1,4-phenylene*)*bis(methylene*) *bis(azanediyl) diisophthalate.*) and peak assignments.

Figure S2. ¹H NMR spectrum of 2 (5,5'-(2,3,5,6-tetramethyl-1,4-phenylene) bis (methylene) bis (azanediyl) diisophthalic acid (H_4L)) and peak assignments.

Figure S3. IR spectrum of ligand H₄L.

1.3.2. Characterization Data for the Ln-MOFs

[La(HL)(DMA)₂]·DMA·2H₂O: Yield: 0.050 g (51%) based on H₄L. Elemental analysis for C₄₀H₅₈N₅LaO₁₄ (M_r = 953.80) (%): calcd: H 5.92, C 50.37, N 7.34; found: H 5.52, C 49.79, N 7.33. IR data (KBr, cm⁻¹): 3428 (b), 2920 (w), 2850 (w), 1609 (s), 1540 (s), 1424 (m), 1384 (m), 1283 (w), 1256 (w), 1144 (w), 1097 (w), 1056(w), 1024 (w), 780 (m), 723 (w), 673 (w), 596 (w).

 $[Ce(HL)(DMA)_2] \cdot DMA \cdot 2H_2O$: Yield: 0.040 g (41%) based on H₄L. Elemental analysis for C₄₀H₅₈N₅O₁₄Pr (M_r = 955.01) (%): calcd: H 5.91, C 50.31, N 7.33; found: H 5.68, C 50.18, N 7.25.

 $[Pr(HL)(DMA)_2] \cdot DMA \cdot 2H_2O$: Yield: 0.040 g (41%) based on H₄L. Elemental analysis for C₄₀H₅₈N₅O₁₄Pr (M_r = 955.81) (%): calcd: H 5.91, C 50.26, N 7.33; found: H 5.90, C 50.28, N 7.22.

 $[Nd(HL)(DMA)_2] \cdot DMA \cdot 2H_2O$: Yield: 0.048 g (49%) based on H₄L. Elemental analysis for C₄₀H₅₈N₅O₁₄Nd (M_r = 959.14) (%): calcd: H 5.88, C 50.09, N 7.30; found: H 5.85, C 49.96, N 7.08.

 $[Sm(HL)(DMA)_2] \cdot DMA \cdot 2H_2O$: Yield: 0.039 g (42%) based on H₄L. Elemental analysis for C₄₀H₅₈N₅SmO₁₄ (M_r = 965.26) (%): calcd: H 5.85, C 49.77, N 7.26; found: H 5.51, C 48.75, N 7.12. IR data (KBr, cm⁻¹): 3436 (b), 2917 (w), 2847 (w), 1617 (s), 1537 (s), 1432 (m), 1382 (m), 1283 (w), 1258 (w), 1147 (w), 1099 (w), 1052 (w), 1024 (w), 780 (m), 723 (w), 666 (w), 596 (w).

 $[Eu(HL)(DMA)_2] \cdot DMA \cdot 2H_2O$: Yield: 0.050 g (53%) based on H₄L. Elemental analysis for C₄₀H₅₈N₅O₁₄Eu (M_r = 966.96) (%): calcd: H 5.84, C 49.69, N 7.24; found: H 5.84, C 48.75, N 7.23.

 $[Gd(HL)(DMA)_2]$ ·DMA·2H₂O: Yield: 0.042 g (45%) based on H₄L. Elemental analysis for C₄₀H₅₈N₅O₁₄Gd (M_r = 972.15) (%): calcd: H 5.81, C 49.42, N 7.20; found: H 5.49, C 49.46, N 6.89.

 $[Tb(HL)(DMA)_2] \cdot DMA \cdot 2H_2O$: Yield: 0.043 g (45%) based on H₄L. Elemental analysis for C₄₀H₅₈N₅O₁₄Tb (M_r = 973.82) (%): calcd: H 5.80, C 49.33, N 7.19; found: H 5.64, C 49.52, N 7.02.

 $[Dy(HL)(DMA)_2] \cdot DMA \cdot 2H_2O$: Yield: 0.042 g (44%) based on H₄L. Elemental analysis for C₄₀H₅₈N₅O₁₄Dy (M_r = 977.40) (%): calcd: H 5.78, C 49.15, N 7.17; found: H 5.58, C 49.42, N 7.12.

 $[Er(HL)(DMA)_2] \cdot DMA \cdot 2H_2O$: Yield: 0.045 g (45%) based on H₄L. Elemental analysis for C₄₀H₅₈N₅O₁₄Nd (M_r = 982.16) (%): calcd: H 5.75, C 48.92, N 7.13; found: H 5.31, C 48.82, N 7.00.

Figure S4. IR spectrum of *trans*-[La(HL)(DMA)₂]·DMA·2H₂O.

Figure S5. IR spectrum of *trans*-[Sm(HL)(DMA)₂]·DMA·2H₂O.

S2. X-ray Diffraction Studies and Additional Crystal Structure

Information

2.1 Powder X-Ray Diffraction (PXRD) Profiles of [Ln(HL)(DMA)₂]·DMA·2H₂O where Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy and Er.

(a)

(b)

Figure S6. (a) PXRD simulated and experimental profiles for *trans*-[Sm(HL)(DMA)₂]·DMA·2H₂O and *cis*-[Sm(HL)(DMA)₂](activated), (b) PXRD profiles for the series of iso-structural lanthanide-based metal-organic frameworks (*trans*-[Ln(HL)(DMA)₂]·DMA·2H₂O) where Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy and Er.

2.2 Single Crystal X-ray Diffraction

TableS1.ComparisonofUnitCellParametersfortrans-[La(HL)(DMA)2]·DMA·2H2Otrans-[Sm(HL)(DMA)2]·DMA·2H2Oandtrans-[Tb(HL)(DMA)2]·DMA·2H2Oat293Kobtainedbysingle-crystalX-raydiffraction.

Identific	trans-[La(HL)(DMA) ₂]	trans-[Sm(HL)(DMA) ₂]	trans-[Tb(HL)(DMA) ₂]·
ation	·DMA·2H ₂ O	·DMA·2H ₂ O	$DMA \cdot 2H_2O*$
Code			
Empiric	$C_{36}H_{43}N_4O_{10}La$	$C_{36}H_{43}N_4O_{10}Sm$	$C_{36}H_{43}N_4O_{10}Tb$
al			
formula			
Formula	830.65	842.09	850.66
weight			
Crystal	Monoclinic	Monoclinic	Monoclinic
system			
space	C2/c	C2/c	C2/c
group			
a/Å	32.985(7)	32.84(3)	32.85(5)
b/Å	8.9901(19)	8.998(8)	8.897(14)
c/Å	34.432(7)	34.21(3)	34.21(6)
α/deg.	90.00	90.00	90.00
β/deg.	115.591(2)	115.564(11)	116.49(1)
γ/deg.	90.00	90.00	90.00
V/Å ³	9209(3)	9119(14)	8940(60)

*Only unit cell parameters were collected. Single crystal data were collected for trans-[Sm(HL)(DMA)₂]·DMA·2H₂O and trans-[La(HL)(DMA)₂]·DMA·2H₂O.The emprical formula excludes solvent molecules

<i>trans</i> - $[Sm(HL)(DMA)_2]$ ·DMA·2H ₂ O and <i>cis</i> - $[Sm(HL)(DMA)_2]$ at 293 K.						
Identification code	trans-[Sm(HL)(DMA) ₂] ·DMA·2H ₂ O	cis-[Sm(HL)(DMA) ₂]				
Empirical formula	$C_{36}H_{43}N_4O_{10}Sm$	$C_{36}H_{43}N_4O_{10}Sm$				
Formula weight	842.09	842.09				
Temperature/K	293(2)	293(2)				
Wavelength/Å	0.71073	0.71073				
Crystal system	Monoclinic	Monoclinic				
space group	C2/c	C2/c				
a/Å	32.84(3)	32.14(2)				
b/Å	8.998(8)	9.156(6)				
c/Å	34.21(3)	26.864(18)				
α/deg.	90.00	90.00				
β/deg.	115.564(11)	112.859(7)				
γ/deg.	90.00	90.00				
$V/Å^3$	9119(14)	7285(8)				
Ζ	8	8				
$D_{calcd}/g \cdot cm^{-3}$	1.227	1.536				
Absorption coefficient/mm ⁻¹	1.337	1.674				
F(000)	3432	3432				
Crystal size/mm	0.20 x 0.02 x 0.02	0.20 x 0.02 x 0.02				
θ range for data collection	2.28 to 25.00 °.	1.38 to 25.00 °.				
Limiting indices	$-38 \le h \le 38, -10 \le k \le 10, -40 \le l \le 38$	$\textbf{-38} \leq \textbf{h} \leq \textbf{36}, \textbf{-10} \leq \textbf{k} \leq \textbf{10}, \textbf{-31} \leq \textbf{l}$				
		≤31				
Reflections collected / unique	22613 / 7876 [R(int) = 0.1331]	21958 / 6376 [R(int) = 0.0902]				
Completeness to theta $= 25.00$	98.0 %	99.7 %				
Absorption correction	Semi-empirical from equivalents	Semi-empirical from equivalents				
Max. and min. transmission	0.9737 and 0.7758	0.8504 and 0.7307				
Refinement method	Full-matrix least-squares on F ²	Full-matrix least-squares on F^2				
Data / restraints / parameters	7876 / 652 / 429	6376 / 15 / 433				
Goodness-of-fit on F ²	1.049	1.051				
R_1^a , wR_2^b [I>2 σ (I)]	0.0639, 0.1432	0.0625, 0.1434				
R_1^a , w R_2^b (all data)	0.1228 , 0.1713	0.1113 , 0.1565				
Largest diff. peak and hole /e	1.458 , -1.761	1.058 , -1.231				
Å ⁻³						

The emprical formula excludes solvent molecules for

 $\textit{trans-}[Sm(HL)(DMA)_2] \cdot DMA \cdot 2H_2O$

Table

S2.

Crystal

Data

and

Structure

Refinement

for

Table S3. Crystal Data and Structure Refinement for *trans*- $[Sm(HL)(DMA)_2]$ ·2.8 CH_2Cl_2 at 173 K.

Identification code	trans-[Sm(HL)(DMA) ₂]·2.8CH ₂ Cl ₂
	(173 K)
Empirical formula	C ₃₆ H ₄₃ N ₄ O ₁₀ Sm
Formula weight	842.09
Temperature/K	173(2)
Wavelength/Å	0.71073
Crystal system	Monoclinic
space group	C2/c
a/Å	32.599(5)
b/Å	8.8449(14)
c/Å	34.246(8)
α/deg.	90.00
β/deg.	116.457(2)
γ/deg.	90.00
V/Å ³	8840(3) Å ³
Ζ	8
$D_{calcd}/g \cdot cm^{-3}$	1.265
Absorption coefficient/mm ⁻¹	1.380
F(000)	3432
Crystal size/mm	0.20 x 0.02 x 0.02
θ range for data collection	1.33 to 25.00 °.
Limiting indices	$-38 \le h \le 38, -10 \le k \le 10, -33 \le 1$
	≤40
Reflections collected / unique	29796 / 7782 [R(int) = 0.0933]
Completeness to theta $= 25.00$	100.0 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9096 and 0.7699
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	7782 / 0 / 459
Goodness-of-fit on F ²	1.048
$R_1^a, wR_2^b[I \ge 2\sigma(I)]$	0.0507 , 0.0929
R_1^a , wR_2^b (all data)	0.0887 , 0.0991
Largest diff. peak and hole /e	0.656 , -1.138
Å- ³	

The emprical formula excludes solvent guest molecules

Table S4. Crystal Data and Structure Refinement for

trans-[La(HL)(DMA)2] D	$MA \cdot 2H_2O$ at 293 K.
------------------------	----------------------------

Identification code	trans-[La(HL)(DMA) ₂]·DMA·2H ₂ O
Empirical formula	C ₃₆ H ₄₃ N ₄ O ₁₀ La
Formula weight	830.65
Temperature/K	293(2)
Wavelength/Å	0.71073
Crystal system	Monoclinic
space group	C2/c
a/Å	32.985(7)
b/Å	8.9901(19)
c/Å	34.432(7)
α/deg.	90.00
β/deg.	115.591(2)
γ/deg.	90.00
V/Å ³	9209(3)
Ζ	8
$D_{calcd}/g \cdot cm^{-3}$	1.197
Absorption coefficient/mm ⁻¹	0.977
F(000)	3392
Crystal size/mm	0.20 x 0.02 x 0.02
θ range for data collection	2.27 to 25.00 °.
Limiting indices	$-33 \le h \le 39, -10 \le k \le 10, -40 \le l \le$
	40
Reflections collected / unique	25159 / 8103 [R(int) = 0.0593]
Completeness to theta $= 25.00$	99.8 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9086 and 0.8286
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	8103 / 682 / 423
Goodness-of-fit on F ²	1.127
$R_1^{a}, w R_2^{b}[I \ge 2\sigma(I)]$	0.0554 , 0.1480
R_1^a , wR_2^b (all data)	0.0720 , 0.1546
Largest diff. peak and hole /e	1.530 , -1.528
Å ⁻³	

The emprical formula excludes solvent molecules for

 $\textit{trans-}[La(HL)(DMA)_2] \cdot DMA \cdot 2H_2O$

2.3 Additional Crystal Structure Descriptions

Figure S7. Simplified views of the single network of *trans*- $[Sm(HL)(DMA)_2] \cdot DMA \cdot 2H_2O$. The single 2D layer and 3D network along (a) *b*- and (b) *c*-axis.

Figure S8. Simplified view of the 3-fold interpenetration framework structure of trans-[Sm(HL)(DMA)₂]·DMA·2H₂O with the different networks shown in red, blue and yellow along (a) *a*-axis, (b) *b*- axis and (c) *c*-axis.

Figure S9. Simplified views of the change of interpenetration details on desolvation and resolvation between $\cdot trans$ -[Sm(HL)(DMA)₂] \cdot DMA \cdot 2H₂O and *cis*-[Sm(HL)(DMA)₂].

trans-[La(HL)(DMA)2]·DMA·2H2O (c)

(b) *trans*-[Sm(HL)(DMA)₂]·2.8CH₂Cl₂ (173 K)

(a) trans-[Sm(HL)(DMA)2]·DMA·2H2O

(d) *cis*-[Sm(HL)(DMA)₂]

Figure S10 Crystallographic packing diagrams viewed along the *b*-axis of (a) *trans*- $[Sm(HL)(DMA)_2]$ ·DMA·2H₂O, (b) *trans*- $[Sm(HL)(DMA)_2]$ ·2.8CH₂Cl₂, (c) *trans*- $[La(HL)(DMA)_2]$ ·DMA·2H₂O and (d) *cis*- $[Sm(HL)(DMA)_2]$

(a) <u>trans-[Sm(HL)(DMA)₂]·DMA·2H₂O</u>

Sm-O bond lengths (Å) DMA: Sm-O9 = 2.406(8), Sm-O10 = 2.303(8)Bidentate: Sm-O3 = 2.501(6), Sm-O4 = 2.438(6), Sm-O7 = 2.453(8), Sm-O8 = 2.482(8). Mondentate: Sm-O1 = 2.343(8), Sm-O5 = 2.432(5)

(b) <u>trans-[Sm(HL)(DMA)₂]·2.8CH₂Cl₂ (173 K)</u>

Bond lengths(Å) DMA: Sm-O30 = 2.382(5), Sm-O40 = 2.315(5) Bidentate: Sm-O1 = 2.510(4), Sm-O2 = 2.431(4), Sm-O7 =2.437(5), Sm-O8 = 2.543(5) Monodentate: Sm-O3 = 2.345(6), Sm-O6 = 2.406(3)

(c) $trans-[La(HL)(DMA)_2] \cdot DMA \cdot 2H_2O$

La-O bond lengths (Å) DMA: La-O9 = 2.471(5), La-O10 = 2.405(5) Bidentate: La-O1=2.552(5), La-O2 = 2.525(6), La-O5 = 2.507(4), La-O6 = 2.588(4) Mondentate: La-O3 = 2.505(3), La-O7 = 2.453(6)

(d) <u>cis-[Sm(HL)(DMA)₂]</u>

Sm-O bond lengths (Å) DMA: Sm-O9 = 2.384(9), Sm-O10 = 2.320(8)Bidentate: Sm-O5 = 2.414(8), Sm-O6 = 2.489(6), Sm-O1 = 2.523(5), Sm-O2 = 2.414(8). Mondentate: Sm-O3 = 2.345(7), Sm-O8 = 2.408(7)

Figure S11 Metal oxygen bond lengths (a) *trans*- $[Sm(HL)(DMA)_2]$ ·DMA·2H₂O, (b) *trans*- $[Sm(HL)(DMA)_2]$ ·2.8CH₂Cl₂ (173 K), (c) *trans*- $[La(HL)(DMA)_2]$ ·DMA·2H₂O and (d) *cis*- $[Sm(HL)(DMA)_2]$.

2.4 Heat treatment studies

trans-[Sm(HL)(DMA)₂]·DMA·2H₂O during desolvation by heat treatment from 303 to 473 K and return to 303 K at atmospheric pressure, and (b) Comparison of PXRD profiles for *trans*-[Sm(HL)(DMA)₂]·DMA·2H₂O (303 K) and heat treated samples to 433, 443, 453 and 473 K at atmospheric pressure.

2.5 Guest Exchange Studies

Sample Framework		Description			
	Structure				
<i>trans</i> -[Sm(HL)(DMA) ₂]·DMA·2H ₂ O	trans DMA	as synthesized			
	coordination*				
cis-[Sm(HL)(DMA) ₂]	cis DMA	<i>trans</i> -[Sm(HL)(DMA) ₂]·			
	coordination*	$DMA \cdot 2H_2O$ activated by			
		heating to 200°C			
<i>cis</i> -[Sm(HL)(DMA) ₂]·DMA	trans DMA	cis-Sm(HL)(DMA) ₂ soaked			
	coordination ^P	in DMA			
<i>cis</i> -[Sm(HL)(DMA) ₂]·CH ₂ Cl ₂ -ad	intermediate	cis-Sm(HL)(DMA) ₂ soaked			
	phase ^P	in CH_2Cl_2 and air dried for			
		12h			
<i>cis</i> -[Sm(HL)(DMA) ₂]·CHCl ₃ -ad	intermediate	cis-Sm(HL)(DMA) ₂ soaked			
	phase ^P	in CHCl ₃ and air dried for 12h			
cis-[Sm(HL)(DMA) ₂]·C ₂ H ₄ Cl ₂ -ad	intermediate	cis-Sm(HL)(DMA) ₂ soaked			
	phase ^P	in $C_2H_4Cl_2$ and air dried for			
		12h			
<i>trans</i> - $[Sm(HL)(DMA)_2]$ ·2.8CH ₂ Cl ₂	trans DMA	<i>trans</i> -[Sm(HL)(DMA) ₂]·DM			
(173K)	coordination*	$A \cdot 2H_2O$ solvent exchanged in			
		CH_2Cl_2 and cooled to 173 K			
		to avoid solvent loss during			
		structure determination			
<i>trans</i> -[Sm(HL)(DMA) ₂]·CH ₂ Cl ₂	Trans +	<i>trans</i> -[Sm(HL)(DMA) ₂]·DM			
	intermediate	$A \cdot 2H_2O$ solvent exchanged in			
	phase	CH ₂ Cl ₂			
cis-[Sm(HL)(DMA) ₂]·CH ₂ Cl ₂	Trans +	cis-Sm(HL)(DMA) ₂ soaked			
	intermediate	in CH_2Cl_2			
	phase				
<i>trans</i> - $[Sm(HL)(DMA)_2]$ ·CH ₂ Cl ₂ -ad	intermediate	<i>trans</i> -[Sm(HL)(DMA) ₂]·DM			
	phase	$A \cdot 2H_2O$ solvent exchanged in			
		CH_2Cl_2 and air dried for 12h			
$trans-[Ln(HL)(DMA)_2]\cdot DMA\cdot 2H_2O$	trans DMA	as synthesized			
	coordination*	$[Ln(HL)(DMA)_2] \cdot DMA \cdot 2H_2$			
		O, Ln = La, Tb etc.			

* - single crystal structure. The single crystal *trans*- $[Sm(HL)(DMA)_2]\cdot 2.8CH_2Cl_2$ structure at 173 K, where solvent loss was minimal, was very similar to *trans*- $[Sm(HL)(DMA)_2]\cdot DMA\cdot 2H_2O$.^P – structure characterization from PXRD profiles.

(b)

(d)

(f)

Figure S13. Comparison of PXRD profiles for guest-exchange studies (a) PXRD simulated profiles for *trans*-[Sm(HL)(DMA)₂]·DMA·2H₂O and *trans*-[Sm(HL)(DMA)₂]·2.8CH₂Cl₂, and experimental *trans*-[Sm(HL)(DMA)₂]·CH₂Cl₂ profile; (b) *trans*-[Sm(HL)(DMA)₂]·DMA·2H₂O, *cis*-[Sm(HL)(DMA)₂], *cis*-[Sm(HL)(DMA)₂]·CH₂Cl₂-ad, *cis*-[Sm(HL)(DMA)₂]·CHCl₃-ad and *cis*-[Sm(HL)(DMA)₂]·C₂H₄Cl₂-ad; (c) *trans*-[Sm(HL)(DMA)₂]·CH₂Cl₂ and *cis*-[Sm(HL)(DMA)₂]·CH₂Cl₂; (d) *trans*-[Sm(HL)(DMA)₂]·CH₂Cl₂ and *cis*-[Sm(HL)(DMA)₂]·CH₂Cl₂; (d) *trans*-[Sm(HL)(DMA)₂]·CH₂Cl₂-ad and *cis*-[Sm(HL)(DMA)₂]·CH₂Cl₂-ad; (e) *cis*-[Sm(HL)(DMA)₂]·CH₂Cl₂-ad and *cis*-[Sm(HL)(DMA)₂]·CH₂Cl₂-ad; (f) *trans*-[Sm(HL)(DMA)₂]·CHCl₃-ad and *cis*-[Sm(HL)(DMA)₂]·DMA·2H₂O (HTT 433 K), *trans*-[Sm(HL)(DMA)₂]·DMA·2H₂O (HTT 453 K). Intensities have been rescaled to avoid overlap of peaks. HTT = Heat Treatment

Temperature

S3. Field Emission Scanning Electron Microscopy (FESEM) Studies

The FESEM images show the crystals of *trans*- $[Sm(HL)(DMA)_2]$ ·DMA·2H₂O to have the same rod-like morphology and non-uniform size with the width range of ca. 15 - 60 µm (Figure S14a,b). *cis*- $[Sm(HL)(DMA)_2]$ retains its rod-like morphology structure after activation (Figure S14c,d). In contrast, gas adsorption resulted in fragmentation of the crystals (Figure S14e,f).

Figure S14. FESEM images of (a,b) *trans*-[Sm(HL)(DMA)₂]·DMA·2H₂O and (c,d) *cis*-[Sm(HL)(DMA)₂] before sorption and (e,f) *cis*-[Sm(HL)(DMA)₂] after CO₂ gas sorption measurements.

S4. Thermogravimetric Analysis (TGA)

The TGA profile of *trans*-[Sm(HL)(DMA)₂]·DMA·2H₂O shows a gradual weight loss between 30 and 165 °C and a rapid decrease from 165 to 205 °C on account of the loss of two lattice water molecules and one lattice DMA molecule per formula weight (found/calcd: 11.76/12.75%). Above 205 °C, cis-[Sm(HL)(DMA)₂] starts to Similarly, the TGA profiles decompose rapidly. of frameworks of trans-[Sm(HL)(DMA)₂]·CH₂Cl₂-ad and cis-[Sm(HL)(DMA)₂] show that they are stable to ~ 205 °C (see Figure S15). The TGA profiles of the other 'as-synthesized' trans-[Sm(HL)(DMA)₂]·DMA·2H₂O (Ln = La, Pr, Nd, Eu, Gd, Tb, Dy, Er) show similar thermal stability (see Figure S16).

Figure S15. TGA profiles of *trans*- $[Sm(HL)(DMA)_2] \cdot DMA \cdot 2H_2O$ (black), *trans*- $[Sm(HL)(DMA)_2] \cdot CH_2Cl_2$ -ad (blue) and *cis*- $[Sm(HL)(DMA)_2]$ (red). The PXRD shows that at the beginning of the TGA measurement, *trans*- $[Sm(HL)(DMA)_2] \cdot CH_2Cl_2$ -ad sample has a profile consistent with loss of volatile CH₂Cl₂ from an intermediate framework structure.

Figure S16. TGA profiles of 'as-synthesized' *trans*- $[Ln(HL)(DMA)_2]$ ·DMA·2H₂O (Ln = La, Pr, Nd, Eu, Gd, Tb, Dy, Er).

S5. Additional Gas Adsorption Isotherms

Figure S17. CO_2 adsorption/desorption isotherms as a function of relative pressure (Pressure range: 0 - 20 bar) for *cis*-[Sm(HL)(DMA)₂].

(a)

Figure S18. CO_2 adsorption/desorption isotherms for *cis*-[Sm(HL)(DMA)₂] at 293 K for pressures ranges (a) 0 – 5 bar and (b) 0 – 1 bar.

Figure S19. Comparison of CO₂ adsorption/desorption isotherms of *cis*-[Sm(HL)(DMA)₂] and *cis*-[Tb(HL)(DMA)₂] at 293 K.

S6. Thermodynamics Analysis for CO₂ Adsorption

The isosteric adsorption enthalpy of CO_2 was calculated using the Clausius-Clapeyron equation.

$$\frac{d(\ln(p))}{d(\frac{1}{T})} = \frac{Q_{st}}{R} \tag{1}$$

where *p* is pressure, *T* is the temperature, *R* is the real gas constant. At lower surface coverage ($\leq 0.5 \text{ mmol g}^{-1}$), which is below the CO₂ uptake where the adsorption step starts, ln(*p*) and 1/*T* graphs were obtained from the CO₂ isotherms at 273, 293, 303, 313 and 333 K (Figure S20a). At higher surface coverage ($\geq 0.7 \text{ mmol g}^{-1}$), which is above the CO₂ uptake capacity where the adsorption step starts, ln (*p*) and ln (1/*T*) graphs were obtained from the CO₂ isotherms at 273, 293, 303 and 313 K (Figure S20b). All the graphs have good linearity, indicating consistency of the isotherm data for the CO₂-host system over the temperature ranges studied. The calculated results of Q_{st} and ΔS were listed in Table S6 and plotted in Figure 7c.

(a)

Figure S20. Graphs of $\ln(p)$ versus 1/T for the adsorption of CO₂ on *cis*-[Sm(HL)(DMA)₂] at 273–333 K (a) 0.1 – 0.5 mmol g⁻¹ data for adsorption isotherms in the range 273 – 333 K and (b) 0.7–1.5 mmol g⁻¹ data for adsorption isotherms in the range 273 – 313 K.

CO ₂ uptake		Q_{st}	Standard error	ΔS	Standard error
(mmol g^{-1})	$d\ln(p)/d(1/T)$	(kJ mol ⁻¹)	(Q_{st})	$(J K^{-1} mol^{-1})$	(ΔS)
0.1	-3428.4	28.5	2.0	-71.0	6.7
0.2	-3428.0	28.5	1.0	-78.2	3.3
0.3	-3460.4	28.8	1.7	-84.5	5.7
0.4	-3353.2	27.9	2.1	-85.5	7.1
0.5	-3288.4	27.3	2.1	-87.4	7.0
0.7	-2709.2	22.5	1.4	-74.8	4.7
0.8	-2704.3	22.5	0.7	-75.2	2.5
0.9	-2702.0	22.5	0.6	-75.6	2.0
1.0	-2720.5	22.6	0.5	-76.6	1.6
1.1	-2739.8	22.8	0.4	-77.6	1.2
1.2	-2710.7	22.5	0.4	-77.2	1.2
1.3	-2675.7	22.3	0.5	-76.5	1.7
1.4	-2637.9	21.9	0.6	-75.8	2.1
1.5	-2622.7	21.8	0.7	-75.6	2.5

Table S6. The Isosteric Adsorption Enthalpies (Q_{st}) and Entropies (ΔS) of CO₂ for *cis*-[Sm(HL)(DMA)₂] as a function of various Amounts Adsorbed, Calculated for Isotherms over the Temperature Range 273 – 333 K.

S7. Adsorption Kinetics Analysis for Temperature Swing Adsorption of CO₂

(a)

(b)

(d)

Figure S21. Double exponential (DE) model fitting graphs and kinetic parameters for *cis*-[Sm(HL)(DMA)₂] (a) 273 K, (b) 293 K, (c) 303 K, and (d) 313 K and (e) DE kinetic parameters versus 1/T

Table S7. Time of $(M_t-M_i)/(M_e-M_i) = 0.5 (t_{1/2})$ of *cis*-[Sm(HL)(DMA)₂] between 273 and 313 K

Temp. (K)	273	293	303	313
$t_{1/2}(s)$	293	505	1515	4991

Figure S22. Comparison of final CO₂ uptake in kinetic profiles for *cis*-[Sm(HL)(DMA)₂] (• with black numbering in brackets) and isotherm surface excess uptakes(colored numbering).

Table S8.	Comparison	of Final	$CO_2 U$	Uptake	in K	inetic	Profiles	and	Isotherm	Surface
Excess Uj	ptakes for <i>cis</i> -	[Sm(HL)(DMA)2]						

Temp. (K)	Isotherm (mmol g ⁻¹)	Kinetic Profile (mmol
		g ⁻¹)
273	3.81	3.72
293	3.16	3.00
303	2.42	2.40
313	1.50	1.61
333	0.59	0.49

Temp. (K)	A ₁	$k_1 (10^{-4})$	A ₂	$k_2(10^{-3})$
273	0.1593	3.53	0.8378	2.81
293	0.2391	0.928	0.7522	1.81
303	0.3852	0.592	0.6034	1.00
313	0.4904	0.346	0.5290	0.325

Table S9. DE Model Fitting Results for cis-[Sm(HL)(DMA)₂] at 20 bar between 273 and 313 K

S8 Kinetic Profiles for Carbon Dioxide Adsorption on *cis*-[Sm(HL)(DMA)₂] at 273 K

(a)

Figure S23 Kinetic profiles for various pressure Increments for carbon dioxide adsorption on *cis*- $[Sm(HL)(DMA)_2]$ at 273 K, (a) 500–1000 mbar and (b) 6000–8000 mbar

S9 Comparison of Kinetic Profiles for Fickian diffusion into a Sphere,

Cylinder and One-dimensional Slab with the Stretched Exponential

Model

Theoretical Fickian profiles for diffusion into a cylinder and sphere were calculated using equations (3) and (4) in the main manuscript. Fickian diffusion into a one-dimensional slab is given by the equation below:³

$$\frac{M_{t}}{M_{e}} = 1 - \frac{8}{\pi^{2}} \sum_{n=0}^{\infty} \left(\frac{1}{(2n+1)^{2}} \right) exp\left(\frac{-D(2n+1)^{2} \pi^{2} t}{4w^{2}} \right)$$
(2)

where M_t is mass uptake at time t, M_e is mass uptake at equilibrium, D is diffusivity and w is the half thickness of the parallel sided slab.¹

(a) Sphere

(b) Cylinder

(c) 1-D Slab

Figure 24. Comparison of theoretical Fickian profiles and corresponding fits to the Stretched Exponential Model (a) sphere,(b) cylinder and (c) one-dimensional slab and (d) comparison of diffusion curves for different shapes

Figures S23a-c show that for constant Diffusion Coefficient $(1 \times 10^{-12} \text{ m}^2 \text{ s}^{-1})$ and $r = a = w = 3 \times 10^{-5}$ m, the shape of the kinetic profiles varies markedly with particle shape. Therefore, in the case of analysis of an experimental kinetic profile the diffusion coefficient will depend on the shape of the particle chosen in the analysis. However, the stretched exponential model provides excellent fits for Fickian diffusion into all shapes and the Linear Driving Force model is a special case of the Stretched Exponential Model. Furthermore, the stretched exponential model also fits kinetic profiles which do not fit Fickian diffusion (see Figure10a and Figure S23). The results clearly show that the stretched exponential model provides a good fit to theoretical curves for Fickian diffusion into particles with a wide variety of shapes and some non-Fickian cases.

S10. Calculation of Adsorption/Desorption Selectivity for Gas

Adsorption

(a)

(b)

Figure S25 Single-component gas selectivity of cis-[Sm(HL)(DMA)₂] for (a) CO₂/CH₄, (b) CO₂/H₂, (c) CO₂/O₂, (d) CO₂/N₂, calculated from the isotherms at 273 K.

(d)

S11. Calculation of Henry's Law Selectivity for Gas Adsorption

Figure S26. Comparison of CO₂, CH₄, H₂, O₂ and N₂ sorption isotherms for *cis*-[Sm(HL)(DMA)₂] up to 1.0 bar at 273 K.

(a)

(c)

Figure S27. Linear Henry's Law graphs for (a) CO₂, (b) CH₄, (c) H₂, (d) O₂ and (e) N₂ adsorption isotherms for *cis*-[Sm(HL)(DMA)₂] at 273 K.

Table S10. Linear RegressionR and Henry's constants K_H for CO2, CH4, H2, O2 andN2 Isotherm Data for *cis*-[Sm(HL)(DMA)2] at 273 K.

	CO ₂	CH ₄	H_2	O ₂	N ₂
K_H /mol g ⁻¹ bar ⁻¹	8.66×10 ⁻⁴	1.38×10 ⁻⁴	1.28×10 ⁻⁵	3.62×10 ⁻⁵	1.93×10 ⁻⁵

Table S11. Comparison of the Selectivity Calculated from the Adsorption/desorption isotherms and Henry's Law Selectivity data from linear fitting results for *cis*-[Sm(HL)(DMA)₂] at 273 K.

Selectivity ratio	Adsorption	Desorption	Henry's Law
	Isotherm	Isotherm	analysis
CO ₂ /CH ₄	17/1	27/1	6/1
CO ₂ /H ₂	36/1	172/1	68/1
CO ₂ /O ₂	22/1	82/1	24/1
CO_2/N_2	22/1	42/1	45/1

References

- Sheldrick, G. M. SHELXL-97: Program for crystal structure refinement; University of Göttingen, Göttingen, Germany, 1997.
- 2) Lange's Handbook of Chemistry; 15th ed.; McGraw-Hill: New York, 1999.
- Crank, J. *The Mathematics of Diffusion*; 2nd ed.; Clarendon Press: Oxford, 1975.