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Abbreviations used

Abbreviations for NMR signal coupling are as follows: s, singlet; d, doublet; m, multiplet.

General Methods

All reagent grade chemicals were purchased from Sigma, Fisher, or VWR and used without
further purification. The "H NMR spectra were obtained on a Bruker 500 MHz NMR Fourier
transform spectrometer. NMR spectra were recorded in ds-methanol, with residual methanol
(63.31 ppm for '"H NMR and 649.0 ppm for °C NMR), in ds-dimethyl sulfoxide, with residual
dimethyl sulfoxide (6 2.50 ppm for '"H NMR and 039.5 ppm for °C NMR), or in deuterated
water (D,0), with residual H,0 (64.79 ppm for 'H NMR) taken as standards. The chemical shifts

on NMR spectra were reported in parts per million (ppm).

HPLC analysis was performed at room temperature with a Waters (Milford, MA) breeze HPLC
system coupled to a 2489 UV/Visible detector at 230 nm, while an Agilent ZORBAX Bonus-RP
column (5 um particle size, 250 x 4.6 mm i.d.) was used for separation. Semi-preparative HPLC
was performed at room temperature with the same Waters HPLC setup and an XBridge™ OST
C18 column (2.5 pum particle size, 50 x 10 mm i.d.). The LC/MS and MS/MS analyses were
conducted via the Agilent 6520 Accurate Mass Q-TOF LC/MS spectrometer.
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Preparation of dHdU isomerization products
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200 mg dHdU was dissolved in 0.1 M HCI and the reaction was allowed to proceed for 8
hours at ambient temperature. HPLC analysis reveals that four products, including three dHdU
isomers 2, 3 and 4 were formed. The products were separated via semi-preparative HPLC.
Briefly, an XBridgeTM OST C18 column (2.5 pm particle size, 50 x 10 mm i.d.) was equilibrated
with buffer A (10 mM ammonium acetate aqueous solution, pH 7.0); compounds were eluted
with an ascending gradient (0% ~ 5%) of acetonitrile (buffer B) in 20 minutes at a flow rate of
4.73 mL/min. The four isomers including dHdU were eluted at 11.0 (2), 14.0 (dHdU), 14.7 (3),
and 17.0 (4) min respectively. The compounds were desalted by reinjection into HPLC using
H,O-acetonitrile as elution buffers, then dried by rotary evaporation to afford isomer 2 (30 mg,

colorless oil), 3(18 mg, colorless oil), and 4 (23 mg, colorless oil) respectively.

2: 'H NMR (methanol-ds): 81.65-1.70 (m, 1H, Hy), 2.07 (g, J = 11.6 Hz, 1H, Hy), 2.61 (dd, J =
1.4, 6.5 Hz, 1H, Hs), 2.63 (dd, J = 2.4, 6.0 Hz, 1H, Hs), 3.50 (ddd, J = 6.2, 8.0, 12.8 Hz, 1H, He),
3.62 (ddd, J = 6.0, 6.9, 12.8 Hz, 1H, He), 3.63 (dd, J = 1.0, 12.7 Hz, 1H, Hs), 3.67-3.70 (m, 1H,
Hy), 3.84 (ddd, J = 3.2, 4.7, 11.7 Hz, 1H, H3), 3.95 (dd, J = 2.1, 12.7 Hz, 1H, Hs), 5.43 (dd, J =
2.2, 11.4 Hz, 1H, Hy); *C NMR (methanol-ds): 632.0, 32.4, 37.5, 68.4, 69.6, 70.2, 81.6, 154.7,

172.8; ESI-MS (positive ion) calcd for CgH15N.05": (M + HY) 231.0975, found 231.0972.
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dHdU: *H NMR (methanol-d): 51.98 (ddd, J = 3.2, 6.4, 13.5, 1H, Hy-), 2.19 (ddd, J = 6.6, 7.9,
13.5 Hz, 1H, Hy), 2.56-2.67 (m, 2H, Hs),3.41 (ddd, J = 5.6, 8.2, 12.6, 1H, Hg), 3.57 (ddd, J = 6.2,
6.8, 12.5 Hz, 1H, Hy), 3.62 (dd, J = 4.6, 11.9 Hz, 1H, Hs), 3.68 (dd, J = 4.0, 11.9 Hz, 1H, Hs),
3.77 (dd, J = 4.0, 8.0 Hz, 1H, Hy), 4.25-4.30 (m, 1H, Hz), 6.26 (dd, J = 6.4, 8.0 Hz, 1H, Hy); ©°C
NMR (methanol-d,): §31.9, 36.9, 37.5, 63.3, 72.4, 85.3, 87.4, 154.9, 172.9; ESI-MS (positive

ion) calcd for CoH1sN0s": (M + H*) 231.0975, found: 231.09609.

3: 'H NMR (methanol-ds): §1.93 (ddd, J = 5.0, 5.0, 10.0, 1H, H,), 2.52 (ddd, J = 7.1, 7.2, 14.1
Hz, 1H, Hy), 2.63 (t, J = 6.7 Hz, 2H, Hs), 3.52 (dd, J = 5.0, 12.0 Hz, 1H, Hs), 3.56-3.67 (m, 3H,
Hs and He), 4.00 (dd, J = 4.0, 8.5 Hz, 1H, Hy), 4.29 (ddd, J = 4.1, 4.3, 6.9 Hz, 1H, H3), 6.16 (dd,
J = 5.5, 7.6 Hz, 1H, Hy); *C NMR (methanol-ds): 632.0, 37.4, 39.1, 63.4, 72.2, 86.1, 88.6,

154.9, 173.0; ESI-MS (positive ion) calcd for CgH1sN2Os™: (M + HY) 231.0975, found: 231.0975.

4: 'H NMR (methanol-d,): 1.81 (ddd, J = 2.4, 3.8, 13.8Hz, 1H, H+), 2.52 (ddd, J = 2.4, 11.2,
13.6 Hz, 1H, Hy), 2.60 (t, J = 6.9 Hz, 2H, Hs), 3.40-3.53 (m, 2H, Hg), 3.63-3.71 (m, 2H, H, and
Hs), 3.75-3.81 (m, 1H, Hs), 4.11-4.15 (m, 1H, Hg), 5.84 (dd, J = 2.2, 11.4 Hz, 1H, Hy); **C
NMR (methanol-d;): 632.0, 35.3, 37.4, 66.8, 68.0, 68.4, 78.4, 154.7, 172.8; ESI-MS (positive

ion) calcd for CgH1sN205™: (M + HY) 231.0975, found: 231.0973.

dHdU isomerization reaction at 90 °C in a pH 7.4 buffer dHdU was dissolved in 200 pL
pH 7.4 sodium phosphate buffer containing 150 mM NaCl to a final concentration of 85 mM.
The solution was heated to 90 °C using a PCR device with a cap heating function to minimize
water evaporation. At various reaction times, 5 pL solution was aliquotted out, immediately

frozen in liquid Ny, and saved in —20 °C freezer for future HPLC analysis. In HPLC analysis,
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briefly, an Agilent ZORBAX Bonus-RP column (5 pum particle size, 250 x 4.6 mm i.d.) was
equilibrated with buffer A (10 mM ammonium acetate aqueous solution, pH 7.0); compounds
were eluted with an ascending gradient (0% ~ 5%) of acetonitrile (buffer B) in 20 minutes at a
flow rate of 0.5 mL/min. Under such a condition, 1 (5,6-dihydrouracil), 2 , dHdU, 3 and 4 eluted

at 8.6, 11.0, 14.0, 14.7, and 17.0 min respectively.
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Figure S1. HPLC chromatogram (monitored at 230 nm) of the dHdU isomerization reaction in a pH
7.4 buffer at 90°C for 72 hrs.

Isomerization of 2'-deoxyuridine (dU) and thymidine (T)atpH1 dU and T were
dissolved respectively in 200 pL 0.1 M HCI to a final concentration of 85 mM. The resulting
solutions were kept at room temperature for ~ 3 days. At various times, 5 puL of the reaction
solution was aliquotted out, immediately frozen in liquid N, and saved in —20 °C freezer for
future HPLC analysis. In HPLC analysis, an Agilent ZORBAX Bonus-RP column (5 pm particle
size, 250 x 4.6 mm 1i.d.) was equilibrated with buffer A (10 mM ammonium acetate aqueous

solution, pH 7.0). For dU isomerization reaction, an ascending gradient (0% ~ 5%) of
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acetonitrile (buffer B) in 20 minutes at a flow rate of 1 mL/min was used and dU was eluted at
10.3 min. For T isomerization reaction, an ascending gradient (0% ~ 20%) of acetonitrile (buffer
B) in 20 minutes at a flow rate of 1 mL/min was used and T was eluted at 11.4 min. No product

was observed in either reaction.
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Figure S2. HPLC chromatogram (monitored at 230 nm) of the dU isomerization reaction in the
presence of 0.1 M HCI at ambient temperature for 72 hrs.
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Figure S3. HPLC chromatogram (monitored at 230 nm) of the T isomerization reaction in the
presence of 0.1 M HCI at ambient temperature for 72 hrs.

S7



Isomerization of dU and T at 90 °C in a pH 7.4 buffer dU and T were dissolved
respectively in 200 puL pH 7.4 sodium phosphate buffer containing 150 mM NaCl to a final
concentration of 85 mM. The solution was heated to 90 °C using a PCR device with a cap
heating function to minimize water evaporation. At various reaction times, 5 pL solution was
aliquotted out, immediately frozen in liquid Ny, and saved in —20 °C freezer for future HPLC
analysis. In HPLC analysis, briefly, an Agilent ZORBAX Bonus-RP column (5 pm particle size,
250 x 4.6 mm i.d.) was equilibrated with buffer A (10 mM ammonium acetate aqueous solution,
pH 7.0). For dU isomerization reaction, an ascending gradient (0% ~ 5%) of acetonitrile (buffer
B) in 20 minutes at a flow rate of 1 mL/min was used; uracil and dU were eluted at 5.1 and 10.3
min respectively. For T isomerization reaction, an ascending gradient (0% ~ 20%) of acetonitrile
(buffer B) in 20 minutes at a flow rate of 1 mL/min was used; thymine and T were eluted at 8.3

and 11.4 min respectively. No isomers of dU or T were observed.
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Figure S4. HPLC chromatogram (monitored at 230 nm) of the dU isomerization reaction in a pH 7.4
buffer at 90°C for 72 hrs.
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Figure S5. HPLC chromatogram (monitored at 230 nm) of the T isomerization reaction ina pH 7.4
buffer at 90°C for 72 hrs.

Preparation of compound 5

dHdU (50 mg, 0.22 mmol) was dissolved in 0.1 M HCI in MeOH:H,0 (1:1, v/v) solution to a
final concentration of 5 mM (44 mL); 50 mg Pd-C was then added to the solution. The resulting
suspension was stirred under 1 atm H, for 8 days at ambient temperature. At various time points,
5 pl of the reaction mixture was extracted, and immediately analyzed by HPLC until ~85%
dHdU was consumed. After removing the Pd-C catalyst by filtration, the product was purified by
semi-preparative HPLC. Briefly, an XBridge™ OST C18 column (2.5 um particle size, 50 x 10
mm 1i.d.) was equilibrated with buffer A (10 mM ammonium acetate aqueous solution, pH 7.0).
Compounds were eluted with an ascending gradient (0% ~ 5%) of acetonitrile (buffer B) in 20
minutes at a flow rate of 4.73 mL/min. The dHdU Schiff base hydrogenation product 5 was
eluted at 6.1 min. After removing solvent via rotary evaporation, 5 was obtained as a white solid
(38 mg, 75%). '"H NMR (methanol-d,): 81.58-1.67 (m, 1H), 1.98-2.08 (m, 1H), 2.62-2.73 (m,
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2H), 3.44-3.58 (m, 5H), 3.59-3.68 (m, 2H), 3.73 (dd, J = 3.9, 11.3 Hz, 1H);**C NMR (methanol-
ds): 631.81, 31.87, 43.4, 45.6, 64.7, 70.9, 76.3, 155.3, 173.1; ESI-MS (positive ion) calcd for

C9H17N205+: (M + H+) 233.1132, found: 233.1129.

Nucleophilic addition reaction between cysteine and dHdU dHdU was dissolved in H,O
to a final concentration of 85mM. To this solution, 75-fold cysteine-HCI was added followed by
the addition of 1 N HCI to adjust the pH to 3. The resulting solution was allowed to react at 37
°C. At various times, 5 pl of the reaction mixture was extracted, and immediately analyzed by
HPLC. Briefly, an Agilent ZORBAX Bonus-RP column (5 pm particle size, 250 x 4.6 mm i.d.)
was equilibrated with buffer A (10 mM triethylamine-Acetic Acid aqueous solution, pH 7.0);
compounds were eluted with an ascending gradient (0% ~ 5%) of acetonitrile in 20 minutes at a
flow rate of 0.5 mL/min. The cysteine-dHdU adducts 6 and 7, and dHdU deglycosylation

product 1, were eluted at 6.3, 7.1, and 8.7 min respectively.
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Figure S6. HPLC chromatogram (monitored at 230 nm) of Schiff base intermediate-mediated
nucleophilic addition reaction between cysteine and dHdU at 37 °C for 72 hrs.
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Preparation of compounds 8 and 9

(0]
(e}
NH
NH
PN — N/go
N (@]
HO
HS CO3H HO Ve
_\727‘ — ‘\ﬁ?ﬂrs CO,H
1
OH OH
dHdU 8and 9

a pair of epimers
at C1' position

dHdU (20 mg, 85umol) was dissolved in H,O to a final concentration of 60 mM. To this
solution, 3-mercaptopropionic acid HSCH,CH,CO,H (75X) was added. The resulting solution
was kept at 60°C for 24 h. 5 pl of the reaction mixture was extracted and immediately analyzed

by HPLC to confirm that 85% of the dHdU added has reacted.

The resulting mixture was then purified by preparative HPLC. Briefly, an XBridge™ OST C18
column (2.5 um particle size, 50 x 10 mm i.d.) was equilibrated with buffer A (triethylamine-
Acetic Acid aqueous solution, pH 7.0). Compounds were eluted with an ascending gradient (0%
~ 5%) of acetonitrile in 20 minutes at a flow rate of 2.37 mL/min. Under such a condition,
dHdU-MPA adducts 8 and 9 were eluted at 15.8 and 16.4 min respectively. After removing
solvent via rotary evaporation, 8 (10 mg, 30%) and 9 (18 mg, 56%) were obtained both as

colorless gel.

8: 'H NMR (methanol-ds): 51.66(ddd, J = 3.5, 9.8, 14.6 Hz, 1H, H»), 2.14 (dd, J = 12.5, 14.6 Hz,
1H, Hp), 2.42 (ddd, J = 7.5, 7.5, 15.3 Hz, 1H, Hy), 2.52 (ddd, J = 6.3, 8.0, 14.1 Hz, 1H, Hy),
2.61-2.76 (M, 3H, Hc and Hs), 2.80 (ddd, J = 6.2, 8.0, 13.1 Hz, 1H, H,), 3.34 (ddd, J = 5.3, 8.7,

13.1 Hz, 1H, Hg), 3.37-3.44 (m, 2H, Hy and Hx), 3.57 (dd, J = 5.4, 11.2 Hz, 1H, Hs), 3.66 (dd, J
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= 6.7, 12.5 Hz, 1H, Hg), 3.68 (dd, J = 3.2, 11.0 Hz, 1H, Hs), 5.97 (dd, J = 3.1, 11.9 Hz, 1H,
H1);®C NMR (methanol-d,): 628.4, 31.8, 36.8, 37.0, 38.7, 57.8, 64.5, 69.9, 75.9, 155.5, 172.8,

179.7; ESI-MS (negative ion) calcd for Ci,H19N,0O7;S(M-H) : 335.0918, found: 335.0916;

9: 'H NMR (methanol-d,): 81.70 (ddd, J = 6.0, 9.7, 11.2 Hz, 1H, H), 2.07 (ddd, J = 2.5, 8.9,
11.5 Hz, 1H, Hy), 2.40-2.55 (m, 2H, Hp), 2.61-2.77 (m, 3H, Ha and 2 Hs), 2.80 (ddd, J = 6.8, 6.8,
13.0 Hz, 1H, H,), 3.37-3.44 (m, 2H, Hy and Hg), 3.56 (dd, J = 6.3, 11.3Hz, 1H, Hs'), 3.65-3.75
(m, 3H, Hz Hs and Hg), 5.94 (dd, J = 6.1, 8.9 Hz, 1H, H; );"*C NMR (methanol-d,): 528.3,
31.9, 37.5, 37.8, 38.5, 59.2, 64.6, 71.0, 76.4, 154.9, 172.9, 179.5; ESI-MS (negative ion) calcd

for C12H19N,0;S(M-H) : 335.0918, found: 335.0916.

dHT isomerization reaction dHT was dissolved in 200 pL 0.1 M HCI to a final
concentration of 85 mM. The resulting solution was kept at room temperature for ~ 3 days. At
various times, 5 pL of the reaction solution was aliquotted out, immediately frozen in liquid N,
and saved in —20 °C freezer for future HPLC analysis. For HPLC analysis, briefly, an Agilent
ZORBAX Bonus-RP column (5 pm particle size, 250 % 4.6 mm 1.d.) was equilibrated with buffer
A (10 mM ammonium acetate aqueous solution, pH 7.0). Compounds were eluted with an
ascending gradient (0% ~ 5%) of acetonitrile (buffer B) in 20 minutes at a flow rate of 1
mL/min. The four isomers of dHT were eluted at 8.8 (10), 10.8 (dHT), 11.6 (11), and 14.1 (12)

min respecitively. These products were characterized by MS/MS analysis.
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Figure S7. HPLC chromatogram (monitored at 230 nm) of the dHT isomerization reaction in the
presence of 0.1 M HCI at ambient temperature for 72 hrs.
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Figure S8. MS-MS spectra and the fragment structures of compounds 2, dHdU, 3 and 4 under
positive ion mode.

S14



(0]
NH NH NH
l\\l/(f%O -H,0 N&O _ /go
OH (1) )
®) \ o
(X

N [0}
H
() 215.1021
(1)
127.0500
(f3)
197.0914
(f2) 233.1129
115.0503 ()]
(f4)
I L |

‘ ‘ o ‘ R ‘ ‘ ‘ Ll ‘ ‘ ‘ ‘ ‘ ‘
90 100 110 120 130 16%unts1 \5[9 Ma;ggo-Cﬂgr%e (n’? /%? 190 200 210 220 230 240 250

Figure S9. MS-MS spectrum and the fragment structures of compound 5 under positive ion mode.

S15



0 - o) ]
/’K NH
co,H 5 R CO,H
i N /ﬁ( 2 |l Ho r\!l o) . ‘
OH |\.S NH, OH HS NH,
‘ (f2)
OH (6) B OH |
o — =2
NH
NAO COyH CO,H _»Hoj
HO A~ —|Ho c— —OH ___SH
OH S OH S )
OH (f1)
OH (6) OH
120.0127 - -
(f2)
350.1036
149.0280
(6)

(f1)

| A L
100 120 140 160 180 200 220 240 260 280 300 320 340 360 380
Countsvs. Mass-to-Charge (m/2)

0 0
NH NH
N/go CO—_)H N&O CO;H
HO —~ - HO-
oH |\ NH, ” OH Y HS  NH,
‘ (2)
OH (7) i OH |
O — —
By
HO
N o COH CO,H
HO A | HO s — — OH __SH
OH | s OH _s"
OH (A1)
OH (7) OH
120.0128
(f2)
149('?1) 350.1044
(7)
| A \‘ -
100 120 140 160 180 200 220 240 260 280 300 320 340 360 380

Countsvs. Mass-to-Charge (m/2)

Figure S10. MS-MS spectrum and fragment structures of compounds 6 and 7 under negative

ion mode.
S16



/t NH
I CO,H
N 0 CO,H Y 2
HO /~ —— HO I
OH |'.§ OH HS
: (f3)
OH (8) OH (1)
(@] . .
%
CO5H CO,H HO
HO L) i W 8 = OH ,—SH
OH S OH S
‘\Ff OH (f2)
OH (8) OH
105.0014 = - 335.0910
149.0223
(f2) 229.0774
’ (f1)
100 120 140 160 180 200 220 24D 260 280 300 320 340 360 380 400
Countsvs. Massio-Charge (m/2)
O (0]
NH ﬁLNH
N/KO COo,H NAO COH
HO /~ —— HO |
OH |'.§ OH HS
! (f3)
OH (9) OH (1)
0 _ _
Iy
CO,H CO,H HO
HO A2 e — ” OH —SH
OH S OH rs‘
OH (f2)
Okl i85 i 335.0916
105.0012 L . (9
(f3)
149.0269
(f2) 229.0823
‘ (f1)
100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400
Countsvs. Mass-o-Charge (m/2)
Figure S11. MS-MS spectrum and fragment structures of compounds 8 and 9 under negative
ion mode.

S17



H
N._O
> \m Oy, 0 2
o o0 — . R 222 HO@
o[ ¥ S OH

(10, NH (1) OH (f2) (f3)
117.0532 0
(f2)  129.0640
99.0429 (f1) 245.1105
(f3) (10)

| |
90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290
Counts vs. Mass-to-Charge (m/z)

(0]
S NH o
r‘\l/&o .~ SNH , Ho o -H0 Ho 0,
oy T LK SRRV
an??j N e ) on ®)
117.0532 OH
(f2)
129.0639
99.0430\ (f1) 245.1101

90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290
Counts vs. Mass-to-Charge (m/z)

HO‘\$OJ H o

h HO -H,0 o
! N oO— » /Q(NH + ‘\@ —27 Ho/\L/)

(11)J%]:,\1‘//'_| Tt @ o (f3)
117.0532 I
(2) 129.0640
99.0430 (f1) 245.1099
(f3) (11)

Il ‘ Il L Il Il ‘\
90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290
Counts vs. Mass-to-Charge (m/z)

(o}

0
SN o )
~ NH -H,0
S e
N N"SoH  ©OH
H 1) OH (f2) )
117.0531 OH (12)

(f2) OH
129.0643
99.0430 (f1) 245.1096
(f3) (12)

| |

90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290
Counts vs. Mass-to-Charge (m/z)
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Figure S13. (A) Gibbs Free Energy changes (kcal/mol) for dHT protonation and

decomposition. The N1 protonation may result in two putative species (N1-R)H and (N1-S)H,
which are much higher in Gibbs Free Energy than the (O4’)H, suggesting that in dHT,
protonation at O4' is preferred. The (O4’)H re-arranges into a Schiff base species via a
barrier-free decomposition during the structure optimization. (B) Gibbs Free Energy changes
(kcal/mol) for T protonation and decomposition. The N1-R protonation is preferred, the
resulting (N1-R)H is unstable, which decays into the oxocarbenium ion via a barrier-free
transformation process. In contrast, the T-(O4")H is much higher in Gibbs Free Energy,
implying that T deglycosylation is mediated by the oxocarbenium ion pathway via (N1-R)H.
The putative (N1-S)H intermediate however is found to be metastable as a local minimum on
the potential energy surface. The (N1-S)H pathway however is considered to be irrelevant to
the oxocarbenium ion formation because of the high Gibbs Free Energy barrier en route to
(N1-S)H.
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Table S1. Rate constants (x 10~° s for the formations of 1, 2, 3, and 4 in the dHdU
isomerization reaction determined via HPLC integration. The respective rate constants at 37 °C
and pH 7.4 were then deduced from the Arrhenius plots below.

Temperature 1 2 3 4
70 26.5 267 1.69 X 10° 115
75 31.3 395 251 xX10° 190
80 51.3 673 3.55 x10° 299
85 105 1.07 X10° 6.22 X10° 585
90 126 1.68 x10° 9.72 X 10° 919
37 0.819 6.98 53.6 1.86
s ] 2
Ink 1 e M
1/T
e 4
Ink iij 1 Ink -15 4
1/T 1/T
Figure S14. Arrhenius plots for the formations of 1, 2, 3, and 4 in the dHdU isomerization

reaction (Ink vs 1/T).
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S28



dHdU MeOD 2 1 C:\Bruker\TOPSPIN L1 ‘

J

dHdU MeOD COSY 11132014 L g
B &
jo) i) & 43 _ o
%] o f5] -
— ™M
e — @ I
;) & @ B B
== @& @ L
S — o == L
— <
—_— @ oo == [
< < .
— ©
I @ = B
T ‘ T ‘ T ‘ T T ‘ ‘ T T
6 5 4 3 2 F2[ppm]
Figure S23. COSY spectrum of dHdU.

S29



dHdU MeOD 4 1 C:\Bruker\TOPSPIN Li

dHdU MeOD HSQC 11132014

1 Jlx_#_JWL_JUhMH Y

120 100 80 60 40 20 F1[ppm]

140

Figure S24. HSQC spectrum of dHdU.

S30

F2 [ppm]



dHdU_MeOD 5 1 C:\Bruker\TOPSPIN Li

JM A FWL

?deUiMeOD HMBC 11132014 | g
- S
; | =
*Ik - )
R —— ] Ll -1
L -]
w
o oIt iy [ ] ~
3 | aul“' o " :
H4'/C1! -3
3
L] [~ ] ~
HO I
[~ ] L] [
i (=)
&
‘ T | T ‘ T T ‘ T
6 5 4 F2 [ppm]
Figure S25. HMBC spectrum of dHdU.

S31



dHdU MeOD 7 1 C:\Bruker\TOPSPIN LJ(

|

s J\k j A

dHAU MeOD NOE 11142014 - g
=
mooL

b : /2! o

# : 00 f

= B4 I
— ™

3'/6 L

" @ o) [

é;,) 0 o -

] 6 o B
o o - q.

o N a |

? . @ Q0 sG: [<3) o |

- - % P B
- w

) L
o HO - @

—_ & ‘ @ @ I

o L

T | T ‘ T T T ‘ T ‘
6 5 4 3 2 F2 [ppm]
Figure S26. NOESY spectrum of dHdU.

S32



08212014

dHU d MeOD

00070~

606"
616"
626"
LEG”
Lp6"
LS6 "
£6F”
806G~
(44N
9€G"
0G5*
€19°
929"
0v9-
ooe-
zoe”
90€”
60€"
906~
916"
0es”
6EG”
99G6°
6LG"
166°
865"
S09°
119"
¥I9°
819"
S29°
8€9°
169"
799"
066"
866"
L0O0"
ST0°
bre:
€8¢"
88¢-
162"
962"
S0¢g”
8LG"
FI8°
FS8”
688"
768°
6FT"
091"
¥OT”
SLT*

LVWVWOUTLFFFL LTI OOONMNOOOTNITOITITOTOIEOITNOOOMOMONNNNNNNE A A A A A A

=

5'/6

HO

ppm

45 40 35 30 25 20 15 1.0 05

5.0

80 75 7.0 65 6.0 55

8.5

_
PN
- 861
—60°L
- Jo'e

S6°0 ™~

: e

96°0 c

>

o

Q.

e

o

o

Y

o

€

>

—_

—

(&

o &

0oL )

x

Z

I

—

~

AN

(2]

[<B]

|-

>

2

LL

S33



dHU d MeOD C 08212014

41!

O =

T " \ " T ‘ T " \ " \ ‘ T " \ " \ ‘ T
200 180 160 140 120 100 80 60 40 20

Figure S28. 3C NMR spectrum of compound 3.

S34

ppm



dHU_d MeOD 2 1 C:\Bruker\TOPSPIN LLL M

| o
:J g 2 L= = e
; 2 B - e & :
. & i
T @E @ -
1= @ e — <t
Ie) © >0 £ i
\T _ @ ;m
HO -
ﬁoz i
N._O i
(0] \lé |
ﬁ =] : : =] o |
o} i
I T I I T I I T T
6 5 4 3 2 F2 [ppm]
Figure S29. COSY spectrum of compound 3.

S35



1

dHU_d MeOD 4 1 CA\Bruker\TOPSPjI M

120

Figure S30.

HO
2
oH T
NH
(0]
T T I T T T
5 4 3 2 F2 [ppm]

HSQC spectrum of compound 3.

S36

80 60 40 20 F1 [ppm]

100

140



dHU_d_ MeOD 5 1 C:\Bruker\TOPSPI

Ll

9o 0

Q

ot @p g 89
[ Q oo e
o E L3 08 °w

H4'/C1!

:av.
o X

&4

Figure S31.

o o
; HO -
_\j_oz
N @)
Y
NH
O
‘ T ‘ T T
6 5

HMBC spectrum of compound 3.

S37

2 F2 [ppm]

150 100 50 F1 [ppm]

200



dHU d MeOD 8 1 C:\Bruker\T

L b

F1 [ppm]

Figure S32.

NOESY spectrum of compound 3.

S38



08162014

dHU e MeOD

NSO MOOOMNMOOMNMOMNMO MMM NN NNAdA A AAAAAAO

on

OH
OH

5'/4

Ppm

1.0 0.5

1.5

s

2
@
o
—

.

=

ﬁ
—|od

3.5
& @

E

-
rc’. 2
<<

4.0
'H NMR spectrum of compound 4.

4.5

5.0

6.5

7.0

80 75

8.5

Figure S33.

S39



dHU e MeOD C 08162014

T ' \ ‘ | ' T " T " \ ' | ‘ \ " T " T ‘ | '
200 180 160 140 120 100 80 60 40 20 0 ppm

Figure S34. 3C NMR spectrum of compound 4.
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