Supplementary Material for the Manuscript - Synthesis of new DPP-4 inhibitors based on a novel tricyclic scaffold

Carolin Schwehm, Jin Li, Hongmei Song, Xiao Hu, Barrie Kellam, Michael Stocks

Contents

General Methods .. 2
Docking studies .. 3
Experimental Procedures... 3
Ethyl 3-(3-ethoxy-3-oxopropyl)-4-oxopiperidine-1-carboxylate (4) ... 3
Ethyl 3-(3-ethoxy-3-oxopropyl)-4-(methoxyimino) piperidine-1-carboxylate (5) 4
Ethyl 2-oxooctahydro-1,6-naphthyridine-6(2H)-carboxylate ... 4
Ethyl 2-thioxooctahydro-1,6-naphthyridine-6(2H)-carboxylate ... 5
General procedure 1,2,4 triazole formation... 6
Ethyl 1-(trifluoromethyl)-4,5,5a,8,9,9a-hexahydro-[1,2,4]triazolo[4,3-a][1,6]naphthyridine-7(6H)-
carboxylate ... 6
Ethyl 1-ethyl-4,5,5a,8,9,9a-hexahydro-[1,2,4]triazolo[4,3-a][1,6]naphthyridine-7(6H)-carboxylate. 6
Ethyl 1-(perfluoroethyl)-4,5,5a,8,9,9a-hexahydro-[1,2,4]triazolo[4,3-a][1,6]naphthyridine-7(6H)carboxylate (33) 7

General Method for amide coupling.. 8
tert-Butyl ((2R)-4-oxo-4-(1-(trifluoromethyl)-4,5,5a,8,9,9a-hexahydro-[1,2,4]triazolo[4,3-a][1,6]naphthyridin-7(6H)-yl)-1-(2,4,5-trifluorophenyl)butan-2-yl)carbamate8
tert-Butyl ((2R)-4-oxo-1-phenyl-4-(1-(trifluoromethyl)-4,5,5a,8,9,9a-hexahydro-[1,2,4]triazolo[4,3-a][1,6]naphthyridin-7(6H)-yl)butan-2-yl)carbamate9
tert-Butyl ((2R)-4-oxo-4-(1-(perfluoroethyl)-4,5,5a,8,9,9a-hexahydro-[1,2,4]triazolo[4,3- a][1,6]naphthyridin-7(6H)-yl)-1-(2,4,5-trifluorophenyl)butan-2-yl)carbamate 9
tert-Butyl ((2R)-4-(1-ethyl-4,5,5a,8,9,9a-hexahydro-[1,2,4]triazolo[4,3-a][1,6]naphthyridin-7(6H)-yl)-4-oxo-1-(2,4,5-trifluorophenyl)butan-2-yl)carbamate9
General method for deprotection 10
(3R)-3-Amino-1-(1-(trifluoromethyl)-4,5,5a,8,9,9a-hexahydro-[1,2,4]triazolo[4,3- a][1,6]naphthyridin-7(6H)-yl)-4-(2,4,5-trifluorophenyl)butan-1-one 10
(3R)-3-Amino-4-phenyl-1-(1-(trifluoromethyl)-4,5,5a,8,9,9a-hexahydro-[1,2,4]triazolo[4,3- a][1,6]naphthyridin-7(6H)-yl)butan-1-one 11
(3R)-3-amino-1-(1-(perfluoroethyl)-4,5,5a,8,9,9a-hexahydro-[1,2,4]triazolo[4,3- a][1,6]naphthyridin-7(6H)-yl)-4-(2,4,5-trifluorophenyl)butan-1-one 11
(3R)-3-Amino-1-(1-ethyl-4,5,5a, 8,9,9a-hexahydro-[1,2,4]triazolo[4,3-a][1,6]naphthyridin-7(6H)- yl)-4-phenylbutan-1-one hydrochloride 12
Ethyl 4-acetamidopiperidine-1-carboxylate (22) 12
Ethyl 4-(3-methyl-5-(trifluoromethyl)-4H-1,2,4-triazol-4-yl)piperidine-1-carboxylate (23) 13
tert-Butyl (R)-(4-(4-(3-methyl-5-(trifluoromethyl)-4H-1,2,4-triazol-4-yl)piperidin-1-yl)-4-oxo-1-
(2,4,5-trifluorophenyl)butan-2-yl)carbamate (40)13
(R)-3-Amino-1-(4-(3-methyl-5-(trifluoromethyl)-4H-1,2,4-triazol-4-yl)piperidin-1-yl)-4-(2,4,5- trifluorophenyl)butan-1-one hydrochloride (24) 14
Ethyl 3-(2-(tert-butoxy) 2-oxyethyl)-4-oxopiperidine-1-carboxylate (25) 14
Ethyl 4-(benzylamino)-3-(2-(tert-butoxy)-2-oxoethyl)piperidine-1-carboxylate (26) 15
Ethyl 2-oxohexahydro-1H-pyrrolo[3,2-c]pyridine-5(6H)-carboxylate (28/29) 15
Ethyl (3aS,7aR)-2-thioxooctahydro-5H-pyrrolo[3,2-c]pyridine-5-carboxylate (42) 16
Ethyl (4aR,8aS)-3-(trifluoromethyl)-4a,5,8a,9-tetrahydro-6H-[1,2,4]triazolo[4',3':1,5]pyrrolo[3,2- c]pyridine- $7(8 \mathrm{H}$)-carboxylate (30) 17
(R)-3-Amino-1-((4aR,8aS)-3-(trifluoromethyl)-4a,5,8a,9-tetrahydro-6H-
[1,2,4]triazolo[4',3':1,5]pyrrolo[3,2-c]pyridin-7(8H)-yl)-4-(2,4,5-trifluorophenyl)butan-1-one hydrochloride (31) 17

General Methods All reactions with air- and humidity- sensitive reagents were carried out under an atmosphere of nitrogen. The flasks were flushed with nitrogen. The liquids were added using plastic syringes. All starting materials, reagents and solvents were purchased from commercial suppliers e.g. Acros, Sigma Aldrich, Fluorochem, KeyOrganics and Merck. All solvents were either analytical reagent or HPLC grade and were supplied by Fisher Scientific. Dry solvents were used for all reactions and were purchased from Sigma Aldrich and VWR. The petrolether had a boiling point of 40 to $60^{\circ} \mathrm{C} . \mathrm{CDCl}_{3}$ was supplied by Cambridge Isotope Laboratories, $\mathrm{Inc}, \mathrm{MeOD}_{4}$ was supplied by Sigma Aldrich. All reactions were monitored for completion using TLC. Therefore commercially available pre-coated silica gel $60 \mathrm{~F}_{254}$ aluminium plates from Merck were used. Visualization of the spots was carried using the UV-lamp ($\lambda=254 \mathrm{~nm}$) and stained with KMnO_{4} or iodine and subsequently heated. Flash column chromatography was carried out using silica gel, technical grade, pore size $60 \AA$, 230-400 mesh particle size, $40-60 \mu \mathrm{~m}$ particle size purchased from Sigma Aldrich. The ${ }^{13} \mathrm{C}$ - and ${ }^{1} \mathrm{H}$ NMR spectra were recorded using a Bruker $A V$ (II) 500 spectrometer with a magnetic field strength of 9.4T. This is corresponding to a resonance frequency of 400 MHz for protons and around 100 MHz for the ${ }^{13} \mathrm{C}$ nucleus. All ${ }^{13} \mathrm{C}$-NMR are ${ }^{1} \mathrm{H}$-broadband-decoupled. The chemical shifts δ are given in [ppm] and all coupling constants J are given in $[\mathrm{Hz}]$. The spectra are referenced to the signal of the deuterated solvent: $\mathrm{CDCl}_{3}\left(\delta_{\mathrm{H}}=7.26, \delta_{\mathrm{C}}=77.16 \mathrm{ppm}\right)$ or $\mathrm{MeOD}_{4}\left(\delta_{\mathrm{H}}=3.31, \delta_{\mathrm{C}}=49.00 \mathrm{ppm}\right)$. The following abbreviations were used to describe signal shapes and multiplicity: s (singlet), bs (broad singlet), d (doublet), dd (doublet of doublet), ddd (doublet of doublet of a doublet), dddd (doublet of a doublet of a doublet of a doublet), t (triplet), dt (doublet of a triplet), q (quartet), dq (doublet of a quartet) and m (multiplet). Furthermore 2D-NMR experiments: COSY and HSQC were used for the assignment of the signals and the processing of the NMR data was carried out using the NMR software TopSpin 3.0. All high-resolution mass spectra (HRMS)- time to flight electrospray were recorded on a Waters 2795 spectrometer by electrospray ionization (TOF ES) and the LC-MS spectra were performed on a Shimadzu UFLCXR system coupled to an Applied Biosystems API2000, and visualized at 220 nm (channel 2) and 254 nm (channel 1). LC-MS was carried out using a Phenomenex Gemini-NX C18 110A, column ($50 \mathrm{~mm} \times 2 \mathrm{~mm} \times 3 \mu \mathrm{~m}$) at a flow rate $0.5 \mathrm{ml} / \mathrm{min}$ over a 5 min period. RP-HPLC was performed using a Waters 2767 sample manager, Waters 2525 binary gradient module, and visualised at 220 nm with a Waters 2487 dual wavelength absorbance detector. Spectra were analysed using MassLynx. Preparative HPLC was performed using a Phenomenex Gemini-NX 5u C18 110A, AXIA packed column ($160 \mathrm{~mm} \times 21.2 \mathrm{~mm}$) at a flow rate of $20 \mathrm{~mL} / \mathrm{min}$,
typically starting with 90% water/ 10% acetonitrile and progressing to 100% acetonitrile over 40 min. The water phase contained 0.01% ammonia. Preparative HPLC gradient method reported doesn't include requilibration time.

Docking studies

Figure s1 Compounds $\mathbf{2 a}$ and $\mathbf{2 b}$ as two 2 possible diastereomers (blue) docked into the DPP-4 active site (pdb code 1X70) shown overlaid with sitagliptin (magenta). The image was generated using PyMol.

Experimental Procedures

Ethyl 3-(3-ethoxy-3-oxopropyl)-4-oxopiperidine-1-carboxylate (4) To a solution of Ethyl-oxo-piperidone (3) ($20.0 \mathrm{~g}, 17.6 \mathrm{~mL}, 116 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in benzene (240 mL) was added pyrrolidine ($11.2 \mathrm{~g}, 13 \mathrm{~mL}, 158 \mathrm{mmol}, 1.35 \mathrm{eq}$.) and refluxed over night with a Dean-Stark trap. After one night the red mixture was distilled to remove benzene, water and pyrrolidine. The excess of benzene and pyrrolidine was reduced under reduced pressure. The dark red residue was again dissolved in benzene (240 mL) and ethyl acrylate ($23.2 \mathrm{~g}, 25.2 \mathrm{~mL}, 232 \mathrm{mmol}, 2.0$ eq.) and refluxed
for 20 h . Afterwards water (88 mL) was added to the black red solution and the mixture was again refluxed for 2 h . The phases were separated and the organic phase was dried over MgSO_{4}, filtered and the residue was evaporated under reduced pressure. The crude product was purified by flash chromatography (ethyl acetate/petrol ether: 1:4) and ethyl 3-(3-ethoxy-3-oxopropyl)-4-oxopiperidine-1-carboxylate was synthesized as a slightly yellow oil ($22 \mathrm{~g}, 69 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta / \mathrm{ppm} 4.19(\mathrm{q}, J=7.1,14.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.12(\mathrm{q}, J=7.0,14.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.15-4.11(\mathrm{~m}, 2 \mathrm{H}), 3.38(\mathrm{ddd}, J=$ $5.5,9.0,14.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{bs}, 1 \mathrm{H}), 2.51-2.32(\mathrm{~m}, 5 \mathrm{H}), 2.06(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.29(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.25(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm} 208.7,173.1,155.4,62.1$, $60.6,49.3,48.4,43.9,31.7,22.4,14.8,14.3$, LCMS $m / z 272.2[\mathrm{M}+\mathrm{H}]^{+}, 2.49 \mathrm{~min}$.

Ethyl 3-(3-ethoxy-3-oxopropyl)-4-(methoxyimino) piperidine-1-carboxylate (5) To a solution of ethyl 3-(1-((ethylperoxy)-12-methyl)-4-oxopiperidin-3-yl)propanoate (4) ($3.0 \mathrm{~g}, 11.0$ $\mathrm{mmol}, 1.0$ eq.) in pyridine (21 mL) was added O-methylhydroxylamine hydrochloride ($1.11 \mathrm{~g}, 13.3$ $\mathrm{mmol}, 1.2$ eq.) and the reaction was stirred at room temperature under a nitrogen atmosphere overnight. The reaction mixture was evaporated and diluted with diethyl ether (150 mL) and water $(150 \mathrm{~mL})$. The organic phase was washed with hydrochloric acid ($1 \mathrm{M}, 60 \mathrm{~mL}$) and brine (150 mL). The combined organic phases were dried over MgSO_{4}, filtered and the solvent was evaporated under reduced pressure to yield ethyl 3-(3-ethoxy-3-oxopropyl)-4-(methoxyimino)piperidine-1-carboxylate (5) as a yellow/orange oil ($2.80 \mathrm{~g}, 84 \%, 1: 1.5$ diastereomeric mixture). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta / \mathrm{ppm} 4.16-4.08(\mathrm{~m}, 4 \mathrm{H}), 3.85(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 1 \mathrm{H}),, 3.61(\mathrm{~m}, 1 \mathrm{H}), 3.39(\mathrm{~m}, 1 \mathrm{H}), 3.23(\mathrm{~m}, 1 \mathrm{H}), 2.92-$ $2.67(\mathrm{~m}, 2 \mathrm{H}), 2.43-2.21(\mathrm{~m}, 4 \mathrm{H}), 1.95(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.26,1.25(2 \mathrm{t}, J=7.47 \mathrm{~Hz}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm} 173.2,173.0,157.1,155.7,61.7,61.5,61.3,60.5,48.4,44.3$, 42.7, 40.6, 31.9, 24.9, 24.8, 14.7, 14.3, HRMS $m / z: \mathrm{C}_{14} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{5}$ calculated $301.1758[\mathrm{M}+\mathrm{H}]^{+}$, found 301.1699 .

Ethyl 2-oxooctahydro-1,6-naphthyridine-6(2H)-carboxylate (6) To a stirred solution of ethyl 3-(3-ethoxy-3-oxopropyl)-4-(methoxyimino)piperidine-1-carboxylate (5) ($200 \mathrm{mg}, 0.66 \mathrm{mmol}$,
1.0 eq.) in methanolic $\mathrm{NH}_{3}(7 \mathrm{~N}, 5 \mathrm{~mL})$ was added Raney nickel ($50 \mathrm{mg}, 50 \%$ slurry in water) and the resulting mixture was stirred under an hydrogen atmosphere overnight. The reaction mixture was filtered through Celite and the filter cake was washed with methanol ($3 \times 10 \mathrm{~mL}$). The solvent was evaporated under reduced pressure and the crude product was purified by flash chromatography (ethyl acetate / petrol ether / methanol $9: 1: 2$) to yield the 2 isomers of ethyl 2-oxooctahydro-1,6-naphthyridine- $6(2 H)$-carboxylate (6) : isomer $1: 40 \mathrm{mg}, 26 \%$; isomer $2: 90 \mathrm{mg}, 60 \%$, combined yield: $130 \mathrm{mg}, 86 \%$, both as colorless oils). 1. isomer (7b) ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm} 6.20$ (bs, $1 \mathrm{H}), 4.24,(\mathrm{bm}, 2 \mathrm{H}), 4.12(\mathrm{q}, J=7.6,14.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.06$ (dddd, $J=4.0,9.8,12.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.81-2.74$ $(\mathrm{m}, 1 \mathrm{H}), 2.52-2.34(\mathrm{~m}, 3 \mathrm{H}), 1.83-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.41(\mathrm{~m}, 3 \mathrm{H}), 1.24(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm} 172.2,155.4,61.7,56.4,47.3,42.3,38.9,32.2,30.9,24.5,14.7$. HMRS $m / z:$ $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3}$ calculated $227.1390[\mathrm{M}+\mathrm{H}]^{+}$, found 227.1265.

2 isomer (7a) ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm} 7.33(\mathrm{bs}, 1 \mathrm{H}), 4.11-4.04(\mathrm{~m}, 2 \mathrm{H}), 3.57-3.51$ (m, $3 \mathrm{H}), 3.40-3.36(\mathrm{~m}, 1 \mathrm{H}), 3.26-3.20(\mathrm{~m}, 1 \mathrm{H}), 3.15(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.03-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.62(\mathrm{~m}$, $4 \mathrm{H}), 1.20(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm} 172.6,155.6,61.7,50.6,44.7,40.5$, 32.7, 30.5, 28.9, 22.0, 14.9, HRMS $m / z: \mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3}$ calculated 227.1390[M+H] , found 227.1229.

Ethyl 2-thioxooctahydro-1,6-naphthyridine-6(2H)-carboxylate (8) To a solution of ethyl 2 -oxooctahydro-1,6-naphthyridine-6(2 H)-carboxylate ($7 \mathbf{7} / 7 \mathbf{b}$) $(80 \mathrm{mg}, 0.35 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in toluene (1 mL) was added Lawesson's reagent ($71 \mathrm{mg}, 0.17 \mathrm{mmol}, 0.5 \mathrm{eq}$.) and the mixture was refluxed for 20 min . The reaction mixture was evaporated under reduced pressure and purified by flash chromatography (ethyl acetate/ petrol ether: 10:1) to yield ethyl 2-thioxooctahydro-1,6-naphthyridine$6(2 \mathrm{H})$-carboxylate $(\mathbf{8 a} / \mathbf{8 b})$ as a colorless waxy oil. $1 . i$ isomer $(\mathbf{8 b}):(90 \%){ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta / \mathrm{ppm} 8.93(\mathrm{bs}, 1 \mathrm{H}), 4.24(\mathrm{bs}, 2 \mathrm{H}), 4.12(\mathrm{q}, J=7.2,14.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.14-3.03(\mathrm{~m}, 2 \mathrm{H}), 2.92-2.74$ (m, $2 \mathrm{H}), 2.46(\mathrm{bs}, 1 \mathrm{H}), 1.95(\mathrm{dq}, J=2.4,5.5,12.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.77-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.36(\mathrm{~m}, 3 \mathrm{H}), 1.23(\mathrm{t}$, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm} 202.9,155.4,61.8,59.0,47.5,42.4,39.1,37.9$, 31.1, 24.3, 14.7; LCMS m/z $243.2[\mathrm{M}+\mathrm{H}]^{+}, 2.16 \mathrm{~min}$.
2.isomer (8a): (94\%) ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm} 8.34(\mathrm{bs}, 1 \mathrm{H}), 4.12(\mathrm{dq}, J=2.3,7.2,14.4 \mathrm{~Hz}$, $2 H$, , , 3.64-3.52 (m, 3H), 3.46-3.42 (m, 1H), 3.33-3.27 (m, 1H), 2.93 (qt, J=7.1, 19.6, $40.4 \mathrm{~Hz}, 2 \mathrm{H}$), 2.10-2.06 (m, 1H), 1.88-1.72 (m, 4H), $1.25(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm}$ $202.1,155.7,61.7,53.1,44.9,40.6,37.7,31.7,29.3,21.4,14.9$, HRMS m/z: $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{H}_{2} \mathrm{O}_{2} \mathrm{~S}$ calculated $243.1162[\mathrm{M}+\mathrm{H}]+$, found 243.1003.

General procedure 1,2,4 triazole formation To a solution of ethyl 2-thioxooctahydro-1,6-naphthyridine- $6(2 \mathrm{H}$)-carboxylate ($\mathbf{8 a} / \mathbf{8 b}$) ($2.43 \mathrm{mmol}, 1 \mathrm{eq}$.) in toluene (20 mL) was added the corresponding hydrazide ($4.86 \mathrm{mmol}, 2$ eq.) and the mixture was refluxed at $110{ }^{\circ} \mathrm{C}$ for two nights. The solvent was evaporated and the crude product was purified by flash chromatography (dichloromethane/ methanol 10:1) to yield triazole.

Ethyl

1-(trifluoromethyl)-4,5,5a,8,9,9a-hexahydro-[1,2,4]triazolo[4,3-a][1,6]naphthyridine-7(6H)-carboxylate: 1.isomer (9b): ($40 \%)^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta / \mathrm{ppm} 4.35$ (bs, 2H), 4.12 (q, $J=7.2,14.0 \mathrm{~Hz}, 2 \mathrm{H}$), 3.82 (dt, $J=3.3,11.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.30-3.24 (ddd, $J=$ $1.49,5.06,17.15 \mathrm{~Hz}, 1 \mathrm{H}), 2.97-2.87(\mathrm{~m}, 2 \mathrm{H}), 2.70(\mathrm{bs}, 1 \mathrm{H}), 2.55(\mathrm{~d}, J=11.91 \mathrm{~Hz}, 1 \mathrm{H}), 1.97$ (ddt, $J=$ $1.42,6.31,13.19 \mathrm{~Hz}, 1 \mathrm{H}), 1.87-1.78$ (qq, $J=2.34,12.31 \mathrm{~Hz}, 1 \mathrm{H}), 1.70(\mathrm{dq}, J=5.05,12.42 \mathrm{~Hz}, 1 \mathrm{H})$, $1.56(\mathrm{dq}, J=5.05,12.84 \mathrm{~Hz}, 1 \mathrm{H}), 1.24(\mathrm{t}, J=7.11 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm} 155.2$, $154.9,117.9,114.9,62.0,61.0,47.6,42.5,41.0,30.8,23.5,22.9,14.7$, HRMS $m / z: \mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{2}$ calculated $319.1376[\mathrm{M}+\mathrm{H}]^{+}$, found 319.1276.
2.isomer (9a): (80%) ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm} 4.45$ (dt, $J=4.3,11.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.32 (bs, $2 \mathrm{H}), 4.12(\mathrm{~m}, 2 \mathrm{H}), 3.27$ (dd, $J=7.4,17.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{bs}, 1 \mathrm{H}), 2.96$ (ddd, $J=7.6,12.2,18.9 \mathrm{~Hz}, 1 \mathrm{H})$, $2.84(\mathrm{bs}, 1 \mathrm{H}), 2.22(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{dd}, J=5.4,12.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.97(\mathrm{~m}, 1 \mathrm{H}), 1.79(\mathrm{dq}, J=5.4,12.6,24.2$ $\mathrm{Hz}, 1 \mathrm{H}), 1.25(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm} 155.6,153.0,119.9$ (q), 61.8, 54.3, 47.0, 42.2, 33.5, 28.9, 20.8, 18.7, 14.5, HRMS m/z: $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{2}$ calculated $319.1376[\mathrm{M}+\mathrm{H}]^{+}$, found 319.1045.

Ethyl 1-ethyl-4,5,5a,8,9,9a-hexahydro-[1,2,4]triazolo[4,3-a][1,6]naphthyridine-7(6H)-carboxylate 1 .isomer (32b): (84%) ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ~ \delta / \mathrm{ppm} 4.36$ (bs, 2H), 4.16 (q, $J=7.5,14.5 \mathrm{~Hz}, 2 \mathrm{H}$), $3.65(\mathrm{td}, J=3.3,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.21$ (ddd, $J=1.6,5.0,16.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.96-2.70$ $(\mathrm{m}, 5 \mathrm{H}), 2.61(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{dd}, J=5.7,13.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.83-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.73(\mathrm{dq}, J=4.6,12.4 \mathrm{~Hz}$, $1 \mathrm{H}), 1.57(\mathrm{dq}, J=5.3,12.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.39(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.27(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}-\mathrm{NMR}(100$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta / \mathrm{ppm} 171.9,155.0,154.4,151.7,61.6,59.1,47.5,42.2,40.8,30.3,26.9,24.1,22.5$, 21.1, 14.4, 11.3 HRMS $m / z: \mathrm{C}_{14} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{2}$ calculated $279.1816[\mathrm{M}+\mathrm{H}]^{+}$, found 279.1455 .
2.isomer (32a): (60%) ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ~ \delta / \mathrm{ppm} 4.29$ (bs, 2H), 4.16-4.10 (m, 3H), 3.18 (dd, $J=6.5,17.8 \mathrm{~Hz}, \mathrm{bs}, 2 \mathrm{H}), 2.90(\mathrm{~m}, 2 \mathrm{H}), 2.73$ (dq, $J=8.0,15.4,26.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.16$ (bd, $J=12.5 \mathrm{~Hz}, 1 \mathrm{H})$, 1.97 (dq, $J=6.25,15.1,25.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{bd}, J=11.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.76(\mathrm{dq}, J=5.3,13.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.43$ $(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{t}, J=8.0,3 \mathrm{H}){ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm} 171.1,155.7,153.7,150.0$, 61.8, 52.2, 47.5, 42.4, 34.1, 28.7, 21.3, 19.7, 18.4, 14.7, 11.5 HRMS $m / z: \mathrm{C}_{14} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{2}$ calculated $279.1816[\mathrm{M}+\mathrm{H}]^{+}$, found 279.2473 .

Ethyl
1-(perfluoroethyl)-4,5,5a,8,9,9a-hexahydro-[1,2,4]triazolo[4,3-
a][1,6]naphthyridine-7(6H)-carboxylate (33) To a solution of ethyl 2-thioxooctahydro-1,6-naphthyridine- $6(2 \mathrm{H}$)-carboxylate ($\mathbf{8 a} / \mathbf{8 b}$) ($380 \mathrm{mg}, 1.57 \mathrm{mmol}, 1 \mathrm{eq}$.) in THF (16 mL) was added hydrazine hydrate $(0.64 \mathrm{~mL}, 50-60 \%)$ and the mixture was heated to $60^{\circ} \mathrm{C}$ for one hour. The reaction was cooled to rt and the solvent was removed under an nitrogen atmosphere. To the greenish oil pentafluoro propionic acid ($0.46 \mathrm{~mL}, 0.71 \mathrm{~g}, 4.37 \mathrm{mmol}, 2.8 \mathrm{eq}$.) was added followed by polyphosphoric acid and the mixture was refluxed for 2 days at $150^{\circ} \mathrm{C}$. The reaction mixture was neutralized with $\mathrm{NH}_{4} \mathrm{OH}$ and the aqueous phase was extracted with ethyl acetate ($3 \times 40 \mathrm{~mL}$). The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated under reduced pressure. The crude product was purified by flash chromatography (dichloromethane/ methanol 10:1) to yield ethyl 1-(perfluoroethyl)-4,5,5a,8,9,9a-hexahydro-[1,2,4]triazolo[4,3-a][1,6]naphthyridine-7(6H)carboxylate (33a/33b) as a yellowish oil.
1.isomer (33b): (8%), ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta / \mathrm{ppm} 4.39$ (bs, 2 H), 4.15 (q, $J=7.60,14.03 \mathrm{~Hz}$, 2 H), 3.86 (td, $J=2.9,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{dd}, J=5.2,16.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.01-2.90(\mathrm{~m}, 2 \mathrm{H}), 2.75$ (bs, 1 H), 2.66 (d, $J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.03-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.74(\mathrm{ddd}, J=4.8,12.7,23.8 \mathrm{~Hz}, 1 \mathrm{H})$, 1.59 , (ddd, $J=4.8,13.8,26.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, HRMS $m / z \mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~F}_{5} \mathrm{~N}_{4} \mathrm{O}_{2}$ calculated $369.1344[\mathrm{M}+\mathrm{H}]^{+}$, found 369.1207 .
2.isomer (33a): (34%) ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm} 4.45$ (dt, $J=5.14,12.17 \mathrm{~Hz}, 1 \mathrm{H}$), 4.20 (bs, $2 \mathrm{H}), 4.07-3.99(\mathrm{~m}, 2 \mathrm{H}), 3.16(\mathrm{dd}, J=6.1,18.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{bs}, 1 \mathrm{H}), 2.87-2.79$ (m, 2H), 2.19 (bd, $J=$ $12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.05-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.72$ (ddd, $J=4.4,11.9,23.9,37.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.15$ $(\mathrm{t}, J=7.07 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm} 155.5,153.1,141.4,61.7,54.7,54.6,50.1$, 46.9, 42.2, 33.5, 29.1, 20.1, 18.5, 14.4 LC/MS m/z: $369.0[\mathrm{M}+\mathrm{H}]^{+}$.

$\mathrm{R}_{2}=\mathrm{CF}_{3}(9 \mathrm{~b})$, (Et) 32b,
$\left(\mathrm{CF}_{2} \mathrm{CF}_{3}\right)$ 33b

$\mathrm{R}_{2}=\mathrm{CF}_{3}$ (9a), (Et) (32a),
$\mathrm{CF}_{2} \mathrm{CF}_{3}$ (33a)

1) KOH ethanol/water
2) $\mathrm{EDCI}, \mathrm{HOBt}$, DMF

$\mathrm{R}_{1}=\mathrm{F}, \mathrm{H}$

General Method for amide coupling

To a solution of the substituted triazole ($\mathbf{9} \mathbf{a} / \mathbf{9 b}, \mathbf{3 2} \mathbf{a} / \mathbf{3 2 b}, \mathbf{3 3 a} / \mathbf{3 3 b}$) ($0.41 \mathrm{mmol}, 1 \mathrm{eq}$.) in ethanol (0.44 $\mathrm{mL})$ and water $(2.50 \mathrm{~mL})$ was added $\mathrm{KOH}(1.80 \mathrm{mmol}, 4.4 \mathrm{eq}$.$) and the mixture was refluxed at 110$ ${ }^{\circ} \mathrm{C}$ for one night. The reaction mixture was extracted with DCM (10 mL). The organic phase was dried over MgSO4, filtered and the solvent was evaporated and the crude product was used as it is. To a solution of amine ($0.33 \mathrm{mmol}, 1$ eq.) in DMF (1 mL) was added (R)-3-((tert-butoxycarbonyl)amino)-4-(2,4,5-trifluorophenyl)butanoic acid (11)/ (R)-3-((tert-butoxycarbonyl)amino)-4-phenylbutanoic acid (10) $(0.34 \mathrm{mmol}, 1.05 \mathrm{eq})$, $\operatorname{EDCI}(0.38 \mathrm{mmol}, 1.2 \mathrm{eq})$ and $\operatorname{HOBt}(0.38 \mathrm{mmol}, 1.2 \mathrm{eq}$.$) and the mixture$ was stirred at rt overnight. The reaction mixture was diluted with ethyl acetate $(20 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$. The water phase was extracted with ethyl acetate (3 x 20 mL). The combined organic phases were washed with saturated aqueous $\mathrm{NaCl}(20 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the crude product was purified by flash chromatography (dichloromethane/ methanol: 10:1) to yield amide ($\mathbf{3 4 a} / \mathbf{3 4 b}, \mathbf{3 5 a} / \mathbf{3 5 b}, \mathbf{3 6 a} / \mathbf{3 6 b}, \mathbf{3 7 a} / \mathbf{3 7 b}$).

tert-Butyl

((2R)-4-oxo-4-(1-(trifluoromethyl)-4,5,5a,8,9,9a-hexahydro-[1,2,4]triazolo[4,3-a][1,6]naphthyridin-7(6H)-yl)-1-(2,4,5-trifluorophenyl)butan-2yl)carbamate 1 .isomer ($\mathbf{3 6 b}$): Purity (100%) by $\operatorname{HPLC}\left(t_{\mathrm{R}}=11.17 \mathrm{~min}\right)$, ($\left.91 \%\right)^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm} 7.06(\mathrm{~m}, 1 \mathrm{H}), 6.88(\mathrm{~m}, 1 \mathrm{H}), 5.33(\mathrm{~m}, 1 \mathrm{H}), 4.87(\mathrm{~m}, 1 \mathrm{H}), 4.01(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{dt}, J=4.1$, $11.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.33(\mathrm{~m}, 1 \mathrm{H}), 3.22(\mathrm{~m}, 1 \mathrm{H}), 2.99-2.93 .(\mathrm{m}, 2 \mathrm{H}), 2.74-2.46(\mathrm{~m}, 5 \mathrm{H}), 2.07-1.63(\mathrm{~m}, 4 \mathrm{H})$, $1.35(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm} 169.2,157.4,155.4,154.9,154.6,150.0$ (3), 147.9 (2), 147.6 (2), 145.5 (2), 143.3, 142.9, 122.0, 121.7, 120.3, 119.3, 119.1, 105.6 (2), 105.3 (2), 79.6, 60.8 (2), 49.3, 48.4, 45.2, 44.2 (2), 41.5 (2), 40.8 (2), 40.2, 36.5, 33.1, 31.3, 30.5, 28.3, 23.6, 22.7 (2), HRMS $m / z: \mathrm{C}_{25} \mathrm{H}_{30} \mathrm{~N}_{5} \mathrm{~F}_{6} \mathrm{O}_{3}$ calculated $562.2247[\mathrm{M}+\mathrm{H}]^{+}$, found 562.2310 , calculated 506.1621 [M$t \mathrm{Bu}]^{+}$, found 506.1642, calculated 462.1723 [M-Boc] ${ }^{+}$, found 462.1769 .
2.isomer (36a): Purity (100%) by $\mathrm{HPLC}\left(t_{\mathrm{R}}=11.20 \mathrm{~min}\right)$, $(77 \%),{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm}$ $7.03(\mathrm{~m}, 1 \mathrm{H}), 6.85(\mathrm{~m}, 1 \mathrm{H}), 5.42(\mathrm{dt}, J=8.3,40.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.84-4.75(\mathrm{~m}, 1 \mathrm{H}), 4.51(\mathrm{~m}, 1 \mathrm{H}), 4.11-4.01$ $(\mathrm{m}, 1 \mathrm{H}), 3.97-3.86(\mathrm{~m}, 1 \mathrm{H}), 3.40(\mathrm{~m}, 1 \mathrm{H}), 3.28-3.11(\mathrm{~m}, 1 \mathrm{H}), 2.97-2.84(\mathrm{~m}, 4 \mathrm{H}), 2.72-2.47(\mathrm{~m}, 2 \mathrm{H})$, $2.31(\mathrm{bs}, 1 \mathrm{H}), 2.14(\mathrm{~m}, 1 \mathrm{H}), 2.02-1.72(\mathrm{~m}, 3 \mathrm{H}), 1.34-1.31(2 \mathrm{~m}, 9 \mathrm{H}),{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta / \mathrm{ppm} 169.2,155.4,152.9,152.5,142.8,119.3,119.1,117.7,105.7,105.5,105.3,79.7,54.2,48.8$ (3), 48.4, 44.8, 44.2, 40.1 (2), 36.7, 36.1, 33.8 (2), 33.7 (2), 33.5, 33.0, 31.1, 29.7, 28.4, 21.1,20.9, 19.1, 18.9, HRMS $m / z: \mathrm{C}_{25} \mathrm{H}_{30} \mathrm{~N}_{5} \mathrm{~F}_{6} \mathrm{O}_{3}$ calculated $562.2247[\mathrm{M}+\mathrm{H}]^{+}$found 562.2108, calculated 506.1621 $[\mathrm{M}-\mathrm{tBu}]^{+}$, found 506.1627, calculated 462.1723 [M-Boc] ${ }^{+}$, found 462.1449 .
tert-Butyl ((2R)-4-oxo-1-phenyl-4-(1-(trifluoromethyl)-4,5,5a,8,9,9a-hexahydro-[1,2,4]triazolo[4,3-a][1,6]naphthyridin-7(6H)-yl)butan-2-yl)carbamate
1.isomer (37b): Purity (100%) by HPLC $\left(t_{\mathrm{R}}=10.53 \mathrm{~min}\right)$, $(75 \%){ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm}$ 7.25-7.14 (m, 5H), 5.44-5.20 (m, 1H), $4.80(\mathrm{t}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.12-4.05(\mathrm{~m}, 1 \mathrm{H}), 3.93-3.76(\mathrm{~m}, 2 \mathrm{H})$, 3.28-3.06 (m, 2H), 3.00-2.75 (m, 5H), 2.61-2.40 (m, 3H), 2.03-1.50 (m, 3H), 1.35, $1.34(2 \mathrm{~s}, 9 \mathrm{H}){ }^{13} \mathrm{C}-$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta / \mathrm{ppm} 169.6,155.5,154.9$, 138.2 (4), 129.4, 129.2, 128.5, 128.4, 126.6, 126.4, 79.4, 60.7 (4), 49.3 (2), 45.2 (2), 44.2 (2), 41.3, 40.8, 40.5, 40.3, 40.1, 28.3, 23.4, 23.3, 22.7, 22.6 HRMS m/z: $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{~N}_{5} \mathrm{~F}_{3} \mathrm{O}_{3}$ calculated $508.2530[\mathrm{M}+\mathrm{H}]^{+}$, found 508.2567, calculated 452.1965 $[\mathrm{M}-t \mathrm{Bu}]^{+}$, found 452.1946, calculated $408.2006[\mathrm{M}-\mathrm{Boc}]^{+}$, found 408.2015 .
2.isomer (37a): Purity (100%) by HPLC ($t_{\mathrm{R}}=10.50 \mathrm{~min}$), (80%) ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm}$ 7.26-7.16 (m, 5H), $5.49(\mathrm{~m}, 0.5 \mathrm{H}), 5.4(\mathrm{~m}, 0.5 \mathrm{H}), 4.83-4.73(\mathrm{~m}, 1 \mathrm{H}), 4.51-4.44(\mathrm{~m}, 1 \mathrm{H}), 4.15-4.05$ $(\mathrm{m}, 1 \mathrm{H}), 3.89-3.67(\mathrm{~m}, 1 \mathrm{H}), 3.32-2.78(\mathrm{~m}, 7 \mathrm{H}), 2.64-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.40-2.13(\mathrm{~m}, 4 \mathrm{H}), 1.54-1.34(\mathrm{~m}$, 9H), ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm} 170.4,155.5,138.2,129.4$ (3), 128.6 (3), 126.6 (4), 54.1, 48.7 (2), 44.7 (2), 44.1 (2), 40.1, 39.9, 33.8, 33.6 (2), 28.4, 20.9 (2), 18.8 (2) HRMS m/z: $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{~N}_{5} \mathrm{~F}_{3} \mathrm{O}_{3}$ calculated $508.2530[\mathrm{M}+\mathrm{H}]^{+}$, found 508.2540 , calculated $452.1904[\mathrm{M}-t \mathrm{Bu}]^{+}$, found 452.1946 .

tert-Butyl
 ((2R)-4-oxo-4-(1-(perfluoroethyl)-4,5,5a,8,9,9a-hexahydro-[1,2,4]triazolo[4,3-a][1,6]naphthyridin-7(6H)-yl)-1-(2,4,5-trifluorophenyl)butan-2yl)carbamate

1 isomer (34b):, HPLC ($\mathrm{t}_{R}=19.43 \mathrm{~min}$) ($\left.90 \%\right)^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm} 7.06(\mathrm{~m}, 1 \mathrm{H}), 6.88$ $(\mathrm{m}, 1 \mathrm{H}), 5.38(\mathrm{~m}, 1 \mathrm{H}), 4.87(\mathrm{~m}, 1 \mathrm{H}), 4.10(\mathrm{~m}, 1 \mathrm{H}), 4.01(\mathrm{~m}, 1 \mathrm{H}), 3.35-3.25(\mathrm{~m}, 2 \mathrm{H}), 3.03-2.87(\mathrm{~m}$, $5 \mathrm{H}), 2.75-2.45(\mathrm{~m}, 3 \mathrm{H}), 2.08-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.60(\mathrm{~m}, 3 \mathrm{H}), 1.40-1.32(\mathrm{~m}, 9 \mathrm{H})$, LC/MS 612.3 $[\mathrm{M}+\mathrm{H}]^{+}$
2.isomer (34a): HPLC ($\mathrm{t}_{R}=18.85 \mathrm{~min}$) $(98 \%){ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm} 7.05(\mathrm{~m}, 1 \mathrm{H}), 6.85$ $(\mathrm{m}, 1 \mathrm{H}), 5.65-5.20(\mathrm{~m}, 1 \mathrm{H}), 4.86-4.73(\mathrm{~m}, 0.5 \mathrm{H}), 4.59-4.48(\mathrm{~m}, 0.5 \mathrm{H}), 4.44-4.24(\mathrm{~m}, 0.5 \mathrm{H}), 4.17-4.01$ $(\mathrm{m}, 1.5 \mathrm{H}), 3.96-3.84(\mathrm{~m}, 1 \mathrm{H}), 3.41(\mathrm{~m}, 2 \mathrm{H}), 3.09-2.75(\mathrm{~m}, 6 \mathrm{H}), 2.72-2.43(\mathrm{~m}, 2 \mathrm{H}), 2.36-2.16(\mathrm{~m}, 1 \mathrm{H})$, 2.11-1.77 (m, 2H), 1.38-1.30 (m, 9H), ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm} 169.8,169.6,155.4,155.0$, $153.2,152.8,150.1,147.6$ (3), 141.6, 121.9, 119. 5(3), 105.6 (4), 79.6, 54.6, 48.7 (2), 44.8, 44.2 (2), 40.1 (2), 36.8, 33.7 (3), 29.8, 29.0, 28.3, 20.9 (2), 18.6, HRMS $m / z \mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~F}_{8} \mathrm{~N}_{5} \mathrm{O}_{3}$ calculated 612.2215 $[\mathrm{M}+\mathrm{H}]^{+}$, found 612.2228, calculated $556.1589[\mathrm{M}-t \mathrm{Bu}]^{+}$, found 556.1579, calculated 512.1691 [MBoc ${ }^{+}$, found 512.1726.

tert-Butyl
 ((2R)-4-(1-ethyl-4,5,5a,8,9,9a-hexahydro-[1,2,4]triazolo[4,3-a][1,6]naphthyridin-7(6H)-yl)-4-oxo-1-(2,4,5-trifluorophenyl)butan-2yl)carbamate

1.isomer (35b): ($60 \%)^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm} 6.99(\mathrm{~m}, 1 \mathrm{H}), 6.80(\mathrm{~m}, 1 \mathrm{H}), 5.54(\mathrm{~m}, 1 \mathrm{H})$, $4.73(2 \mathrm{~d}, J=14.0,15.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.03-3.83(\mathrm{~m}, 3 \mathrm{H}), 3.69(\mathrm{dt}, J=3.5,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.22-3.06(\mathrm{~m}, 2 \mathrm{H})$,
2.94-2.37 (m, 8H), $1.92(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.40(\mathrm{~m}, 3 \mathrm{H}), 1.26(\mathrm{~m}, 12 \mathrm{H}),{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 169.1,157.4,155.4,154.9,154.6,154.4,151.8$ (2), 150.0, 147.6 (2), 143. 2, $122 .(2), 119.0$ (3), 105.3 (4), 79.4, 59.2 (2), 49.492),48.2, 45.2, 44.0, 41.4, 40.8, 40.0, 33.0, 31.0, 30.9, 30.2 (2), 28.2, 24.3, 22. 6 (2), 21.2 (2), 11.4 HRMS $m / z: \mathrm{C}_{26} \mathrm{H}_{34} \mathrm{~N}_{5} \mathrm{~F}_{3} \mathrm{O}_{3}$ calculated $522.2687[\mathrm{M}+\mathrm{H}]^{+}$, found 522.4608.
2.isomer (35a): (31%) ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta / \mathrm{ppm} 7.05-6.97(\mathrm{~m}, 1 \mathrm{H}), 6.87-6.79(\mathrm{~m}, 1 \mathrm{H})$, $5.60-5.43$ (ddd, $J=9.9,13.4,37.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.70(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 0.5 \mathrm{H})$, $4.20(\mathrm{~m}, 1 \mathrm{H}), 4.07(\mathrm{~m}, 1 \mathrm{H}), 3.89(\mathrm{~m}, 1 \mathrm{H}), 3.37(\mathrm{~m}, 0.5 \mathrm{H}), 3.16(\mathrm{~m}, 1.5 \mathrm{H}), 2.95-2.73(\mathrm{~m}, 3 \mathrm{H}), 2.70-$ $2.49(\mathrm{~m}, 5 \mathrm{H}), 2.20(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.59(\mathrm{~m}, 4 \mathrm{H}), 1.36(\mathrm{t}, J=7.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.30,1.28(2 \mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta / \mathrm{ppm} 169.6,169.5,157.4$ (2), 155.4, 155.0, 154.9, 153.6(2), 150.0, 149.7, 149.4, 119.1, 119.1, 105.3 (4), 51.8 (2), 48.9, 45.0, 44.0, 39.9, 34.1 (2), 33.9 (2), 32.8, 29.1, 28.3, 21.0, 20.9, 19.4, 18.2, 11.4 (2) HRMS $m / z: \mathrm{C}_{26} \mathrm{H}_{34} \mathrm{~N}_{5} \mathrm{~F}_{3} \mathrm{O}_{3}$ calculated $522.2687[\mathrm{M}+\mathrm{H}]^{+}$, found 522.2107, calculated $466.2061[\mathrm{M}-t \mathrm{Bu}]^{+}$, found 466.1626 .

$\mathrm{R}_{2}=\mathrm{CF}_{3}(36 \mathrm{a} / 37 \mathrm{a})$,
$\mathrm{CF}_{2} \mathrm{CF}_{3}$ (34a), Et (35a)
General method for deprotection To amide (34a/34b, 35a/35b, 36a/36b, 37a/37b) (0.08 mmol, 1 eq.) was added 4 N HCl in dioxane (0.5 mL) and stirred at rt for 30 min . The HCl solution was evaporated under N_{2} gas to yield HCl salt of amine ($\mathbf{2 a} / \mathbf{2 b}, \mathbf{1 2 a} / \mathbf{1 2 b}, \mathbf{1 3}, \mathbf{1 4 , 1 5 , 1 6}, \mathbf{3 8} \mathbf{a} / \mathbf{3 8 b}$, 39a/39b) as oils.
(3R)-3-Amino-1-(1-(trifluoromethyl)-4,5,5a,8,9,9a-hexahydro-[1,2,4]triazolo[4,3-a][1,6]naphthyridin-7(6H)-yl)-4-(2,4,5-trifluorophenyl)butan-1-one
Compounds were separated using chiral HPLC using Diacel Chiralpak IC, $5 \mu \mathrm{~m}, 20 \times 250 \mathrm{~mm}$ at 15 $\mathrm{ml} / \mathrm{min}$ at 265 nm over 30 min . The solvents were iso-hexane containing 0.2% diethylamine and ethanol in a 30:70 ratio to give two separated compounds per isomer.
1.isomer (2b,15, 16): A: Purity (100%) by $\operatorname{HPLC}\left(t_{\mathrm{R}}=7.87 \mathrm{~min}\right),{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm}$ $7.10-7.03(\mathrm{~m}, 1 \mathrm{H}), 6.93-6.87(\mathrm{~m}, 1 \mathrm{H}), 4.91-4.82(\mathrm{~m}, 1 \mathrm{H}), 4.04(2 \mathrm{~d}, J=13.7,14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{dt}, J=$ $3.8,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{~m}, 1 \mathrm{H}), 3.36-3.29(\mathrm{~m}, 1 \mathrm{H}), 3.23(\mathrm{dt}, J=2.6,13.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.00-2.91(\mathrm{~m}, 2 \mathrm{H})$, 2.81-2.68 (m, 3H), 2.63-2.33 (m, 3H), 2.07-1.93 (m, 1H), 1.82-1.58 (m, 4H)

B: Purity (100%) by $\operatorname{HPLC}\left(t_{\mathrm{R}}=15.13 \mathrm{~min}\right),{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm} 7.11-7.03(\mathrm{~m}, 1 \mathrm{H})$, 6.95-6.88 (m, 1H), 4.93-4.83 (m, 1H), 4.07 (d, J=14.0 Hz, 1H), 3.96-3.87 (m, 1H), 3.58-3.52 (m, 1H), $3.38-3.30(\mathrm{~m}, 1 \mathrm{H}), 3.21(\mathrm{dt}, J=2.5,13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.05-2.91(\mathrm{~m}, 2 \mathrm{H}), 2.82-2.74(\mathrm{~m}, 1 \mathrm{H}), 2.70-2.62(\mathrm{~m}$, $2 \mathrm{H}), 2.52-2.35(\mathrm{~m}, 3 \mathrm{H}), 2.08-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.58(\mathrm{~m}, 4 \mathrm{H})$
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{MeOD}_{4}\right)$ §/ppm 169.8 (2), 169.7, 163.4, 159.2, 157.9, 156.8, 152.1 (2), 149.6, $149.3,146.9,144.5,144.1,120.7$, 120.5 (2), 117.8, 107.2, 107.0, 106.9, 106.7, 73.5, 72.4, 63.1, 63.0, $62.1,45.9,44.7,43.7,41.2$ (2), 40.6, 35.1 (2), 34.9 (2), 32.3, 31.3, 30.7, 22.7 (2), 22.6 LC/MS (A) $\mathrm{m} / \mathrm{z}: 462.2[\mathrm{M}+\mathrm{H}]^{+} 1.95 \mathrm{~min},(B) \mathrm{m} / \mathrm{z}: 462.2[\mathrm{M}+\mathrm{H}]^{+}, 1.97 \mathrm{~min}$,
2.isomer (2a, 13, 14): A: Purity (100%) by $\operatorname{HPLC}\left(t_{\mathrm{R}}=5.78 \mathrm{~min}\right),{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm}$ 7.10-7.03 (m, 1H), 6.95-6.88 (m, 1H), $4.87(\mathrm{dd}, J=1.8,14.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{dt}, J=4.8,11.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.94(\mathrm{t}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.58-3.51(\mathrm{~m}, 1 \mathrm{H}), 3.43-3.13(\mathrm{~m}, 2 \mathrm{H}), 3.04-2.87(\mathrm{~m}, 1 \mathrm{H}), 2.80-2.74(\mathrm{~m}, 2 \mathrm{H})$, 2.67-2.63 (m, 1H), 2.47-2.39 (m, 1H), 2.29-2.22 (m, 2H), 2.09-2.01 (m, 2H), 1.89-1.84 (m, 2H), 1.74 (m, 2H)

B: Purity (99%) by HPLC $\left(t_{\mathrm{R}}=18.86 \mathrm{~min}\right),{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm} 7.10-7.01(\mathrm{~m}, 1 \mathrm{H})$, 6.95-6.87 (m, 1H), $4.86(\mathrm{dt}, J=1.5,13.4 \mathrm{~Hz}, \mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{dt}, J=4.7,14.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{t}$, $J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~m}, 1 \mathrm{H}), 3.49-3.10(\mathrm{~m}, 2 \mathrm{H}), 3.04-2.93(\mathrm{~m}, 1 \mathrm{H}), 2.87(\mathrm{dd}, J=2.8,13.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.78(\mathrm{dd}, J=5.7,13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.67-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.44-2.28(\mathrm{~m}, 3 \mathrm{H}), 2.20-1.95(\mathrm{~m}, 3 \mathrm{H}), 1.88-1.68$ (m, 3H)
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{MeOD}_{4}\right) \delta / \mathrm{ppm} 170.4$ (2), 170.0 (2), 159.2, 156.5, 156.3, 149.7, 149.3, 147.0, $146.9,144.3,143.9,120.7,120.5,120.1,117.4,107.2$ (2), 106.9, 106.7, 73.5, 72.4, 62.1, 57.1, 45.4 (2), 44.4, 43.7, 34.8, 34.0, 33.8, 32.4, 32.3, 28.9, 21.0, 18.3, 18.2, HRMS m/z: $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{5} \mathrm{~F}_{6} \mathrm{O}$ calculated $462.1723[\mathrm{M}+\mathrm{H}]^{+}$, found 462.1732 . (B) m/z: $462.2[\mathrm{M}+\mathrm{H}]^{+} 1.95 \mathrm{~min}$,

(3R)-3-Amino-4-phenyl-1-(1-(trifluoromethyl)-4,5,5a,8,9,9a-hexahydro-[1,2,4]triazolo[4,3-a][1,6]naphthyridin-7(6H)-yl)butan-1-one

1.isomer (12b): Purity (100%) by HPLC ($t_{\mathrm{R}}=7.80 \mathrm{~min}$), ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{MeOD}_{4}\right) \delta / \mathrm{ppm} 7.40-$ $7.29(\mathrm{~m}, 5 \mathrm{H}), 4.80-4.64(\mathrm{~m}, 1 \mathrm{H}), 3.97-3.79(\mathrm{~m}, 2 \mathrm{H}), 3.52-3.42(\mathrm{~m}, 1 \mathrm{H}), 3.26-2.34(\mathrm{~m}, 12 \mathrm{H}), 2.14-1.82$ $(\mathrm{m}, 3 \mathrm{H}){ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 8/ppm 170.5 (4), 136.9 (3), 130.4 (4), 130.2 (2), 128.6, 121.1, $118.9,55.4,51.5$ (4), 45.8, 44.6 (2), 41.1, 40.9, 39.6, 39.4 (3), 34.7, 34.6 (3), 34.2, 30.2, 30.0, 29.5, 24.2, 21.6 (4), 19.7, 19.5 (2), 19.3 HRMS $m / z: \mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{5} \mathrm{~F}_{3} \mathrm{O}$ calculated $408.2006[\mathrm{M}+\mathrm{H}]^{+}$, found 408.1962.
2.isomer (12a): Purity (100 \%) by HPLC ($\left.t_{\mathrm{R}}=7.85 \mathrm{~min}\right),{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{MeOD}_{4}\right) \delta / \mathrm{ppm} 7.39-$ $7.26(\mathrm{~m}, 5 \mathrm{H}), 4.80-4.70(\mathrm{~m}, 1 \mathrm{H}), 4.19(\mathrm{t}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{dd}, J=13.6,26.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.93-3.83$ $(\mathrm{m}, 1 \mathrm{H}), 3.25-3.19(\mathrm{~m}, 4 \mathrm{H}), 3.09-2.53(\mathrm{~m}, 6 \mathrm{H}), 2.07-1.65(\mathrm{~m}, 3 \mathrm{H}),{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{MeOD}_{4}\right)$ $\delta / \mathrm{ppm} 170.1,136.8,130.4,130.1,128.6,61.8,59.9,51.5,46.2,44.7,41.9,41.7,41.4,41.3,39.5,34.8$, 34.6, 23.9, 23.7, 23.3 LC/MS m/z: $408.3[\mathrm{M}+\mathrm{H}]^{+}$

(3R)-3-amino-1-(1-(perfluoroethyl)-4,5,5a,8,9,9a-hexahydro-[1,2,4]triazolo[4,3-a][1,6]naphthyridin-7(6H)-yl)-4-(2,4,5-trifluorophenyl)butan-1-one

1.isomer (39b): ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{MeOD}_{4}\right) \delta / \mathrm{ppm} 7.39-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.21(\mathrm{~m}, 1 \mathrm{H}), 4.78-4.70$ $(\mathrm{m}, 1 \mathrm{H}), 4.22(\mathrm{~m}, 1 \mathrm{H}), 4.04(\mathrm{~m}, 1 \mathrm{H}), 3.87-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{~m}, 1 \mathrm{H}), 3.21-3.18(\mathrm{~m}, 1 \mathrm{H}), 3.13-2.93$ $(\mathrm{m}, 6 \mathrm{H}), 2.90-2.78(\mathrm{~m}, 2 \mathrm{H}), 2.73-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.06-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.66(\mathrm{~m}$, $1 \mathrm{H}),{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{MeOD}_{4}\right) \delta / \mathrm{ppm} 169.9,169.7,157.3$ (2), 120.6 (2), 120.4, 107.3, 107.1,
$107.0,106.9,62.0,46.3,44.6,42.3,41.7$ (2), 41.3, 35.2, 32.7, 23.9, 23.8, 23.4, LC/MS m/z 512.2 $[\mathrm{M}+\mathrm{H}]^{+}, 2.09 \mathrm{~min}$.
2.isomer (39a): ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{MeOD}_{4}\right) \delta / \mathrm{ppm} 7.40-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.19(\mathrm{~m}, 1 \mathrm{H}), 4.77-4.66$ $(\mathrm{m}, 2 \mathrm{H}), 4.01(\mathrm{~m}, 2 \mathrm{H}), 3.90-3.81(\mathrm{~m}, 2 \mathrm{H}), 3.56-3.47(\mathrm{~m}, 1 \mathrm{H}), 3.27-3.02(\mathrm{~m}, 5 \mathrm{H}), 2.95-2.65(\mathrm{~m}, 2 \mathrm{H})$, 2.50-2.41 (m, 1H), 2.22-1.86 (m, 4H) ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{MeOD}_{4}\right) \delta / \mathrm{ppm} 170.4$ (2), 170.1, 165.0, 159.2 (2), 156.8, 156.6, 152.1, 151.9, 149.6, 149.5, 149.3, 147.0 (2), 147.0, 146.9, 142.9, 120.7, 120.5, $107.2,107.1$ (2), 106.7, 92.2, 73.5,72.4, 63.5, 62.1, 60.6, 57.7, 45.4, 44.5, 43.8, 40.1, 37.4, 34.8 (2), $34.0,33.9,32.4,32.3,29.8,29.1,21.0,18.1(2), 17.9, \mathrm{LC} / \mathrm{MS} m / z 512.2[\mathrm{M}+\mathrm{H}]^{+}, 2.08 \mathrm{~min}$.

(3R)-3-Amino-1-(1-ethyl-4,5,5a,8,9,9a-hexahydro-[1,2,4]triazolo[4,3-a][1,6]naphthyridin-7(6H)-yl)-4-phenylbutan-1-one hydrochloride

1.isomer (38b): Purity (100%) by HPLC $\left(t_{\mathrm{R}}=7.30 \mathrm{~min}\right),{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{MeOD}_{4}\right) \delta / \mathrm{ppm} 7.31-$ $7.23(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.10(\mathrm{~m}, 1 \mathrm{H}), 4.71(\mathrm{~m}, 1 \mathrm{H}), 4.28(\mathrm{~m}, 1 \mathrm{H}), 4.11-4.00(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{~m}, 1 \mathrm{H}), 3.38-$ $2.62(\mathrm{~m}, 12 \mathrm{H}), 2.01-1.59(\mathrm{~m}, 4 \mathrm{H}), 1.35(\mathrm{~m}, 3 \mathrm{H}){ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{MeOD}_{4}\right) \delta / \mathrm{ppm} 170.2,170.0$, $156.8,120.6,120.5,107.2,107.1$ (2), 106.8, 54.4, 45.6 (2), 44.5, 41.0, 40.9, 34.8, 34.7 (2), 34.2, 34.0, $32.4,32.3,32.2$, 28.8 (2), 28.1, 20.8 (2), 18.9, 18.8 (2), 18.6, 10.2 (2) HRMS $m / z: \mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{5} \mathrm{~F}_{3} \mathrm{O}$ calculated $422.2166[\mathrm{M}+\mathrm{H}]^{+}$, found 422.1171 .
2.isomer (38a): Purity (100%) by HPLC ($t_{\mathrm{R}}=7.22 \mathrm{~min}$), ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{MeOD}_{4}\right) \delta / \mathrm{ppm} 7.43-$ $7.34(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.19(\mathrm{~m}, 1 \mathrm{H}), 4.81-4.65(\mathrm{~m}, 2 \mathrm{H}), 4.10(\mathrm{~m}, 0.5 \mathrm{H}), 3.91(\mathrm{~m}, 0.5 \mathrm{H}), 3.89-3.79(\mathrm{~m}$, $1 \mathrm{H}), 3.29-3.19(\mathrm{~m}, 3 \mathrm{H}), 3.14-2.45(\mathrm{~m}, 8 \mathrm{H}), 2.37(\mathrm{~m}, 1 \mathrm{H}), 2.17-1.81(\mathrm{~m}, 5 \mathrm{H}), 1.45(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H})$ ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{MeOD}_{4}\right) \delta / \mathrm{ppm} 169.8,169.7,169.6,120.6,120.4,107.3,107.1,107.0,106.8$, 61.0 (2), 46.2, 44.7, 41.6 (2), 41.2 (2), 34.9 (3), 34.7, 32.4, 31.3 (2), 30.7, 24.1, 23.8 (2), 22.7, 21.7, 11.1 (2), HRMS m/z: $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{5} \mathrm{~F}_{3} \mathrm{O}$ calculated $422.2166[\mathrm{M}+\mathrm{H}]^{+}$, found 422.1016.

Ethyl 4-acetamidopiperidine-1-carboxylate (22) To ethyl 4-aminopiperidine-1-carboxylate (21) ($500 \mathrm{mg}, 0.5 \mathrm{~mL}, 2.9 \mathrm{mmol}, 1 \mathrm{eq}$.) in dichloromethane (12 mL) was added acetic acid anhydride $(325 \mathrm{mg}, 0.3 \mathrm{~mL}, 3.2 \mathrm{mmol}, 1.1 \mathrm{eq}$.) and triethylamine ($878 \mathrm{mg}, 1.2 \mathrm{~mL}, 8.7 \mathrm{mmol}, 3 \mathrm{eq}$.) and the reaction mixture was stirred overnight. The mixture was diluted with dichloromethane and the organic phases were washed with water. The organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent evaporated under reduced pressure to yield ethyl 4 -acetamidopiperidine-1-carboxylate (22) (520 mg , 84%) as a white solide.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm} 5.49(\mathrm{bs}, 1 \mathrm{H}), 4.12(\mathrm{q}, J=7.5,14.6 \mathrm{~Hz}, 4 \mathrm{H}), 3.93(\mathrm{~m}, 1 \mathrm{H}), 2.89(\mathrm{t}$, $J=12.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 1.91(\mathrm{~d}, \mathrm{~J}=14.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.34-1.27(\mathrm{~m}, 2 \mathrm{H}), 1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$,
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad 8 / \mathrm{ppm} 169.5,155.6,61.5,46.7,42.9,32.1, \quad 23.6,14.8$.

22

1) POCl_{3}

2) 2 M HCl

23

Ethyl 4-(3-methyl-5-(trifluoromethyl)-4H-1,2,4-triazol-4-yl)piperidine-1-

carboxylate (23) $\mathrm{POCl}_{3}(0.39 \mathrm{~g}, 0.24 \mathrm{~mL}, 2.6 \mathrm{mmol}, 3 \mathrm{eq}$. $)$ was added to ethyl 4-acetamidopiperidine-1-carboxylate (22) ($180 \mathrm{mg}, 0.84 \mathrm{mmol}, 1 \mathrm{eq}$.) in a mixture of chloroform (0.55 $\mathrm{mL})$ and pyridine $(0.41 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The solvent was evaporated under nitrogen using toluene and leave standing overnight. To the brownish slurry in chloroform $(0.5 \mathrm{~mL})$ trifluoroacetic acid hydrazide ($164 \mathrm{mg}, 1.28 \mathrm{mmol}, 1.5 \mathrm{eq}$.) was added and the mixture was refluxed for 5 h . The reaction mixture was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$. The aqueous phase was extracted with dichloromethane ($3 \times 20 \mathrm{~mL}$) and the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was evaporated under reduced pressure. To the residue was added $2 \mathrm{M} \mathrm{HCl}(1.2 \mathrm{~mL})$ and the mixture was refluxed for 4 h . The reaction mixture was evaporated under nitrogen and diluted with saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and dichloromethane $(20 \mathrm{~mL})$. The aqueous phase was extracted with dichloromethane ($2 \times 20 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent evaporated under reduced pressure. The crude product was purified by flash chromatography (dichloromethane/ methanol 10:1) to yield ethyl 4-(3-methyl-5-(trifluoromethyl)-4H-1,2,4-triazol-4-yl)piperidine-1carboxylate (23) (30 mg, 15\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm} 4.26-4.19(\mathrm{~m}, 3 \mathrm{H}), 4.02(\mathrm{q}, J=6.7,14.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.81-2.68(\mathrm{bt}, J=$ $11.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 1.95(\mathrm{dq}, J=5.0,12.7,24.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.84(\mathrm{~m}, 2 \mathrm{H}), 1.15(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ §/ppm 154.9, 153.7, 119.7 (q), 61.6, 55.7, 49.9, 43.1, 30.4, 14.4, 13.2 LCMS m/z: $307.1[\mathrm{M}+\mathrm{H}]^{+}, 2.41 \mathrm{~min}$.

23
tert-Butyl (R)-(4-(4-(3-methyl-5-(trifluoromethyl)-4H-1,2,4-triazol-4-yl)piperidin-1-yl)-4-oxo-1-(2,4,5-trifluorophenyl)butan-2-yl)carbamate (40) To ethyl 4-(3-methyl-5-(trifluoromethyl)-4H-1,2,4-triazol-4-yl)piperidine-1-carboxylate (23) ($30 \mathrm{mg}, 0.098 \mathrm{mmol}, 1 \mathrm{eq}$.) in ethanol ($84 \mu \mathrm{~L}$) and water (0.48 mL) was added $\mathrm{KOH}(36 \mathrm{mg}, 0.64 \mathrm{mmol}, 6.5 \mathrm{eq}$.) and the mixture was refluxed for overnight. The reaction mixture was diluted with water (5 mL) and the aqueous phase was extracted with dichloromethane ($6 \times 10 \mathrm{~mL}$). The organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvents were evaporated. The crude amine ($12 \mathrm{mg}, 0.051 \mathrm{mmol}, 1$ eq.) in DMF (1 mL) was added (R)-3-((tert-butoxycarbonyl)amino)-4-(2,4,5-trifluorophenyl)butanoic acid (11) (19 mg, 0.057 mmol, 1.1eq.) followed by EDCI ($12.5 \mathrm{mg}, 0.08 \mathrm{mmol}, 1.4 \mathrm{eq}$.) and $\mathrm{HOBt}(8.7 \mathrm{mg}, 0.057 \mathrm{mmol}, 1$
eq.) and stirred for overnight at rt. The crude mixture was evaporated under reduced pressure and the crude product was purified by flash chromatography (dichloromethane/ methanol 10:1) and tert-butyl (R)-(4-(4-(3-methyl-5-(trifluoromethyl)-4H-1,2,4-triazol-4-yl)piperidin-1-yl)-4-oxo-1-(2,4,5-trifluorophenyl)butan-2-yl)carbamate (40) $(25 \mathrm{mg}, 93 \%)$ was yielded.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm} 7.08-6.99(\mathrm{~m}, 1 \mathrm{H}), 6.88-6.81(\mathrm{~m}, 1 \mathrm{H}), 5.52(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 0.5 \mathrm{H})$, $5.42(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.86(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.38-4.29(\mathrm{~m}, 1 \mathrm{H}), 4.12-3.96(\mathrm{~m}, 2 \mathrm{H}), 3.12(\mathrm{dt}, J=$ 3.1, $14.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.90-2.82(\mathrm{~m}, 2 \mathrm{H}), 2.69-2.49(\mathrm{~m}, 6 \mathrm{H}), 2.15-1.92(\mathrm{~m}, 4 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta / \mathrm{ppm} 169.2,169.0,155.4,153.9$ (2), 144.6, 144.2, 122.6, 122.0, 121.8, 119.2 (2), $117.2,105.3$ (4), 79.5, 55.7, 48.3, 45.0, 44.8, 41.0, 37.2, 33.3, 33.0, 31.2, 31.0, 20.4, 30.2, 28.3, 13.4 (2) LCMS m/z $550.3[\mathrm{M}+\mathrm{H}]^{+}, 2.84 \mathrm{~min}$.

(R)-3-Amino-1-(4-(3-methyl-5-(trifluoromethyl)-4H-1,2,4-triazol-4-yl)piperidin-1-yl)-4-(2,4,5-trifluorophenyl)butan-1-one hydrochloride (24) To tert-butyl (R)-(4-(4-(3-methyl-5-(trifluoromethyl)-4H-1,2,4-triazol-4-yl)piperidin-1-yl)-4-oxo-1-(2,4,5-trifluorophenyl)butan-2-yl)carbamate ($\mathbf{4 0}$) ($25 \mathrm{mg}, 0.04 \mathrm{mmol}, 1$ eq.) was added 4 N HCl in dioxane (0.5 mL) and stirred at rt for 30 min . The HCl solution was evaporated under N_{2} gas to yield HCl salt (24) as an oil.

Purity (100%) by HPLC ($t_{\mathrm{R}}=8.37 \mathrm{~min}, 8.48 \mathrm{~min}$), ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm} 7.41-7.34(\mathrm{~m}$, $1 \mathrm{H}), 7.27-7.20(\mathrm{~m}, 1 \mathrm{H}), 4.78(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{bs}, 1 \mathrm{H}), 4.05(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{bs}$, $1 \mathrm{H}), 3.33-3.26(\mathrm{~m}, 4 \mathrm{H}), 3.08(\mathrm{~m}, 2 \mathrm{H}), 2.95(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.84-2.67(\mathrm{~m}, 2 \mathrm{H}), 2.64,2.62(2 \mathrm{~s}$, 3H), 2.19-2.04 (m, 3H), ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm} 169.8,169.7,165.2,163.4,158.9$ (2), 156.9 (3), $151,8,151,7,151.6,149.8$ (2), 149.7, 149.1 (2), 149.0 (2), 147.2 (2), 147.1 (2), 145.7, $145.3,145.0,144.7,129.6,121.7,120.8$ (2), 120.6, 119. 6, 117.4, 117.2, 115.3, 112.3, 107.1106 .9 (2), 106.7, 73.4, 72.3, 64.2, 62.0, 59.8, 50.3, 45.3, 41.7 (2), 37.7, 35.4,34.9 (3), 32.3 (3), 31.4, 31.3, 30.7 (2), 12.7 (2) LCMS m/z $450.2[\mathrm{M}+\mathrm{H}]^{+}, 1.96 \mathrm{~min}$.

Ethyl 3-(2-(tert-butoxy) 2-oxyethyl)-4-oxopiperidine-1-carboxylate (25) Tо а solution of diisopropylamine ($5.6 \mathrm{~g}, 7.8 \mathrm{~mL}, 55.6 \mathrm{mmol}, 1.9 \mathrm{eq}$.) in THF (175 mL) at $0^{\circ} \mathrm{C}$ was added $n-\operatorname{BuLi}(18.5 \mathrm{~mL}, 2.5 \mathrm{M}$ in hexane, $46.2 \mathrm{mmol}, 1.6 \mathrm{eq}$.) and the mixture was stirred for 30 min . The mixture was cooled to $-78^{\circ} \mathrm{C}$ and ethyl 4-oxopiperidine-1-carboxylate (3) ($5.0 \mathrm{~g}, 4.4 \mathrm{~mL}, 29.2 \mathrm{mmol}, 1$ eq.) was added and the mixture was stirred for an additional 30 min at $-78^{\circ} \mathrm{C}$. A solution of tertbutylbromoacetate ($9.2 \mathrm{~g}, 7.0 \mathrm{~mL}, 47.2 \mathrm{mmol}, 1.62 \mathrm{eq}$.) in THF (17.5 mL) and HMPT (2.9 mL) was
added and the yellow reaction mixture was warmed gradually to room temperature overnight. The mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(200 \mathrm{~mL})$, the phases were separated and the aqueous phase was extracted with ethylacetate ($3 \times 200 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4}, filtered and the solvent was evaporated under reduced pressure. The crude product was purified by flash chromatography (petrol ether / ethyl acetate: 3:1) to yield ethyl 3-(2-(tert-butoxy)-2-oxoethyl)-4-oxopiperidine-1-carboxylate (25) in 50% yield.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm} 4.34(\mathrm{bs}, 2 \mathrm{H}), 4.13(\mathrm{q}, J=7.0,14.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.21(\mathrm{~m}, 1 \mathrm{H}), 2.94-$ $2.80(\mathrm{~m}, 2 \mathrm{H}), 2.64-2.50(\mathrm{~m}, 2 \mathrm{H}), 2.39(\mathrm{t}, J=3.9 \mathrm{~Hz}, 0.68 \mathrm{H}), 2.35(\mathrm{t}, J=4.3 \mathrm{~Hz}, 0.32 \mathrm{H}), 2.25-2.18(\mathrm{~m}$, $1 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm} 207.2,170.6,155.2$, 80.9, 61.9, 47.9, 46.5, 43.6, 40.7, 32.7, 28.0, 14.6.

Ethyl 4-(benzylamino)-3-(2-(tert-butoxy)-2-oxoethyl)piperidine-1-carboxylate

(26) To a solution of ethyl 3-(2-(tert-butoxy)-2-oxoethyl)-4-oxopiperidine-1-carboxylate (25) (1.43 g, $5.01 \mathrm{mmol}, 1.0$ eq.) in dichloroethane (22 mL) was added benzylamine ($0.65 \mathrm{~mL}, 0.63 \mathrm{~g}, 5.90 \mathrm{mmol}$, 1.17 eq.) and sodium triacetoxyborohydride ($1.80 \mathrm{~g}, 8.53 \mathrm{mmol}, 1.70 \mathrm{eq}$.). The resulting mixture was stirred overnight under an atmosphere of dry nitrogen. The reaction mixture was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(150 \mathrm{~mL}$) and the aqueous phase was extracted with ethyl acetate (3×150 $\mathrm{mL})$. The combined organic layers were dried over MgSO_{4}, filtered and the solvent was evaporated under reduced pressure. The crude product was purified by flash chromatography (petrol ether / ethyl acetate, 1:5) to yield ethyl 4-(benzylamino)-3-(2-(tert-butoxy)-2-oxoethyl)piperidine-1-carboxylate (26) as a clear colourless oil ($1.77 \mathrm{~g}, 94 \%$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm} 7.34-7.31,7.29-7.23(\mathrm{~m}, 5 \mathrm{H}), 4.12(\mathrm{q}, J=7.1,14.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.04-$ $3.69(\mathrm{~m}, 5 \mathrm{H}), 3.11-2.89(\mathrm{~m}, 1 \mathrm{H}), 2.86-2.81(\mathrm{~m}, 1 \mathrm{H}), 2.74-2.46(\mathrm{~m}, 2 \mathrm{H}), 2.37-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.18-2.12$ $(\mathrm{m}, 1 \mathrm{H}), 1.91-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.45(9 \mathrm{H}, \mathrm{s}), 1.24(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}-\mathrm{NMR}(100$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta / \mathrm{ppm} 172.5,155.8,155.4,140.6,140.4,128.4,128.3$ (2), 128.1 (2), 126.9 (2), 82.6, $80.4,80.3,62.2,61.5,61.2,59.2,50.9,50.4,45.9,42.5,42.4,28.2,14.7$ (2), HRMS $m / z: \mathrm{C}_{22} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{4}$ calculated $377.2435[\mathrm{M}+\mathrm{H}]^{+}$, found 377.2422 .

Ethyl 2-oxohexahydro-1H-pyrrolo[3,2-c]pyridine-5(6H)-carboxylate (28/29) To a solution of ethyl 4-(benzylamino)-3-(2-(tert-butoxy)-2-oxoethyl)piperidine-1-carboxylate (26) (1.70 g, $4.52 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in $\mathrm{MeOH}(50 \mathrm{~mL})$ was added hydrochloric acid $(0.6 \mathrm{M}, 4 \mathrm{~mL})$ and the reaction
mixture was stirred for 4 days. A further aliquot of hydrochloric acid (conc., 1 mL) was added and the mixture was stirred for a further two days. The reaction mixture was evaporated under a reduced pressure and subsequently diluted in $\mathrm{MeOH}(30 \mathrm{~mL})$ and dilute hydrochloric acid $(0.5 \mathrm{M}, 2 \mathrm{~mL})$. The reaction was stirred for 48 hours at room temperature. After evaporation the crude product was obtained as the hydrochloride salt and was used without further purification. To a solution of the hydrochloride salt ($550 \mathrm{mg}, 1.49 \mathrm{mmol}, 1.0$ eq.) in $\mathrm{MeOH}(15 \mathrm{~mL})$ was added $\mathrm{Pd} / \mathrm{C}(10 \% \mathrm{w} / \mathrm{w}, 100$ mg) and the reaction mixture was stirred at room temperature overnight under an atmosphere of hydrogen. The reaction mixture was filtered through Celite and the filter cake was washed with MeOH $(3 \times 10 \mathrm{~mL})$ and the filtrate was evaporated to ethyl 4-amino-3-(2-methoxy-2-oxoethyl)piperidine-1carboxylate hydrochloride (41) which was used without further purification. To a solution of crude product (1-(ethoxycarbonyl)-3-(2-methoxy-2-oxoethyl)piperidin-4-aminium chloride ($\mathbf{4 1}$) in $\mathrm{MeOH}(6 \mathrm{~mL})$ was added anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($200 \mathrm{mg}, 1.4 \mathrm{mmol}$) and the reaction mixture was stirred overnight at room temperature. The reaction mixture was quenched with water (30 $\mathrm{mL})$ and the aqueous phase was extracted with ethyl acetate $(3 \times 30 \mathrm{~mL})$. The combined organic layers were dried over MgSO 4 , filtered and the solvent was evaporated under reduced pressure. The crude product was purified by flash chromatography (ethyl acetate / petrol ether/ methanol: 10:1:1) to yield ethyl 2-oxohexahydro- $1 H$-pyrrolo[3,2-c]pyridine- $5(6 H)$-carboxylate $(\mathbf{2 8} / \mathbf{2 9})$ which were separated by flash column chromatography to afford two isomers: isomer $1(168 \mathrm{mg}, 16 \%)$ and isomer $2(286 \mathrm{mg}$, 28%), combined: $454 \mathrm{mg}, 45 \%$)

1 isomer (28) ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm} 6.29(\mathrm{bs}, 1 \mathrm{H}), 4.34(\mathrm{bm}, 2 \mathrm{H}), 4.12(\mathrm{q}, J=7.4,13.3$ $\mathrm{Hz}, 2 \mathrm{H}), 3.19$ (dddd, $J=3.7,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.84-2.74(\mathrm{~m}, 2 \mathrm{H}), 2.32(\mathrm{dd}, J=6.7,15.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.08$ $(\mathrm{dd}, J=12.9,15.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.01-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.54(\mathrm{dddd}, J=4.4,12.9,24.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.25(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta / \mathrm{ppm} 178.2,156.2,61.5,60.4,59.5,46.4,43.8,42.5,34.9$, 14.7, m.p. 104-105 ${ }^{\circ} \mathrm{C}$, HRMS $m / z: \mathrm{C}_{10} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3}$ calculated 213.1234[M+H] , found 213.0807.
2. isomer (29) ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm} 7.22(\mathrm{bs}, 1 \mathrm{H}), 4.05(\mathrm{q}, J=7.4,14.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.80$ $(\mathrm{q}, J=4.8,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{dd}, J=5.1,13.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.46-3.41(\mathrm{~m}, 1 \mathrm{H}), 3.24$ (dddd, $J=3.6,9.7$, $13.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{dd}, J=7.1,13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{bs}, 1 \mathrm{H}), 2.38(\mathrm{dd}, J=10.6,17.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.97(\mathrm{dd}$, $J=4.7,16.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.87-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.18(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm} 178.4,155.5,61.5,51.1,43.6,39.3,34.9,27.6,21.2,14.7$, HRMS m/z: $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{KN}_{2} \mathrm{O}_{3}$ calculated $251.0793[\mathrm{M}+\mathrm{K}]^{+}$, found 251.0761.

Ethyl (3aS,7aR)-2-thioxooctahydro-5H-pyrrolo[3,2-c]pyridine-5-carboxylate (42)
To a solution of ethyl 2-oxohexahydro-1 H-pyrrolo[3,2-c]pyridine- $5(6 H)$-carboxylate (29) (70 mg , $0.33 \mathrm{mmol}, 1$ eq.) in toluene (0.5 mL) was added Lawesson's reagent ($77 \mathrm{mg}, 0.19 \mathrm{mmol}, 0.57 \mathrm{eq}$.) and refluxed at $110^{\circ} \mathrm{C}$ for 40 min . The mixture was evaporated under reduced pressure and the curde product was purified by flash chromatography (ethylacetate/petrolether: 10:1) to yield ethyl (3aS,7aR)-2-thioxooctahydro-5H-pyrrolo[3,2-c]pyridine-5-carboxylate (42) (50 mg, 66\%) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm} 9.11(\mathrm{bs}, 1 \mathrm{H}), 4.10(\mathrm{~m}, 3 \mathrm{H}), 3.71-3.68(\mathrm{~m}, 2 \mathrm{H}), 3.23(\mathrm{t}, J=10.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.11(\mathrm{dd}, J=8.1,13.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{dd}, J=6.9,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.66-2.58(\mathrm{~m}, 2 \mathrm{H})$, , 1.94-1.80 $(\mathrm{m}, 2 \mathrm{H}), 1.21(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm} 204.9,171.2,155.7,134.0,61.7$, $58.8,47.4,42.8,39.1,26.3,14.6$.

Ethyl
(4aR,8aS)-3-(trifluoromethyl)-4a,5,8a,9-tetrahydro-6H-[1,2,4]triazolo[4',3':1,5]pyrrolo[3,2-c]pyridine-7(8H)-carboxylate (30) To a solution of ethyl (3aS,7aR)-2-thioxooctahydro-5H-pyrrolo[3,2-c]pyridine-5-carboxylate (42) ($54 \mathrm{mg}, 0.26$ $\mathrm{mmol}, 1 \mathrm{eq}$.$) in toluene (2 \mathrm{~mL}$) was added trifluoroacetic acid hydrazide ($61 \mathrm{mg}, 0.47 \mathrm{mmol}, 2 \mathrm{eq}$.) and refluxed for 3 nights. The crude mixture was evaporated under reduced pressure and the crude product was purified by intensive flash chromatography (dichlormethane/methanol 10:1) to yield, ethyl (4aR,8aS)-3-(trifluoromethyl)-4a,5,8a,9-tetrahydro-6H-[1,2,4]triazolo[4',3':1,5]pyrrolo[3,2-c]pyridine-7(8H)-carboxylate (30) (70\%) as a yellowish oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm} 4.60(\mathrm{q}, J=7.0,13.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-4.11$ (dq, $J=2.0,7.1,14.1 \mathrm{~Hz}$, $2 \mathrm{H}), 3.91(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~m}, 1 \mathrm{H}), 3.45$ (d, $J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.33$ (m, 1H), 3.13 (dd, $J=8.2,16.7 \mathrm{~Hz}$, $2 \mathrm{H}), 2.82(\mathrm{dd}, J=8.8,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-2.22(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.24(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$ ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta / \mathrm{ppm} 162.8,157.9$ (2), 141.2 (2), 117.4 (q), 62.0, 55.5, 42.3, 39.6, 27.7, 24.3, 14.6 HRMS $m / z: \mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~F}_{3}$ calculated $305.1220[\mathrm{M}+\mathrm{H}]^{+}$, found 305.1140 .

30

(R)-3-Amino-1-((4aR,8aS)-3-(trifluoromethyl)-4a,5,8a,9-tetrahydro-6H-

[1,2,4]triazolo[4',3':1,5]pyrrolo[3,2-c]pyridin-7(8H)-yl)-4-(2,4,5-
trifluorophenyl)butan-1-one hydrochloride (31) To a solution of carbamate (30) (54 mg , 0.17 mmol , leq.) in water/ethanol ($1.25 \mathrm{~mL}: 0.22 \mathrm{~mL}$) was added potassium hydroxide ($100 \mathrm{mg}, 1.73$ $\mathrm{mmol}, 10 \mathrm{eq}$) and refluxed at $110^{\circ} \mathrm{C}$ for one night. The mixture was diluted with water and dichloromethane and the aqueous phase was extracted with dichloromethane ($6 \times 10 \mathrm{~mL}$). The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was evaporated under reduced pressure to yield amine (23 mg) as a colorless oil. The crude amine was diluted with DMF (1 mL) and HOBt ($16 \mathrm{mg}, 0.10 \mathrm{mmol}$) and EDCI ($23 \mathrm{mg}, 0.15 \mathrm{mmol}$) and (R)-3-((tert-
butoxycarbonyl)amino)-4-(2,4,5-trifluorophenyl)butanoic acid (11) ($38 \mathrm{mg}, 0.14 \mathrm{mmol}$). The mixture was stirred at rt overnight. The crude product was purified by flash chromatography to yield amide (43) ($20 \mathrm{mg}, 37 \%$). LCMS m/z: $548.2[\mathrm{M}+\mathrm{H}]^{+}, 2.09 \mathrm{~min}$. To Boc-protected amide (43) (20 mg , $0.03 \mathrm{mmol}, 1$ eq.) was added 4 N HCl in dioxane $(0.5 \mathrm{~mL})$ and stirred at rt for 30 min . The HCl solution was evaporated under N_{2} gas to yield HCl salt (31) as an oil.

Purity (100%) by HPLC ($\left.t_{\mathrm{R}}=8.47 \mathrm{~min}\right),{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{MeOD}_{4}\right) \delta / \mathrm{ppm} 7.40-7.30(\mathrm{~m}, 1 \mathrm{H})$, 7.27-7.17 (m, 1H), 4.29-4.22 (m, 1H), 3.89-3.80 (m, 2H), 3.76-3.65 (m, 2H), 3.60-3.35 (m, 2H), 3.26$3.14(\mathrm{~m}, 1 \mathrm{H}), 3.08-3.00(\mathrm{~m}, 2 \mathrm{H}), 2.88-2.58(\mathrm{~m}, 3 \mathrm{H}), 2.36(\mathrm{~m}, 1 \mathrm{H}), 1.88(\mathrm{~m}, 1 \mathrm{H}),{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, CDCl_{3}) $\delta / \mathrm{ppm} 173.4,171.9,171.1,170.9,170.5,170.4,165.1,159.0,158.9,157.0,156.9,151.9$, $149.9,149.2$ (2), 147.3 (2), 129.6, 128.3, 127.2, 120.8, 120.6, 120.5, 118.7, 11.5, 107.2 (3), 106.9, $106.8,73.5,72.4,62.1,57.2$ (2), 56.9, 52.7, 45.2 (2), 43.7, 43.5 (2), 41.8 (2), 39.2, 36.4 (2), 35.2, 35.0 , 34.9 (2), 32.3 (2), 28.6, 27.7 (2), 24.9, 24.8 (2), HRMS $m / z: \mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{OF}_{6}$ calculated 448.1567 $[\mathrm{M}+\mathrm{H}]^{+}$, found 448.1568 .

