Supporting Information

Discovery of potent hexapeptide agonists to human neuromedin U receptor 1 and identification of their serum metabolites

Kentaro Takayama[†], Kenji Mori[‡], Yuko Sohma[†], Koji Taketa[†], Akihiro Taguchi[†], Fumika Yakushiji[†], Naoto Minamino[§], Mikiya Miyazato[‡], Kenji Kangawa[‡], Yoshio Hayashi[†]*

Table of contents

Materials and Methods	page S2
Analytical HPLC chromatograms	page S5
¹ H NMR spectra	page S13
Figure S1	page S15
Figure S2	page S16
Figure S3	page S17

1. Materials

Reagents and solvents were purchased from Wako Pure Chemical Ind. (Osaka, Japan), and Sigma-Aldrich (St. Louis, MO), Nacalai Tesque (Kyoto, Japan), Watanabe Chemical Ind. (Hiroshima, Japan), and Tokyo Chemical Ind. (Tokyo, Japan). All reagents were used as received. Sterile Alfa Modified Eagle Minimum Essential Medium (α -MEM)-Nucleoside, Hank's Balanced Salt Solution (HBSS), and fetal calf serum (FCS) were purchased from Life Technologies (Carlsbad, CA). Sterile 100-mm dishes and 96-well black-walled plates with clear bottoms were purchased from Iwaki (Tokyo, Japan) and Corning (Cambridge, MA), respectively. Rat and human serum were purchased from Sigma-Aldrich. RPMI-1640 was purchased from Wako Pure Chemical Ind. Sep-Pak[®] C18 Plus cartridges were purchased from Waters (Milford, MA).

2. Synthesis of Peptide Derivatives

The purities of all novel peptides were >95% as assessed by RP-HPLC analysis using a C18 reverse-phase column [4.6 x 150 mm; YMC Pack ODS-AM 302 (column 1), Waters SunFire C18 5 μ m (column 2), COSMOSIL 5C₁₈-AR-II (column 3)] with a binary solvent system: a linear gradient of CH₃CN (columns 1 and 2: 5-65%, 40 min; column 3: 10-60%, 100 min) in 0.1% aqueous TFA at a flow rate of 0.9 mL/min (column 1) or 1.0 mL/min (columns 2 and 3), detected by UV at 230 nm (columns 1 and 2) or 220 nm (column 3). Column 3 was used for metabolite analysis. Yields of all products obtained as a white powder were calculated as TFA salts. High-resolution mass spectrometric data (ESI-TOF MS) was obtained using a Micromass LCT. ¹H NMR spectra were obtained on a Bruker Avance III spectrometer (400 MHz) with TMS as an internal standard. ¹H NMR spectra were obtained on a Bruker Avance III spectrometer (400 MHz) with TMS as an internal standard. Analytical data of novel synthetic peptide derivatives in this study show following;

4b: Yield of 76%; HRMS (TOF MS ES+) m/z 973.4824 (M+H)⁺ (calcd for C₄₆H₇₀N₁₅O₈ 973.4830); HPLC (column 2) 100% (t_R = 20.27 min).

4c: Yield of 83%; HRMS (TOF MS ES+) m/z 959.4655 (M+H)⁺ (calcd for C₄₃H₆₅N₁₄O₈ 959.4674); HPLC (column 2) 100% (t_R = 18.95 min).

4d: Yield of 69%; ¹H NMR (400 MHz, D₂O) δ 7.53 (d, J = 7.9 Hz, 1H), 7.47 (d, J = 8.2 Hz, 1H), 7.33-7.28 (m, 4H), 7.22 (t, J = 7.3 Hz, 1H), 7.12 (t, J = 7.5 Hz, 1H), 7.06-6.92 (m, 4H), 6.77 (d, J = 3.3 Hz, 1H), 4.66 (t, J = 7.6 Hz, 1H), 4.57 (t, J = 6.8 Hz, 1H), 4.50 (t, J = 7.0 Hz, 1H), 4.41 (t, J = 5.5 Hz, 1H), 4.34 (t, J = 6.3 Hz, 1H), 4.25 (t, J = 8.0 Hz, 1H), 3.80-3.49 (m, 4H), 3.21-3.02 (m, 6H), 2.89-2.68 (m, 4H), 2.36-2.24 (m, 1H), 2.09-1.41 (m, 11H); HRMS (TOF MS ES+) m/z 998.4792 (M+H)⁺ (calcd for C₄₄H₆₇N₁₄O₈ 998.4783); HPLC (column 2) 100% (t_R = 18.78 min).

4e: Yield of 69%; HRMS (TOF MS ES+) m/z 1009.4845 (M+H)⁺ (calcd for C₄₆H₇₁N₁₄O₈ 1009.4830); HPLC (column 2) 100% (t_R = 21.46 min).

4f: Yield of 68%; HRMS (TOF MS ES+) m/z 1009.4852 (M+H)⁺ (calcd for C₄₄H₆₈N₁₅O₈ 1009.4830); HPLC (column 2) 100% (t_R = 21.55 min).

5a: Yield of 64%; HRMS (TOF MS ES+) m/z 1004.4359 (M+H)⁺ (calcd for C₄₄H₇₃N₁₄O₈ 1004.4347); HPLC (column 2) 97.9% (t_R = 19.02 min).

5b: Yield of 42%; HRMS (TOF MS ES+) m/z 988.4701 (M+H)⁺ (calcd for C₄₅H₇₅N₁₄O₈ 988.4688); HPLC (column 2) 99.3% (t_R = 13.07 min).

5c: Yield of 55%; HRMS (TOF MS ES+) m/z 999.4706 (M+H)⁺ (calcd for C₄₆H₇₇N₁₄O₈ 999.4736); HPLC (column 2) 100% (t_R = 13.99 min).

5d: Yield of 59%; ¹H NMR (400 MHz, D₂O) δ 7.51 (d, *J* = 8.0 Hz, 1H), 7.46 (d, *J* = 8.2 Hz, 1H), 7.32 (d, *J* = 5.2Hz, 1H), 7.21 (t, *J* = 7.5 Hz, 1H), 7.12 (t, *J* = 7.7 Hz, 1H), 7.05 (s, 1H), 7.03-6.94 (m, 5H), 6.78 (d, *J* = 3.3 Hz, 1H), 4.67 (dd, *J* = 5.6 Hz, 7.8 Hz, 1H), 4.58 (t, *J* = 6.9 Hz, 1H), 4.46 (t, *J* = 7.3 Hz, 1H), 4.41-4.30 (m, 2H), 4.25 (dd, *J* = 5.8 Hz, 8.2 Hz, 1H), 3.80-3.52 (m, 4H), 3.22-3.03 (m, 6H), 2.90-2.69 (m, 4H), 2.39-2.24 (m, 1H), 2.11-1.38 (m, 11H); HRMS (TOF MS ES+) *m*/*z* 1016.4673 (M+H)⁺ (calcd for C₃₉H₇₁N₁₂O₈ 1016.4689); HPLC (column 2) 100% (t_R = 18.47 min).

1b-m1: Yield of 22%; HRMS (TOF MS ES+) m/z 820.4836 (M+H)⁺ (calcd for C₄₃H₇₃N₁₄O₈ 820.4834); HPLC (column 3) 96.7% (t_R = 44.32 min).

4d-m1: Yield of 11%; HRMS (TOF MS ES+) m/z 885.4180 (M+H)⁺ (calcd for C₄₂H₆₃N₁₂O₈ 885.4194); HPLC (column 3) 100% (t_R = 41.27 min).

5d-m1: Yield of 39%; HRMS (TOF MS ES+) m/z 903.4091 (M+H)⁺ (calcd for C₄₃H₆₅N₁₂O₈ 903.4100); HPLC (column 3) 100% (t_R = 43.09 min).

S1a: Yield of 73%; HRMS (TOF MS ES+) m/z 967.5295 (M+H)⁺ (calcd for C₄₅H₆₉N₁₂O₈ 967.5266); HPLC (column 1) 100% (t_R = 18.08 min).

S1b: Yield of 64%; HRMS (TOF MS ES+) m/z 953.5118 (M+H)⁺ (calcd for C₄₃H₆₅N₁₄O₈ 953.5110); HPLC (column 1) 100% (t_R = 17.10 min).

S1c: Yield of 95%; HRMS (TOF MS ES+) m/z 877.4799 (M+H)⁺ (calcd for C₄₄H₆₇N₁₄O₈ 877.4797); HPLC (column 1) 100% (t_R = 11.59 min).

3. Cell cultures

CHO cells stably expressing NMUR1 or NMUR2 were maintained in α -MEM-nucleotide media with 10% heat-inactivated FCS and 1 mg/mL G418. Subculture was performed every 3-4 days. Cells were grown to approximately 70% confluence on 100-mm dishes and maintained at 37 °C under 5% CO₂.

4. Calcium-mobilization assay

CHO cells stably expressing receptors were seeded (2.0 x 10^4 cells per well) into 96-well black-walled plates with clear bottoms. Eighteen hours later, the cells were loaded for 40 min with 4 µM Fluo-4 AM fluorescent indicator dye in assay buffer (HBSS, 10 mM HEPES, 2.5 mM probenecid, pH 7.4) with 1% FCS, and washed four times with the assay buffer without FCS. Then, intracellular calcium flux was assayed on a fluorometric imaging plate reader (Molecular Devices, Sunnyvale, CA). The peptide derivatives were dissolved in an assay buffer containing 0.05% BSA and 0.001% Triton X-100 and prepared at 0.1-1000 nM. The efficacy of the peptide derivatives were dissolved at concentrations of 10^{-12} - 10^{-6} M. The receptor agonistic activities of the peptide derivatives were determined in triplicate at each concentration.

5. Analysis of metabolic stability in rat/human serum

Each peptide stock solution (20 mM in DMSO) was diluted to 1 mM with RPMI-1640. A 20 μ L, 20 nmol aliquot of a 1 mM peptide solution was added to 100 μ L rat/human serum diluted with 280 μ L RPMI-1640 that had been pre-incubated at 37 °C for 15 min. The resulting 25% rat/human serum solution was incubated at 37 °C, and then the incubation was stopped by the addition of ice-cold saline (400 μ L) containing HCl (final conc. 0.04 N). Samples were centrifuged for 3000 rpm at 4 °C for 15 min. Then, an aliquot of supernatant (640 μ L) was loaded onto a Sep-Pak[®] C18 Plus cartridge, and the intact peptide and its metabolites were eluted by 60% CH₃CN in 0.1% aqueous TFA after washing the cartridge with saline and 10% CH₃CN in 0.1% aqueous TFA. Samples were dissolved in 800 μ L 10% CH₃CN in 0.1% aqueous TFA, and 20 μ L was analyzed by RP-HPLC with a C18 reverse-phase column (4.6 x 150 mm; COSMOSIL 5C₁₈-AR-II) with a binary solvent system: a linear gradient of CH₃CN (10-60%, 100 min) in 0.1% aqueous TFA at a flow rate of 1.0 mL/min, detected at UV 220 nm. New peaks were subjected to by high-resolution mass spectrometry to identify the metabolites. Differences in the recovery rates (%) among samples were analyzed using a Student's *t*-test.

Analytical HPLC of derivative 4b

Analytical HPLC of derivative 4c

Analytical HPLC of derivative 4d

METHOD:	TAG:	733 CH: 1			
FILE: 0 CALC-M	ETHOD: AREA%	: TABLE:	0	CONC:	AREA
NO. RT 1 18.78	AREA 1658612	CONC BC 100.000 BB			
TOTAL					
	1658612	100.000			
PEAK REJ :	10000				

Analytical HPLC of derivative 4e

Analytical HPLC of derivative $\mathbf{4f}$

METHOD:		TAG:	744 CI	H: 1		
FILE: 0	CALC-METHOD:	AREA%	TABL	E: 0	CONC:	AREA
NO. 1 21 Total	RT AI .55 2156	REA 106 10	CONC 10.000	BC BB		
PEAK REJ	2156 : 10000	106 10	0.000			

Analytical HPLC of derivative 5a

D-2500

D-2500

метнор	:	TAG:	34 CH: 1			
FILE:	A CALC-1	METHOD: AREA;	TABLE:	Й	CONC:	AREA
NO.	RT	AREA	CONC BC			
1	16.68	28912	1.184 RR			
2	18.32	11227	0.460 RU			
.3	19.02	2389401	97.882 UU			
4	19.27	11566	0.474 TRR			
TOTAL						
		2441106	100.000			
PEAK R	F.T :	10000				

Analytical HPLC of derivative 5b

Analytical HPLC of derivative 5c

10000

РЕАК КЕЈ :

Analytical HPLC of derivative 5d

Analytical HPLC of synthetic metabolite 1b-m1

Analytical HPLC of synthetic metabolite 4d-m1

Analytical HPLC of synthetic metabolite 5d-m1

Analytical HPLC of derivative S1a

D-2500							
METHOD:		TAG:	153	СН: 1			
FILE: 0 CALC-ME	ETHOD: A	AREA%	TAB	LE:	0	CONC:	AREA
NO. RT 1 18.08 Total	ARE 128129	EA 98 10	CONC 0.000	BC BB			
РЕАК КЕЈ :	128129 10000	98 10	0.000				

Analytical HPLC of derivative S1b

Analytical HPLC of derivative S1c

D-2500

METHOD	:		TAG:	110	CH:	1		
FILE:	0 CALC-M	ETHOD:	AREA%	TAE	BLE:	0	CONC:	AREA
NO. 2	RT 11.59	AR 28000	EA 26	CONC 100.000	: вс • VV			
TOTAL								
PEAK R	EJ :	28000 100000	26	100.000)			

¹H NMR spectrum of derivative **4d**

¹H NMR spectrum of derivative **5d**

Figure S1. (A) Structures of **S1a-S1c**. (B) Effect of substitutions at the *N*-terminus (residue 0) on the agonistic activity in CHO cells toward stably expressed human NMUR1 (*black bar*) and NMUR2 (*gray bar*) as determined by the calcium mobilization assay. Peptide concentration, 1 and 10 nM; positive control, hNMU (activity at 1000 nM = 100%).

Figure S2. Analytical RP-HPLC chromatograms showing the time-dependent metabolic degradation of **1b** (A) and **4d** (B) in 25% rat serum. An aliquot of each sample extracted by Sep-Pak C18 Plus cartridges was analyzed using a C18 reverse-phase column detected by UV at 220 nm. (C) Structures of **1b**-/**4d**-derived major metabolites **1b**-/**4d-m1**, and **1b**-/**4d-m2**.

Figure S3. Analytical RP-HPLC chromatograms showing the time-dependent metabolic degradation of **5d** in 25% human serum. An aliquot of each sample extracted by Sep-Pak C18 Plus cartridges was analyzed using a C18 reverse-phase column detected by UV at 220 nm.