Supporting Information:

Excited State Dynamics of the Isolated Green

 Fluorescent Protein Chromophore AnionFollowing UV Excitation

Christopher W. West, James N. Bull, Alex S. Hudson, Steven L. Cobb and Jan R. R. Verlet*

Department of Chemistry, Durham University, Durham, DH1 3LE

Relative contribution of S_{3} autodetachment to internal conversion

To determine the relative contribution of the $\mathrm{S}_{3} \rightarrow$ D_{0} autodetachment channel compared to all other channels (i.e. $\mathrm{S}_{3} \rightarrow \mathrm{~S}_{2}$ internal conversion), we have fitted the PE spectrum at $h v=3.54 \mathrm{eV}$ to a function (see Figure 1, blue line).

This fit is then used to extract the contribution of the $S_{3} \rightarrow D_{0}$ autodetachment channel. For example, we fit the rising edge of the $h v=3.94 \mathrm{eV}$ spectrum to this and retain the difference (see Figure 2, red). We follow the same procedure for other photon energies, and $h v=$ 4.28 eV is shown as an example (see Figure 3).

Note that the PE spectra are normalized to the total PE signal in each spectrum. To attain the best fits, we require the $S_{3} \rightarrow D_{0}$ autodetachment channel to be the same across the range, as shown. The ratio $S_{3} \rightarrow D_{0}: S_{3} \rightarrow S_{2}$ is found to be 0.7:1 and 0.6:1 for $h v=3.94$ and 4.28 eV , respectively. Hence, the channel leading to $\mathrm{S}_{3} \rightarrow$ S_{2} internal conversion has a slightly higher yield that the $S_{3} \rightarrow D_{0}$ autodetachment and therefore a slightly shorter lifetime. The observed lifetime is $\left(\tau_{\mathrm{obs}}\right)^{-1}=\left(\tau_{\mathrm{IC}}\right)^{-1}+\left(\tau_{\mathrm{AD}}\right)^{-1}<40 \mathrm{fs}$, where τ_{IC} and τ_{AD} are the internal conversion and autodetachment lifetimes. The lifetimes are related to the relative yields by $\tau_{\mathrm{IC}} / \tau_{\mathrm{AD}}=0.7$ or 0.6 for $h v=3.94$ and 4.28 eV , respectively. Thus, $\tau_{\mathrm{IC}}<65$ fs and $\tau_{\mathrm{AD}}<100 \mathrm{fs}$.

Individual Photoelectron Spectra included in Figure 1e

$\left.\begin{array}{rrrrrrrl}50000 \\ 45000 \\ 40000 \\ 35000 \\ 30000 \\ 25000 \\ 20000 \\ 15000 \\ 10000 \\ 5000 \\ 0\end{array}\right]$

