Supporting Information

Design, synthesis and biological evaluation of novel matrix metalloproteinase inhibitors as potent antihemorrhagic agents: from hit identification to an optimized lead.

Josune Orbe, ${ }^{1}$ Juan A. Sánchez, ${ }^{2}$ Obdulia Rabal, ${ }^{2}$ José A. Rodríguez, ${ }^{1}$ Agustina Salicio, ${ }^{1}$ Ana Ugarte, ${ }^{2}$ Miriam Belzunce, ${ }^{1}$ Musheng Xu, ${ }^{4}$ Wei Wu, ${ }^{4}$ Haizhong Tan, ${ }^{4}$ Hongyu Ma, ${ }^{4}$ José A. Páramo, ${ }^{1,3, *}$ and Julen Oyarzabal ${ }^{2,{ }^{*}}$

Table of Contents

S1. Protocol for Prep-HPLC purification method.. S2
S2. Protocol for SFC purification method.. S2
S3. Details for Optical Rotation.. S2
S4. Table S1. Selectivity profile $10 \mu \mathrm{M}$ against different MMPs............................ S 3
S5. Synthesis of benzyl 4-chlorocarbonyl benzoate (Int. 1)................................... S3

S7. HPLC traces for final compounds.. 5
S8. Synthesis of compound 23b.. S20
S9. X-ray crystallographic data of compound 23b.. 21

Protocol for Prep-HPLC purification method:

The HPLC measurement was performed using Gilson 281 from 233 pump (binary), an autosampler, and a UV detector. The fractions were detected by LC-MS. The MS detector was configured with an electrospray ionization source. The source temperature was maintained at $300-350{ }^{\circ} \mathrm{C}$. Reverse phase HPLC was carried out on Luna C18 $(100 \times 30 \mathrm{~mm} ; 4$ or 5 um$)$. Solvent A: water with 0.075% trifluoroacetic acid; Solvent B: acetonitrile with 0.075% trifluoroacetic acid. Gradient: At room temperature, 20% of B to 40% of B within 6 min at $25 \mathrm{~mL} / \mathrm{min}$; then 40% B at $25 \mathrm{~mL} / \mathrm{min}$ over 2 min , UV detector.

Protocol for SFC purification method:

Analytical separation method:

Analytical separations were performed using a Thar analytical SFC with a ChiralPak AD-H column ($250 \times 4.6 \mathrm{~mm}$). Solvent A: CO_{2}; Solvent B: methanol with 0.05% DEA. Mobile phase: 50% of A and 50% of B at $2.0 \mathrm{~mL} / \mathrm{min}$. Back pressure: 100 bar; and column temperature: $35^{\circ} \mathrm{C}$. UV detector at 220 nm .

Preparative separation method:

Preparative separation was performed using a Mg II preparative SFC with a ChiralPak AD-H column ($250 \times 30 \mathrm{~mm}$). Solvent A: CO_{2}; Solvent B: ethanol with 0.1% $\mathrm{NH}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$. Mobile phase 50% of A and 50% of B at $40 \mathrm{~mL} / \mathrm{min}$. Back pressure: 100 bar; and column temperature: $38^{\circ} \mathrm{C}$. UV detector at 220 nm .

Samples were prepared by dissolving in methanol to $\sim 12 \mathrm{mg} / \mathrm{ml}$ and 2.0 mL were used per injection. After separation, the fractions were dried off via rotary evaporation (bath temperature $40^{\circ} \mathrm{C}$) to get the desired isomers. Purity was tested via LCMS.

Details for Optical Rotation of compounds 5 and 22:

Optical rotation was measured with an AUTOPOL V polarimeter at room temperature and with a wavelength of 589 nm .
Compound 5
$\mathrm{C}=0.9762 \mathrm{~g} / 100 \mathrm{ml}$ diluted with methanol
$\mathrm{L}=1 \mathrm{dm}$
$\alpha_{1}=+0.163 ; \alpha_{2}=+0.162 ; \alpha_{3}=+0.163 ; \bar{\alpha}=+0.163 ; \operatorname{RSD}=0.35 \% ;$
$[\alpha]_{D}^{20}=+16.66^{\circ} \pm 0.06^{\circ}$
Compound 22
$\mathrm{C}=0.9668 \mathrm{~g} / 100 \mathrm{ml}$ diluted with methanol
$\mathrm{L}=1 \mathrm{dm}$
$\alpha_{1}=-0.166 ; \alpha_{2}=-0.165 ; \alpha_{3}=-0.165 ; \bar{\alpha}=-0.165 ; \mathrm{RSD}=0.35 \% ;$
$[\alpha]_{D}^{2 \mathrm{o}}=-17.10^{\circ} \pm 0.06^{\circ}$

Table S1. Selectivity profile, \% inhibition, at $10 \mu \mathrm{M}$ against different MMPs

Cpd	MMP1	MMP2	MMP7	MMP8	MMP9	MMP12	MMP13	MMP14	MMP20
13	90.37	101.14	59.67	101.34	99.92	104.89	100	100.2	N/D
16	85.11	124.81	56.48	102.31	101.56	101.57	N/D	100.37	N/D
19d	86.1	100.65	65.59	99.82	102.15	99.67	N/D	92.48	N/D
19p	9	100.69	26.55	96.52	98.07	100.03	N/D	55.78	N/D
20a	N/D	100	N/D	N/D	100	N/D	100	N/D	N/D

Synthesis of benzyl 4-chlorocarbonyl benzoate (Int. 1)

To a solution of commercially available terepthalic acid ($10 \mathrm{~g}, 0.06 \mathrm{~mol}$) in DCM (100 mL) was added $\mathrm{Et}_{3} \mathrm{~N}(12.12 \mathrm{~g}, 2$ eq). Then bromide ($9.27 \mathrm{~g}, 0.9 \mathrm{eq})$ in DCM (20 mL) was added dropwise at room temperature. The resulting mixture was stirred at room temperature for 3 h until TLC (PE:AE=1:1) detected the most starting material was consumed, then concentrated and the mixture was extracted with EtOAc, washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give the crude compound which was chromatographed on silica gel to give pure compound Int.1-A ($2.2 \mathrm{~g}, 14 \%$) as a white solid. MS $m / z 257[\mathrm{M}+\mathrm{H}]^{+}$calc. for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{4}$.

To the solution of Int.1-A (800 mg .3 .13 mmol) in DCM (20 mL) and DMF (cat.) was added oxalyl dichloride ($788 \mathrm{mg}, 2 \mathrm{eq}$) at $0-5^{\circ} \mathrm{C}$ and the reaction was stirred at RT for 2 h. Then the mixture was concentrated to give the crude product Int. $1(860 \mathrm{mg})$ which was used for the next step directly. MS $m / z 275[\mathrm{M}+\mathrm{H}]^{+}$calc. for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{ClO}_{3}$.

HPLC purities of final compounds

HPLC-analysis was performed using a Shimadzu LC-20AB or LC-20AD with a LunaC18(2), 5um, $2.0 * 50 \mathrm{~mm}$ column at $40^{\circ} \mathrm{C}$ and UV detection. Three different methods were used.

Method 1

Solvent A: water with 0.056% trifluoroacetic acid; Solvent B: acetonitrile with 0.056% trifluoroacetic acid. Gradient: After 0.1 minutes at the initial condition of $90 \% \mathrm{~A}$ and $10 \% \mathrm{~B}$, solvent B was increased to 80% over 4 minutes, maintained at 80% for 0.9 minutes, then a linear gradient to initial conditions was applied for 0.02 minutes and maintained for 0.58 minutes to re-equilibrate the column, giving a cycle time of 5.50 minutes. Flow rate was $0.8 \mathrm{~mL} / \mathrm{min}$ from 0.01 to 4.90 minutes, increased to $1.2 \mathrm{~mL} / \mathrm{min}$ in 0.03 minutes and maintained until the end of the run.

Method 2

Solvent A: water with 0.056% trifluoroacetic acid; Solvent B: acetonitrile with 0.056% trifluoroacetic acid. Gradient: After 0.4 minutes at the initial condition of $100 \% \mathrm{~A}$, solvent B was increased to 60% over 4 minutes, maintained at 60% for 0.8 minutes, then a linear gradient to initial conditions was applied for 0.02 minutes and maintained for 0.68 minutes to re-equilibrate the column, giving a cycle time of 5.90 minutes. Flow rate was $0.8 \mathrm{~mL} / \mathrm{min}$ from 0.01 to 5.21 minutes, increased to $1.2 \mathrm{~mL} / \mathrm{min}$ in 0.02 minutes and maintained until the end of the run.

Method 3

Solvent A: water with 0.037% trifluoroacetic acid; Solvent B: acetonitrile with 0.019% trifluoroacetic acid. Gradient: After 0.1 minutes at the initial condition of $100 \% \mathrm{~A}$, solvent B was increased to 60% over 4 minutes, maintained at 60% for 2 minutes, then a linear gradient to initial conditions was applied for 0.01 minutes and maintained for 1.79 minutes to re-equilibrate the column, giving a cycle time of 7.80 min . Flow rate was $3 \mathrm{~mL} / \mathrm{min}$.

Method 4

Solvent A: water with 0.056% trifluoroacetic acid; Solvent B: acetonitrile with 0.019% trifluoroacetic acid. Gradient: After 0.1 minutes at the initial condition of $90 \% \mathrm{~A}$ and $10 \% \mathrm{~B}$, solvent B was increased to 80% over 4 minutes, maintained at 80% for 2 minutes, then a linear gradient to initial conditions was applied for 0.01 minutes and maintained for 0.68 minutes to re-equilibrate the column, giving a cycle time of 7.80 minutes. Flow rate was $3 \mathrm{~mL} / \mathrm{min}$.

HPLC purities of final compounds

Compound	Method	Rt	Purity (\%)
$\mathbf{1 1}$	3	2.38	99.53
$\mathbf{1 2}$	1	2.56	98.38
$\mathbf{1 3}$	4	2.70	99.36
$\mathbf{1 4}$	1	2.18	96.97
$\mathbf{1 5}$	1	2.31	97.88
$\mathbf{1 6}$	3	3.90	98.96
$\mathbf{1 7}$	1	3.30	97.98
$\mathbf{1 8}$	1	2.58	95.33
$\mathbf{1 9 a}$	3	3.53	97.68
$\mathbf{1 9 b}$	4	3.30	99.74
$\mathbf{1 9 c}$	1	2.37	99.38
$\mathbf{1 9 d}$	3	3.04	98.23
$\mathbf{1 9 e}$	3	3.28	95.46
$\mathbf{1 9 f}$	3	2.58	95.31
$\mathbf{1 9 g}$	3	3.23	98.50
$\mathbf{1 9 h}$	3	3.44	98.01
$\mathbf{1 9 i}$	3	3.31	98.35

$\mathbf{1 9 j}$	2	2.82	96.13
$\mathbf{1 9 k}$	2	3.41	99.63
$\mathbf{1 9 1}$	1	2.69	97.88
$\mathbf{1 9 m}$	3	3.50	98.88
$\mathbf{1 9 n}$	1	1.98	97.99
$\mathbf{1 9 0}$	3	2.50	98.14
$\mathbf{1 9 p}$	1	3.51	100
$\mathbf{2 0 a}$	4	2.66	95.45
$\mathbf{2 0 b}$	4	2.96	96.71
$\mathbf{2 0 c}$	4	3.21	99.09
$\mathbf{2 1 a}$	4	2.71	99.59
$\mathbf{2 1 b}$	2	2.79	96.16
$\mathbf{2 2}$	1	1.61	99.46

HPLC traces for final compounds

Compound 11

$0 \mathrm{~nm}, 8 \mathrm{~nm}$			
Retention Time	Height	Area	Area Percent
2.28	2151	4456	0.10
2.38	1387223	4644288	99.53
3.35	1530	5109	0.11
5.35	1497	4427	0.09
5.65	2029	7734	0.17

Compound 12

Compound 13

Compound 14

1: $\mathbf{2 2 0} \mathbf{n m , ~ 8 ~ n m ~}$ Retention Time	Height	18071	Area

Compound 15

Compound 16

1: $220 \mathrm{~nm}, 8 \mathrm{~nm}$ Retention Time	Height	Area	Area Percent
3.80	8198	21976	0.49
3.90	1397215	4438032	98.96
5.21	2179	6477	0.14
5.46	4427	18278	0.41

Compound 17

Compound 18

1: $220 \mathrm{~nm}, 8 \mathrm{~nm}$

Retention Time	Height	Area	Area Percent
0.33	54806	184568	3.17
2.18	9637	37987	0.65
2.58	1423241	5553713	95.33
2.71	7322	18007	0.31
2.89	8881	31711	0.54

Compound 19a

Compound 19b

Compound 19c

Compound 19d

1: $\mathbf{2 2 0} \mathbf{~ n m , ~} \mathbf{8} \mathbf{~ n m}$ Retention Time	Height	Area	Area Percent
0.73	2682	9227	0.26
2.01	17306	42971	1.21
3.04	1225413	3494283	98.23
3.77	1350	3700	0.10
4.43	2773	7185	0.20

Compound 19e

| 1: $\mathbf{2 2 0} \mathbf{n m , ~} \mathbf{8} \mathbf{n m}$
 Retention Time | Height |
| :---: | :---: | :---: | :---: |

Compound 19f

Compound 19g

Compound 19h

1: 220 nm, $\mathbf{8} \mathbf{n m}$			
Retention Time	Height	4281	Area

Compound 19i

Compound 19j

1: $220 \mathrm{~nm}, 8 \mathrm{~nm}$

Retention Time	Height	Area	Area Percent
1.89	19658	59812	1.17
2.77	72141	94405	1.84
2.82	1310362	4923237	96.13
2.93	14962	44026	0.86

Compound 19k

Compound 191

Compound 19m

1: $220 \mathrm{~nm}, \mathbf{8} \mathbf{n m}$			
Retention Time	Height	999780	Area

Compound 19n

Compound 190

1: $\mathbf{2 2 0} \mathbf{n m , 8} \mathbf{~ n m}$			
Retention Time	Height	4362	Area

Compound 19p

Compound 20a

1: $220 \mathrm{~nm}, 8 \mathrm{~nm}$

Retention Time	Height	Area	Area Percent
2.55	3225	8529	0.18
2.66	1145745	4416883	95.45
2.92	4770	17847	0.39
4.07	3830	14497	0.31
4.18	1748	13377	0.29
4.44	1624	10097	0.22
4.76	1976	13714	0.30
5.52	7047	132430	2.86

Compound 20b

1: 220 nm, 8 nm			
Retention Time	Height	Area	Area Percent
2.49	3172	6850	0.18
2.79	4329	11072	0.30
2.90	5273	11743	0.32
2.96	1118856	3589961	96.71
3.13	5052	47269	1.27
4.14	2265	7259	0.20
4.26	5092	12388	0.33
4.48	3652	9455	0.25
4.96	6331	16001	0.43

Compound 20c

Compound 21a

Compound 21b

3: $\mathbf{2 5 4} \mathbf{n m , ~ 8 ~ n m ~}$ Retention Time	Height	Area	Area Percent
2.10	13371	57640	0.86
2.66	19474	45756	0.68
2.79	1498949	6471428	96.16
2.88	42065	116223	1.73
3.03	4091	7877	0.12
3.09	9621	19399	0.29
3.18	4351	11663	0.17

Compound 22

1: 220 nım, 8 nin Retention Time	Height	Area	Area Percent
1.61	2322641	5618005	99.46
1.76	14640	30406	0.54

Synthesis of (3S)-3-(4-fluorophenyl)sulfonyl-8-azaspiro[4.5]decane-3-carboxylic acid (23b)

A racemic mixture of compound $\mathbf{2 6}^{1}$ was first separated by SFC. Then, enantiomerically pure $26 \mathrm{a}(60 \mathrm{mg}, 0.14 \mathrm{mmol})$ was dissolved in $\mathrm{HCl} / \mathrm{EtOAc}(2 \mathrm{~N}, 10 \mathrm{~mL})$ and the mixture was stirred at RT for 1 h . Then, concentrated to give the crude product which was purified by prep-HPLC to obtained pure compound $\mathbf{2 3 b}(30 \mathrm{mg}, 59 \%)$ as a yellow oil. MS $m / z 342[\mathrm{M}+\mathrm{H}]^{+}$calc. for $\mathrm{C}_{16} \mathrm{H}_{2} 2 \mathrm{FNO} 4 \mathrm{~S}$. ${ }^{1} \mathrm{H}$ NMR (MeOD, 400 MHz): δ 7.97-7.94 (m, 2H), 7.38-7.34 (m, 2H), 3.21-3.15 (m, 4H), 2.53-2.50 (m, 2H), 2.45$2.38(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.84(\mathrm{~m}, 3 \mathrm{H}), 1.70-1.67(\mathrm{~m}, 3 \mathrm{H})$.

Protocol for compound 23b crystallization

We confirm the structure of compound 23b by X-ray single crystal diffraction analysis. Compound 23b was dissolved in a three-phase solvent system $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{THF}$ ($10: 1: 1$) and slow evaporation at room temperature for three days led to creation of crystals which were utilized for X-ray diffraction analysis on a rigaku saturn diffractometer using graphic-monochromated Mo K α radiation ($\lambda=0.71073 \AA$). The structures were solved using the SHELXS program and refined with SHELXL.

X-ray crystallographic data of compound 23b

Crystal size	$0.20 \times 0.18 \times 0.12 \mathrm{~mm}^{3}$
Radiation type	$\mathrm{Mo} \mathrm{K} \alpha(? \lambda=0.71073 \AA)$
Space group	Orthorhombic $/ \mathrm{P} 2(1) 2(1) 2(1)$
Cell size	$\mathrm{a}=7.2894(15) \AA$
	$\mathrm{b}=11.834(2) \AA$
	$\mathrm{c}=21.401(4) \AA$
	$\alpha=90.00^{\circ}$
	$\beta=90.00^{\circ}$
	$\gamma=90.00^{\circ}$
Cell volume	$V=1846.1(6) \AA^{3}$
Cell formula units	$Z=4$
Crystal density	$D_{c}=1.359 \mathrm{Mg} / \mathrm{m}^{3}$
Crystal $F(000)$	792.0
Absorpt coefficient mu	$\mu(\mathrm{Mo} \mathrm{K} \alpha)=0.348 \mathrm{~mm}^{-1}$
Limiting indices	$-7 \leq h \leq 9$
	$-15 \leq k \leq 15$
	$-24 \leq l \leq 28$
Cell measurement temperature	$T=293(2) \mathrm{K}$.

Details for compound 23b coordinates

```
Table 1. Crystal data and structure refinement for 23b
Empirical formula C16 H21 Cl F N O4 S
Formula weight 377.85
Temperature 293(2) K
Wavelength 0.71073 A
Crystal system, space group Orthorhombic, P2(1)2(1)2(1)
Unit cell dimensions a = 7.2894(15)A alpha = 90 deg.
    b = 11.834(2)A beta = 90 deg.
    c = 21.401(4) A gamma = 90 deg.
Volume
    1846.1(6) A^3
Z, Calculated density
    4, 1.359 Mg/m^3
Absorption coefficient
    0.348 mm^-1
F(000)
    7 9 2
Crystal size 0.20 x 0.18 x 0.12 mm
Theta range for data collection 1.90 to 27.96 deg.
Limiting indices -7<=h<=9, -15<= k<=15, -24<=l<=28
```

Reflections collected / unique	$17535 / 4398$ [R(int) $=0.0461]$
Completeness to theta $=27.96$	98.8 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9594 and 0.9336
Refinement method	Full-matrix least-squares on $\mathrm{F}^{\wedge} 2$
Data / restraints / parameters	$4398 / 3 / 225$
Goodness-of-fit on $\mathrm{F}^{\wedge} 2$	1.050
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0509, \mathrm{wR} 2=0.1117$
R indices (all data)	$\mathrm{R} 1=0.0645, \mathrm{wR} 2=0.1198$
Absolute structure parameter	-0.02 (8)
Extinction coefficient	0.025 (2)
Largest diff. peak and hole	0.273 and -0.237 e. $\mathrm{A}^{\wedge}-3$

Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters ($A^{\wedge} 2 \times 10^{\wedge} 3$) for $23 b(e q)$ is defined as one third of the trace of the orthogonalized Uij tensor.

	X	Y	z	$\mathrm{U}(\mathrm{eq})$
S (1)	9763 (1)	6512 (1)	1995 (1)	47 (1)
F (1)	4549 (3)	2780 (2)	1722 (1)	107 (1)
O(1)	12893 (3)	6339 (2)	668 (1)	78 (1)
O (2)	10158 (3)	5511 (2)	639 (1)	67 (1)
O(3)	11425 (3)	6031 (2)	2248 (1)	58 (1)
O (4)	8827 (3)	7373 (2)	2350 (1)	65 (1)
N(1)	11794 (3)	11312 (2)	374 (1)	58 (1)
C (1)	11310 (4)	6296 (2)	827 (1)	48 (1)
C (2)	10394 (4)	7167 (2)	1248 (1)	43 (1)
C (3)	8678 (4)	7717 (2)	937 (1)	51 (1)
C (4)	8854 (4)	8979 (2)	1064 (1)	50 (1)
C (5)	10943 (4)	9203 (2)	1051 (1)	42 (1)
C (6)	11693 (4)	8163 (2)	1415 (1)	49 (1)
C (7)	11526 (4)	10293 (2)	1377 (1)	55 (1)
C (8)	10994 (5)	11352 (2)	1014 (2)	60 (1)
C (9)	11698(4)	9226 (2)	377 (1)	47 (1)
C (10)	11171 (4)	10288(2)	26 (1)	52 (1)
C (11)	8177 (4)	5398 (2)	1875 (1)	45 (1)
C (12)	8823 (5)	4301 (2)	1803(1)	53 (1)
C (13)	7578 (5)	3406 (3)	1749 (2)	60 (1)
C (14)	5758 (5)	3654 (3)	1773 (2)	66 (1)
C (15)	5086 (5)	4719 (3)	1857 (2)	78 (1)
C(16)	6319 (4)	5619 (3)	1911 (2)	64 (1)
Cl(1)	6149 (1)	1346 (1)	262 (1)	55 (1)

Table 3. Bond lengths [A] and angles [deg] for 23b

S (1)-O(4)	1.443 (2)
S (1)-O(3)	1.444 (2)
S (1) - C (11)	1.772 (3)
S (1)-C(2)	1.836 (3)
F(1)-C(14)	1.364 (4)
$\mathrm{O}(1)-\mathrm{C}(1)$	1.205 (3)
$\mathrm{O}(2)-\mathrm{C}(1)$	1.316 (3)
$\mathrm{O}(2)-\mathrm{H}(2)$	0.8200
$\mathrm{N}(1)-\mathrm{C}(8)$	1.490 (4)
$\mathrm{N}(1)-\mathrm{C}(10)$	1.493 (4)
$\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~A})$	0.916 (10)
$\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~B})$	0.915 (10)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.522 (4)
C (2) - C (6)	1.553 (4)
C (2)-C(3)	1.558 (4)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.523 (4)
$\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	0.9700
C (3) - H (3B)	0.9700
C (4) - C (5)	1.546 (4)
$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	0.9700
$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	0.9700
C (5) - C (7)	1.528 (4)
$\mathrm{C}(5)-\mathrm{C}(9)$	1.542 (4)
C (5)-C (6)	1.556 (4)
$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	0.9700
$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	0.9700
$\mathrm{C}(7)-\mathrm{C}(8)$	1.524 (4)
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	0.9700
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	0.9700
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	0.9700
C (8) - H (8B)	0.9700
C (9)-C (10)	1.515 (4)
C (9) - H (9A)	0.9700
C (9) - H (9B)	0.9700
C (10) - H (10A)	0.9700
$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	0.9700
C (11) - C (16)	1.382 (4)
$\mathrm{C}(11)-\mathrm{C}(12)$	1.390 (4)
C (12) - C (13)	1.399 (4)
C (12) - H (12)	0.9300
C (13) - C (14)	1.360 (5)
C (13) - $\mathrm{H}(13)$	0.9300
C (14)-C (15)	1.364 (5)
C (15) - $\mathrm{C}(16)$	$1.398(5)$
C (15) - H (15)	0.9300
C (16) - $\mathrm{H}(16$)	0.9300
O(4)-S(1)-O(3)	118.50(14)
$\mathrm{O}(4)-\mathrm{S}(1)-\mathrm{C}(11)$	107.06(13)
$\mathrm{O}(3)-\mathrm{S}(1)-\mathrm{C}(11)$	107.96(13)
O(4)-S (1)-C(2)	106.22 (12)
$\mathrm{O}(3)-\mathrm{S}(1)-\mathrm{C}(2)$	106.49(12)
$\mathrm{C}(11)-\mathrm{S}(1)-\mathrm{C}(2)$	110.55(12)
$\mathrm{C}(1)-\mathrm{O}(2)-\mathrm{H}(2)$	109.5
$\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{C}(10)$	111.4(2)
$\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~A})$	111.3(19)
$\mathrm{C}(10)-\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~A})$	108 (2)
$\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~B})$	109.3(19)

$\mathrm{C}(10)-\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~B})$	108(2)
$\mathrm{H}(1 \mathrm{~A})-\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~B})$	109.3(15)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{O}(2)$	123.7(3)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	124.0(3)
$\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{C}(2)$	112.3(2)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(6)$	112.5 (2)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	112.5 (2)
$\mathrm{C}(6)-\mathrm{C}(2)-\mathrm{C}(3)$	105.7 (2)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{S}(1)$	109.77(18)
$\mathrm{C}(6)-\mathrm{C}(2)-\mathrm{S}(1)$	105.79(17)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{S}(1)$	110.29(19)
C (4)-C (3)-C (2)	105.4(2)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	110.7
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	110.7
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	110.7
C (2) - C (3) - H (3B)	110.7
H (3A) - C (3) - $\mathrm{H}(3 \mathrm{~B})$	108.8
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	104.3(2)
C (3) - C (4)-H(4A)	110.9
C (5) - C (4)-H (4A)	110.9
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	110.9
C (5) - C (4) - H (4B)	110.9
H (4A) - C (4) - H (4B)	108.9
$\mathrm{C}(7)-\mathrm{C}(5)-\mathrm{C}(9)$	108.2(2)
C (7)-C(5)-C(4)	114.2 (2)
C (9)-C (5)-C (4)	111.8(2)
$C(7)-C(5)-C(6)$	110.0(2)
$C(9)-C(5)-C(6)$	110.9(2)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	101.6(2)
$\mathrm{C}(2)-\mathrm{C}(6)-\mathrm{C}(5)$	105.7(2)
$\mathrm{C}(2)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	110.6
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	110.6
$\mathrm{C}(2)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	110.6
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	110.6
H (6A) -C (6) -H (6B)	108.7
C (8) - C (7)-C (5)	113.0 (2)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	109.0
$\mathrm{C}(5)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	109.0
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	109.0
$\mathrm{C}(5)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	109.0
H (7A) - C (7) - $\mathrm{H}(7 \mathrm{~B})$	107.8
$\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{C}(7)$	110.0 (2)
$\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	109.7
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	109.7
$\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	109.7
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	109.7
H (8A) -C (8) -H (8B)	108.2
C (10) -C (9)-C (5)	112.9(2)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	109.0
C (5) - C (9)-H(9A)	109.0
C (10) - C (9)-H(9B)	109.0
C (5) - C (9)-H(9B)	109.0
H (9A) - C (9) - $\mathrm{H}(9 \mathrm{~B})$	107.8
$\mathrm{N}(1)-\mathrm{C}(10)-\mathrm{C}(9)$	110.4(2)
$\mathrm{N}(1)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	109.6
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	109.6
$\mathrm{N}(1)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	109.6
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	109.6
H (10A) - C (10)-H (10B)	108.1
$\mathrm{C}(16)-\mathrm{C}(11)-\mathrm{C}(12)$	121.0(3)
C (16) -C (11)-S (1)	119.4(2)

```
C(12)-C(11)-S(1) 119.3(2)
C(11)-C(12)-C(13) 119.8(3)
C(11)-C(12)-H(12) 120.1
C(13)-C(12)-H(12) 120.1
C(14)-C(13)-C(12) 117.8(3)
C(14)-C(13)-H(13) 121.1
C(12)-C(13)-H(13) 121.1
C(13)-C(14)-F(1) 117.6(4)
C(13)-C(14)-C(15) 123.7(3)
F(1)-C(14)-C(15) 118.7(3)
C(14)-C(15)-C(16) 118.9(3)
C(14)-C(15)-H(15) 120.5
C(16)-C (15)-H(15) 120.5
C(11)-C(16)-C(15) 118.8(3)
C(11)-C(16)-H(16) 120.6
C(15)-C (16)-H(16) 120.6
```


REFERENCES

1. Orbe, J.; Rodriguez, J.A.; Sanchez, J.A.; Salicio, A.; Belzunce, M., Ugarte, A.; Chang, H.C.Y.; Rabal, O.; Oyarzabal, J.; Paramo, J.A. Discovery of a potent and safe pre-clinical candidate, CM-352, for the prevention and treatment of hemorrhage. J. Med. Chem., 2015, XX, XXXX
