

2	
3	Physicochemical Interactions between Rhamnolipids and
4	Pseudomonas aeruginosa Biofilm Layers
5 6	Lan Hee Kim, [†] Yongmoon Jung, [†] Hye-Weon Yu, [‡] Kyu-Jung Chae, [§] and In S. Kim ^{*,†, \perp}
7 8	[†] School of Environmental Science & Engineering, Gwangju Institute of Science and Technology
9	(GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 500-712, Republic of Korea
10	[‡] Department of Soil, Water and Environmental Science, Department of Chemical and Environmental
11	Engineering, University of Arizona, Tucson, AZ85721, United States
12	[§] Department of Environmental Engineering, Korea Maritime and Ocean University, 727 Taejong-ro,
13	Yeongdo-Gu, Busan 606-791, Republic of Korea
14	$^{\perp}$ Global Desalination Research Center (GDRC), Gwangju Institute of Science and Technology
15	(GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 500-712, Republic of Korea
16	*Corresponding author (E-mail: iskim@gist.ac.kr, Tel: +82-62-715-2436, Fax: +82-62-715-2434)
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	

47 Figure S2. SEM images of (A) virgin RO membrane (B) biofouled RO membrane (C) 48 rhamnolipid treated biofouled membrane. 100 μ g mL⁻¹ of rhamnolipid was treated for 2 h in 49 biofould membrane (× 4000).

57

58 **SI-1.** Calculation of micelle aggregation number (N_{agg})

The N_{agg} of rhamnolipid was estimated as following the reference equations.² If quenchers are distributed among micelles according to the Poisson-Boltzmann equation, then the probability of finding n quenchers associated with a given micelle is

62
$$P_n = [\langle Q \rangle^n / n!] e^{-\langle Q \rangle}$$

Where <Q> is the average number of quenchers in the micelles and [M] is the concentration
of the micelles.

65 <Q>=[Q]/[M]

66 When we assume that fluorescence can be observed only for probes residing in micelles 67 containing no quenchers at all, we write $I=P_0I_0$, where I_0 is the intensity in the absence of 68 quencher. It follows that

69 $I/I_0 = e^{-\langle Q \rangle}$

Therefore, by plotting ln (I/I₀) vs [Q], a straight line with a slope of $[M]^{-1}$ should be observed. The mean aggregation number N can now be calculated, since $[M] = (C_D - CMC)/N$, in which C_D is the total surfactant concentration

73

74 75

76

77

78

,0

79

80 **REFERENCES**

- (1) Abdel-Mawgoud, A. M.; Hausmann, R.; Le´pine, F.; Muller, M. M.; Déziel, E.
 Rhamnolipids: Detection, analysis, biosynthesis, genetic regulation, and bioengineering of
 production. In *Biosurfactants*; Soberon-Chavez, G., Eds.; Springer-Verlag; Berlin Heidelberg
 2011; pp13-56.
- 85 (2) Kevelam, J.; Engberts, J. B. F. N. Aggregation numbers of hydrophobic microdomains
- 86 formed from poly(dimethyldiallylammonium-co-methyl-n-dodecyldiallylammonium) salts in
- aqueous solutions. J. Colloid. Interface Sci. 1996, 178, 87-92.

88