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Supporting figures

Figure S1: (A) Typical force as a function of the distance between magnets and M270
Dynabead. (B) The sensitivity of force to the distance between magnets and M270 Dynabead
is obtained by the derivative of force to distance (Figure A). (C) Time trace of the force
measured by bead fluctuation in eight hours at a constant magnets-bead distance using
data from the constant force equilibrium measurement in Figure 3A. The force calculated
in one-minute sliding time window across the whole time course remains nearly constant
at 4.53 ± 0.15 pN, demonstrating that over this eight hours time scale, the force drift is
negligible.

Figure S2: Bead orientation makes the measured extension deviate from the absolute ex-
tension of the protein construct. (A) In most cases, the tether point on the bead is not at
the bottom pole of the bead. ∆z induces uncertainty of extension measurement. (B) When
force increases, the orientation of the bead can change and induce change of ∆z.
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Figure S3: Extension of unfolded I27 as a function of stretching force xchain(f) measured from
a single protein tether. Data points show the measured force-extension curve, and the red
curve is the theoretical curve of WLC model with persistence length of 0.8 nm and contour
length of 33 nm.

Figure S4: DNA overstretching transition and unfolding of (I27)8. The extension change
during force increase to 80 pN with constant loading rate of ∼ 3.3 pN/sec shows the DNA
overstretching transition at ∼ 67 pN with an extension increase of ∼ 126 nm, which is
consistent with the expected overstretching length of 585 bp DNA.1–3 Holding the tether at
a constant force of 80 pN, eight characteristic unfolding steps of I27 were observed. Besides
these specific DNA and I27 signals, no other nonspecific unfolding steps were observed.
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Figure S5: The extension drop under constant force of 3.4 ± 0.4 pN is correlated with the
number of folded I27 which is counted by the number of unfolded steps in the following
force-increase scan. The extension drop values in Figure 2B and S6 were obtained by this
method.

Figure S6: The correlation between the extension drop during the folding process (Figure
S5) and the number of successfully folded I27 counted in a following force-increase scan. (A)
At force of 3.6 ± 0.4 pN, linear fitting result of the red line gives R2 = 0.98. (B) At force of
2.9 ± 0.3 pN, linear fitting result of the red line gives R2 = 0.91. Error bar is given by the
standard deviation of extension fluctuation in 0.3 second time window.
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Figure S7: Individual folding time courses and exponential fitting results. (A) Six folding
time courses at force of 2.6 ± 0.3 pN. The numbers of correct folded I27 repeats are 8, 7,
8, 8, 8, 7 from top to bottom, respectively, which were counted in following force-increase
scans. (B) Six folding time courses at force of 3.3 ± 0.3 pN. The numbers of correct folded
I27 repeats are 8, 7, 8, 7, 7, 7 from top to bottom, respectively. (C) Eight folding time
courses at force of 4.1 ± 0.4 pN. The numbers of correct folded I27 repeats are 8, 7, 8, 7, 8,
8, 7, 6 from top to bottom, respectively. (D-I) The fitting of exponential extension curves
and fitting residues during folding at forces of 2.6 ± 0.3 pN (D,G), 3.3 ± 0.3 pN (E,H), and
4.1 ± 0.4 pN (F,I). The fitting results give R2 =0.93, 0.98, and 0.98 for 2.6 pN, 3.3 pN, and
4.1 pN, respectively.
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Figure S8: Definition of pseudo unfolding and folding dwell time. The time course in Figure
3A was zoomed in to show several detailed unfolding and folding steps. In this time window
of 20 minutes, there are three unfolding events indicated by red arrows and two folding
events indicated by blue arrows. The number of folded I27 repeats is given on the right
side of the figure. Pseudo unfolding/folding dwell time of each unfolding/folding event is
calculated from the time intervals and the number of folded domains between two adjacent
unfolding/refolding events. For example, Pseudo unfolding time of #1 unfolding event is
7t1 + 8t2, while pseudo unfolding time of #2 unfolding event is 7t3. Pseudo folding time
of #1 folding event is t3 + 2t4. Pseudo unfolding/refolding dwell time corresponds to the
unfolding/folding time of one I27 domain.4

Figure S9: (A) Force-dependent unfolding and folding free energy barriers are calculated from
the free energy landscape (Figure 4). Unfolding barrier is much less sensitive to force than
folding barrier, expected from the small unfolding transition distance. (B) Force-dependent
unfolding and folding transition distances, δunfolding(F ) and δfolding(F ) are calculated from
the free energy landscape (Figure 4). The transition state is located at extension of xc ∼ 4
nm.
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Force stability of magnetic tweezers

Force is a function of the distance between permanent magnets and the paramagnetic beads

d, which was calibrated by 16 µm λ DNA as described in our previous publication.5 For the

magnets pair we were using, the force equation is given by

f = C ∗ (exp(−d/0.36) + 0.48 ∗ exp(−d/1.12)),

where d is in unit of millimeter (mm), and C is a constant which is determined by the

properties of paramagnetic bead. For M270 beads we used in experiment, C ∼ 210 pN. A

constant force was achieved by maintaining a constant d. Figures S1A-B show F (d) and its

derivative F ′(d), respectively. From the F ′(d) curve, at the low force range (F < 10 pN), the

slope is less than 0.01 pN/µm. Such ultra-small stiffness results in excellent force stability

against change in d due to thermal drift.

In order to demonstrate the force stability of our magnetic tweezers, Figure S1C shows a

long time course of force calculated based on thermal fluctuation of the bead in one-minute

sliding time window during which the magnets were not moving using equation

f =
kBT (R + z)

δ2y
, (S1)

where R is the radius of the paramagnetic bead which is set as 1.4 um for typical M270

Dynabead, z is the extension of protein tether, and δ2y is the variance of transverse fluctuation

of the paramagnetic bead perpendicular to the magnetization direction. Here the assumption

is that the tether point is the bottom pole of the paramagnetic bead. The result indicates

that over eight hours the force remained as a constant around 4.5 pN. Due to the high

corner frequency of the transverse fluctuation of short tethers like single protein, such force

calibration based on thermal fluctuation can only be done for small forces (< 15 pN).5 At

higher forces, force can be obtained by extrapolation using the calibration curve Figure S1A.
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Due to the uncertainty of bead size R and the deviation of tether point from the bottom

pole of the bead, the calibrated force has ∼ 10% uncertainty.

Extension and stepsize measurement

In the magnetic tweezers measurements, the extension of the tether is indicated by the height

of the bead from the surface and measured based the calibrated bead diffraction pattern.6,7

Theoretically, the extension of the molecule can be obtained by adding an offset ∆ based on

the known contour length of molecule at high force. However, it has been well known that

the each bead has a preferred magnetization direction,8 forcing the bead to rotate to align

the preferred magnetization axis with the magnetic field that is perpendicular to the force

direction in our magnetic tweezers (Fig. S2). As a result, in most cases, the tethering point

between the molecule and the bead is off-center, and the off-aligned tension in the tether f

and the force on the bead F applied by the magnets leads to a torque, which is balanced by

the torque from the tendency of aligning the preferred magnetization axis along the magnetic

field (Figure S2).

Together, the orientation of the bead is determined by both force balance and torque

balance, which contributes to the actual height of bead in addition to the extension of the

tether. Force change causes torque change and therefore reorientation of the bead. The

offset ∆ between the bead height and the tether extension therefore depends on force and

cannot be treated as a constant. As a result, the extensions of short tethers that require

nm accuracy cannot be directly measured. What can be measured is the extension change

at constant forces, such as protein unfolding and refolding steps ∆x(f), at which the torque

remains balanced.

In a protein unfolding problem, the force-extension curve xchain(f) of the unfolded peptide

chain can be obtained from ∆x(f) if the the force-extension curve of the folded protein is

known by the following equation: xchain(f) = ∆x(f) + xfolded(f). Figure S3 shows the
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force-extension curve of the unfolded I27 peptide chain using this method.

Force-extension curves

The force-extension curve of unfolded I27 polypeptide can be modeled as a worm-like chain

(WLC) polymer and described by the Marko-Siggia formula:9

fA

kBT
=

1

4(1 − xchain/L)2
− 1

4
+
xchain
L

, (S2)

where f is force, A is the persistence length, kB is the Boltzmann constant, T is the absolute

temperature, xchain is the extension along force direction, and L is the contour length of the

polymer. At low force region, unfolded I27 has persistence length of A ∼ 0.8 nm,10 and

contour length of L ∼ 33 nm.11

At low force, the folded I27 can be modeled as a rigid rod with size of l0 = 4 nm. When

a force f is applied to the N-terminus and C-terminus of an I27 monomer, the orientational

energy of the protein is given by

E(t̂) = −fx̂ · l0t̂,

where unit vector x̂ is the force direction, and unit vector t̂ is the orientation of the vector

connecting the N- and C- termini. Therefore, in spherical coordinate choosing force direction

as the zenith direction, the partition function is given by:

Z =

∫ 2π

0

dφ

∫ π

0

exp(−E(t̂)/kBT ) sin(θ)dθ = 4π
sinh(fl0/kBT )

fl0/kBT
.

The average extension of I27 along force direction can be obtained by:

x = kBT
∂ lnZ

∂f
,

which gives force extension curve of folded I27:
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xI27
l0

= coth
fl0
kBT

− kBT

fl0
. (S3)

This form is identical to the monomeric force-extension curve in the freely-joint chain (FJC)

polymer model, because each monomer in FJC is a rigid rod.

Extension difference of unfolded polypeptide chain and folded I27 is denoted as ∆x(f) =

xchain(f) − xI27(f), where xchain(f) is inverse function of Eq.(S2). ∆x(f) was measured

in experiments directly, while the force extension curve of the unfolded I27 peptide was

obtained by adding back the theoretical force-extension curve of the folded I27 (Eq. S3):

xchain(f) = ∆x(f) + xI27(f), as shown in Figure S3.

Specificity of the surface functionalization and tethering

chemistry

In order to demonstrate the specificity of the surface functionalization and tethering chem-

istry, we stretched a chimeric molecule HaloTag-(I27)8-DNA(585 bp)-biotin tethered between

the Halo-ligand coated coverslip surface and streptavidin-coated M270 Dynabead. During

force increase from zero to about 80 pN with a constant loading rate of ∼ 3.3 pN/sec, the

recorded extension change of the construct shows the characteristic DNA overstretching tran-

sition at ∼ 65 pN indicated by a large extension increase by ∼ 67% of the contour length,

followed by eight characteristic unfolding steps of I27 units in the (I27)8 construct (Figure

S4).

Derivation of the free energy landscape

In a magnetic tweezers experiment, the molecule is subject to an external force constraint

of F applied by the pair of magnets to the paramagnetic bead. A tension f is established

inside the molecule, and at equilibrium the tension and the external force balance. The
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tension depends on the extension of the molecule through the force-extension curve f(x).

The conformational free energy at extension x can be defined as: φ(x) =
∫ x
0
f(x′)dx′, which is

related to f(x) through the derivative: f(x) = dφ(x)/dx. φ(x) is a monotonically increasing

function since f(x) > 0. Under a constraint of an external force F , the extension-dependent

conformational free energy becomes: φF (x) = φ(x)−Fx. It has an energy minimum located

at xeq(F ) determined by dφF (xeq)/dx = 0, at which the equilibrium is reached and the

tension balances the external force: f(xeq) = F .12

For a molecule that only has a folded rigid body state and an unfolded flexible pep-

tide chain state, one can write the energy of the states as: GF
I27(x) = φFI27(x) − ∆G0, and

GF
chain(x) = φFchain(x), respectively, where ∆G0 is the folding energy of the folded state at

zero force. The larger ∆G0, the more stable the folded sate.

GF
I27(x) and GF

chain(x) can be calculated based on their respective force-extension curves.

Free energy of folded I27 can be calculated as a function of extension along force direction

by equation:

GF
I27(x) = −∆G0 +

∫ x

0

fI27(x
′)dx′ − Fx, (S4)

where fI27(x
′) is the inverse function of Eq. (S3). Free energy of unfolded polypeptide chain

as a function of extension can be obtained by equation:

GF
chain(x) =

∫ x

0

fchain(x′)dx′ − Fx, (S5)

where fchain(x′) is obtained from Eq. (S2).

The partition function of the system as a function of extension is given by

ZF (x) = exp(−GF
I27(x)/kBT ) + exp(−GF

chain(x)/kBT ). (S6)

Therefore, the free energy landscape along extension is

GF (x) = −kBT lnZF (x), (S7)
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which gives Eq.(6) in main text which describes the free energy landscape using the extension

as the transition coordinate.

Discussion of the free energy landscape

The free energy landscape described by the extension as the transition coordinate in Eq.

(6) is a strict result from statistical mechanics for a two-state transition, with an underlying

approximation that the folded state is an ideal rigid body and the unfolded state is a flexible

polymer. The meaning and applications of this free energy landscape are explained with

details below.

Here we discuss the meanings of the transition state, transition distances and energy

barrier in this two-state system. The transition state is located at the peak of the free

energy landscape, which is approximately the critical extension xc at which the probabilities

of the folded and unfolded states are equal. Therefore, it follows that GF
I27(xc) = GF

chain(xc),

or φFI27(xc)−φFchain(xc) = ∆G0. In addition, since φFI27(xc)−φFchain(xc) = φI27(xc)−φchain(xc),

the transition state in the two state system has no force dependence. The force-dependent

unfolding and refolding transition distances are determined by δunfold(F ) = xc − xeqI27(F ) and

δfold(F ) = xeqI27(F ) − xc, respectively. Below we discuss the advantages and limitations of

applying such a simple two-state free energy landscape to understand real experiments.

An obvious advantage is that, despite its simplicity, it covers several essential aspects

that are typically involved in mechanical unfolding and refolding of proteins. Compared

with the flexible unfolded state with longer contour length, the small size rigid body of the

folded state results in a much steeper increase in φFI27(x) than φFchain(x) as x increases.

As a result, the transition state xc is close to the equilibrium extension of the folded state

xeqI27(F ). This ensures a small unfolding transition distance δunfold(F ), which is consistent

with the typically observed sub-nanometer unfolding transition distance in force-induced

protein unfolding. In addition, as a rigid body of nanometer size l is aligned up by force
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kBT/l in the scale of several pN, at large forces (F > kBT/l) its extension approaches l and

therefore δunfold(F ) has a weak force-dependence which can be approximated as a constant,

approaching zero at high force.

As a result of the insensitive dependence on force, the Bell’s model using a constant

unfolding transition distance is always a good approximation to describe the force dependent

unfolding rate. In contrast, the folding transition distance, δfold(F ) = xeqchain(F ) − xc, has a

much more prominent force dependence due to the nature of the flexible unfolded polymer

chain with a much longer contour length. This is the reason why the Bell’s model is no longer

a good approximation to describe the force dependent folding rate and one has to calculate

δfold(F ) based on the force-extension curve of the unfolded chain. For the reasons above,

the model predicts a linear force dependence of the unfolding rate on logarithm scale, and

a nonlinear force dependence of the refolding rate on logarithm scale, which are observed in

our experiment for I27 (Fig. 2E), in previous experiments by Schlierf, et al.,13 and in our

other experiments for G-quadruplex structures (under review).

Here we discuss the limitation of this simple two-state model. Due to the ideal rigid

body assumption, the unfolding transition distance approaches zero while in real experiment

it is typically a non-zero sub-nanometer number. For I27, previous AFM experiments have

reported a value of 0.25 nm.11 In addition, due to its two-state nature, the transition state

has the extension at which the two states roughly have equal probabilities. However, in real

experiments, the transition state often corresponds to structural intermediates, which are

often involving disruption of a few initial molecular interactions. This results in nonzero

unfolding transition distance and changes the actual height of energy barrier as well as the

transition rates. However, it does not affect the generic nature of a small force-insensitive

unfolding transition distance, a large force-sensitive folding transition distance, a linear force

dependence of the unfolding rate on logarithm scale, and a nonlinear force dependence of

the refolding rate on logarithm scale. Force-dependent unfolding barrier, folding barrier,

unfolding distance δunfold(F ), and folding distance δfold(F ) from the simplified two-state free
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energy landscape are shown in Figure S9.
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