Electronic Supplementary Information ## Effect of Hydrate Saturation on the Methane Hydrate Dissociation by # Depressurization in Sediments in a Cubic Hydrate Simulator Yu Zhang ^{a,b}, Xiao-Sen Li ^{a,b,*}, Zhao-Yang Chen ^{a,b}, Yi Wang ^{a,b}, Xu-Ke Ruan ^{a,b} E-mail address: <u>lixs@ms.giec.ac.cn</u> Figure 1 Resistance ratio spatial distributions at different time in the #### steady-pressure period for run 1 Figure 2 Resistance ratio spatial distributions at different time in the #### steady-pressure period for run 2 ^a Key Laboratory of Gas Hydrate, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, P. R. China., ^b Guangzhou Center for Gas Hydrate Research, Chinese Academy of Sciences, Guangzhou 510640, P. R. China. ^{*} Corresponding author. Tel: +86 20 87057037; Fax: +86 20 87034664. Figure 3 Resistance ratio spatial distributions at different time in the steady-pressure period for run 3 Figure 4 Resistance ratio spatial distributions at different time in the ## steady-pressure period for run 4 Figures 1-4 give the resistance ratio spatial distributions at different time in the steady-pressure period for different experimental runs. In each figure, (a), (b) and (c) represent the resistance ratio spatial distributions at the time when 20%, 60% and 100% of the gas production in the steady-pressure period has been produced, respectively. The resistance ratio is the ratio of the resistance at different time to the resistance at the beginning of the steady-pressure period.