Supporting information

A two-scale pursuit method for the tailored identification and quantification of unknown polymer additives and contaminants by ${ }^{1} \mathrm{H}$ NMR

Phuong-Mai Nguyen ${ }^{1,2,3}$, Cédric Lyathaud ${ }^{1}$, Olivier Vitrac ${ }^{2,3}$ *
${ }^{1}$ Laboratoire National de métrologie et d’Essais (LNE), Chemistry and Physical Chemistry of Materials Division, 78197 Trappes Cedex, France
${ }^{2}$ INRA, UMR 1145 Ingénierie Procédés Aliments, Group "Interactions between Materials and Media in Contact", F-91300, Massy, France
${ }^{3}$ AgroParisTech, UMR 1145 Ingénierie Procédés Aliments, Group "Interactions between Materials and Media in Contact", F-91300, Massy, France

* Corresponding author: Tel.: (+33) 169-935-063; Fax: (+33) 169-935-024; e-mail: olivier.vitrac@agroparistech.fr

Table S1. Detailed information of substances in the spectral dictionary in our study. Substances are ordered by their technological classes. "Technological class" and
"Chemical class" data were from ${ }^{1-5}$; "Structure" was fed with ${ }^{6}$.

User code	Chemical name	Common name (CAS number)			Structure	User code	Chemical name	Common name (CAS number)			Structure
M01	2,6-Di-tert-butyl-4-methylphenol	$\begin{gathered} \text { BHT } \\ (128-37-0) \end{gathered}$	A	1		M02	[3-[3-(3,5-ditert-butyl-4hydroxyphenyl)propanoyloxy] -2,2-bis[3-(3,5-ditert-butyl-4hydroxyphenyl)propanoyloxy methyl]propyl]	$\begin{gathered} \text { Irganox 1010 } \\ (6683-19-8) \end{gathered}$	A	1	
M03	octadecyl 3 -(3,5-ditert- butyl-4- hydroxyphenyl)propanoate	$\begin{aligned} & \text { Irganox 1076 } \\ & (2082-79-3) \end{aligned}$	A	1		M04	1,3,5-trimethyl-2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl) benzene	$\begin{aligned} & \text { Irganox 1330 } \\ & (1709-70-2) \end{aligned}$	A	1	
M05	2,4-bis(n-octylthiomethyl)-6-methylphenol	$\begin{aligned} & \text { Irganox 1520 } \\ & (110553-27-0) \end{aligned}$	A	1		M06	2-[2-[2-[3-(3-tert-butyl-4-hydroxy-5methylphenyl)propanoyloxy]et hoxy]ethoxy] ethyl	$\begin{gathered} \text { Irganox } 245 \\ (36443-68-2) \end{gathered}$	A	1	
M07	[2-tert-butyl-6-[(3-tert-butyl-2-hydroxy-5-methylphenyl)methyl]-4methylphenyl] prop-2enoate	$\begin{aligned} & \text { Irganox } 3052 \\ & (61167-58-6) \end{aligned}$	A	1		M08	1,3,5-tris(3,5-di-tert-butyl-4-hydroxybenzyl)-1,3,5-triazine-2,4,6(1H,3H,5H)-trione	$\begin{aligned} & \text { Irganox 3114 } \\ & (27676-62-6) \end{aligned}$	A	1	
M09	Tris(2,4-ditert-butylphenyl) phosphite	$\begin{aligned} & \text { Irgafos } 168 \\ & (31570-04-4) \end{aligned}$	A	2		M10	2-[2-[3-(3,5-ditert-butyl-4hydroxyphenyl)propanoyloxy] ethylsulfanyl]ethyl	$\begin{aligned} & \text { Irganox } 1035 \\ & (41484-35-9) \end{aligned}$	A	1	

Table S1 (cont'd)

User code	Chemical name	Common name (CAS number)			Structure	User code	Chemical name	Common name (CAS number)			Structure
M11	dodecyl 3-(3-dodecoxy-3oxopropyl)sulfanylpropano ate	$\begin{gathered} \hline \text { Irganox PS } \\ 800 \\ (123-28-4) \\ \hline \end{gathered}$	A	1	$\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{O} \mathrm{O}_{\mathrm{N}} \mathrm{O}_{\mathrm{O} \mathrm{C}_{12} \mathrm{H}_{25}}$	M12	octadecyl 3-(3-octadecoxy-3oxopropyl)sulfanylpropanoate	$\begin{gathered} \hline \text { Irganox PS } \\ 802 \\ (693-36-7) \\ \hline \end{gathered}$	A	1	
M13	$\begin{aligned} & \text { 1,2-Benzisothiazol- } 3(2 \mathrm{H}) \text { - } \\ & \text { one } \end{aligned}$	$\begin{gathered} \text { BIT } \\ (2634-33-5) \end{gathered}$	B	(-)		M14	3(2H)-isothiazolone, 5-chloro-2-methyl-	$\begin{gathered} \text { CMIT } \\ (26172-55-4) \end{gathered}$	B	(-)	
M15	2-methyl-1,2-thiazol-3-one	$\begin{gathered} \text { MIT } \\ (2682-20-4) \end{gathered}$	B	(-)		M16	2-(2-methoxypropoxy) propan-1-ol	$\begin{array}{\|c\|} \text { DPGME } \\ (34590-94-8) \end{array}$	CO ; s	(-)	
M17	4-[(4-amino-3chlorophenyl) methyl]-2-chloroaniline	$\begin{gathered} \text { MBOCA } \\ (101-14-4) \end{gathered}$	Cu	(-)		M18	Triethyl phophite	$\begin{gathered} \text { TEP } \\ (122-52-1) \end{gathered}$	dh	(-)	
M19	Octadecanoic acid	Stearic acid (57-11-4)	L	(-)		M20	4,4'-dihydroxy-2,2diphenylpropane	$\begin{gathered} \text { Bisphenol A } \\ (80-05-7) \end{gathered}$	m	(-)	
M21	Azepan-2-one	Caprolactam (105-60-2)	m	(-)		M22	Hexane-1,6-diamine	$\begin{gathered} \text { HMDA } \\ (124-09-4) \end{gathered}$	m	(-)	
M23	Benzene-1,3-diol	$\begin{aligned} & \text { Resorcinol } \\ & (108-46-3) \end{aligned}$	m	(-)		M24	Biphenyl-4-yl-phenylmethanone	$\begin{gathered} \text { 4BBP } \\ (2128-93-0) \end{gathered}$	ph	(-)	
M25	(4-hydroxyphenyl)phenylmethanone	$\begin{gathered} \text { 4HBP } \\ (1137-42-4) \end{gathered}$	ph	(-)		M26	1-isopropyl-thioxanthen-9-one	$\begin{array}{\|c\|} \text { ITX } \\ (75081-21-9) \end{array}$	ph	(-)	
M27	(4-methylphenyl)phenylmethanone	$\begin{gathered} \text { 4MBP } \\ (134-84-9) \end{gathered}$	ph	(-)		M28	Hexanedioic acid bis-(2-ethylhexyl) ester	$\begin{gathered} \text { DEHA } \\ (103-23-1) \end{gathered}$	P	3	$\underbrace{1}_{\text {noc }}$
M29	n-butylbenzoate	Butylbenzoate $(136-60-7)$	P	4		M30	3-[3-(Benzoyloxy)propoxy]propyl benzoate	$\begin{array}{\|c\|} \hline \text { DPGDB } \\ (27138-31-4) \end{array}$	P	4	

Table S1 (cont'd)

User code	Chemical name	Common name (CAS number)			Structure	User code	Chemical name	Common name (CAS number)	⿹ㅡ 응 응 응 증 ㄴ		Structure
M31	2-Acetyl-3-butoxycarbonyl-3-hydroxy-pentanedioic acid dibutyl ester	$\begin{gathered} \text { Tributylacetylc } \\ \text { itrate } \\ (77-90-7) \end{gathered}$	P	5		M32	1,2,3-triethyl 2-hydroxypropane-1,2,3tricarboxylate	Triethylcitrate (77-93-0)	P	5	
M33	2-Ethylhexyl diphenyl phosphate	$\begin{gathered} \text { Santicizer 141 } \\ (1241-94-7) \end{gathered}$	P	6		M34	Phthalic acid 1-benzyl ester 2-butyl ester	$\begin{gathered} \text { BBP } \\ (85-68-7) \end{gathered}$	P	7	0
M35	Phthalic acid, dibutyl ester	$\begin{gathered} \text { DBP } \\ (84-74-2) \end{gathered}$	P	7		M36	Phthalic acid, bis(2ethylhexyl) ester	$\begin{gathered} \text { DEHP } \\ (117-81-7) \end{gathered}$	P	7	
M37	Decanedioic acid dibutyl ester	$\begin{aligned} & \text { Dibutylseba- } \\ & \text { cate } \\ & (109-43-3) \end{aligned}$	P	8		M38	Polyethylene	$\begin{gathered} \text { PE } \\ (9002-88-4) \end{gathered}$	M	(-)	
M39	Polypropylene	$\begin{gathered} \text { PP } \\ (9003-07-0) \end{gathered}$	M	(-)		M40	Polystyrene	$\begin{gathered} \text { PS } \\ (9003-70-7) \end{gathered}$	M	(-)	
M41	1,3-di(phenyl)thiourea	$\begin{aligned} & \text { Diphenylthio- } \\ & \text { urea } \\ & (102-08-9) \end{aligned}$	st	(-)		M42	(Z)-Docos-13-enamide	$\begin{aligned} & \text { Erucamide } \\ & \text { (112-84-5) } \end{aligned}$	sl	(-)	
M43	(Z)-octadec-9-enamide	Oleamide (301-02-0)	sl	(-)		M44	1-Phenylethanone	$\begin{gathered} \text { Acetophenon } \\ e \\ (98-86-2) \end{gathered}$	S	(-)	
M45	$\stackrel{2-(2-}{\text { Hydroxyethoxy)ethanol }}$	$\begin{aligned} & \text { Diethylenegly- } \\ & \text { col } \\ & (111-46-6) \end{aligned}$	S	(-)		M46	$\begin{aligned} & \text { (2-hydroxy-4-n- } \\ & \text { octoxyphenyl)- } \\ & \text { phenylmethanone } \end{aligned}$	$\begin{aligned} & \text { Chimassorb } \\ & 81 \\ & (1843-05-6) \end{aligned}$	UV	9	

Table S1 (cont’d)

User code	Chemical name	Common name (CAS number)			Structure	User code	Chemical name	Common name (CAS number)			Structure
M47	2-tert-butyl-6-(5-chlorobenzotriazol-2-yl)-4methylphenol	$\begin{aligned} & \text { Tinuvin } 326 \\ & (3896-11-5) \end{aligned}$	UV	10		M48	2-(benzotriazol-2-yl)-4methylphenol	$\begin{gathered} \text { Tinuvin P } \\ (2440-22-4) \end{gathered}$	UV	10	
M49	$\begin{gathered} \text { Poly[6-[(1,1,3,3- } \\ \text { tetramethylbutyl)amino]- } \\ \text { 1,3,5- triazine-2,4-diyl]- } \\ \text { [(2,2,6,6- tetramethyl-4- } \\ \text { piperidyl)-imino] } \\ \text { hexamethylene[(2,2,6,6- } \\ \text { tetramethyl-4-piperidyl) } \\ \text { imino] } \end{gathered}$	$\begin{gathered} \text { Chimassorb } \\ 944 \\ (71878-19-8) \end{gathered}$	UV	11		M50	1-(2-hydroxyethyl)-4-hydroxy-2,2,6,6-tetramethyl piperidinesuccinic acid, dimethyl ester, copolymer	$\begin{gathered} \text { Tinuvin 622 } \\ (65447-77-0) \end{gathered}$	UV	11	
M51	$\begin{gathered} \text { bis(3,3,5,5- } \\ \text { tetramethylpiperidin-4-yl) } \\ \text { decanedioate } \end{gathered}$	$\begin{aligned} & \text { Tinuvin 770 } \\ & 52829-07-9 \end{aligned}$	UV	11		M52	Diphenyl-methanone	$\begin{aligned} & \text { Benzopheno } \\ & \text { ne } \\ & (119-61-9) \end{aligned}$	UV ; ph	9	

A: antioxidant, B: biocide, co: coalescing agent, cu: curing agent, dh: decomposer hyperoxide, L: lubricant, m: monomer, M: polymer, ph: photoinitiator, P: plasticizer, sl: slip additive, st: PVC stabilizer, S: solvent, UV: UV stabilizer.
1: phenol, 2: phosphite-phophonite, 3: adipate, 4: benzoate, 5: citrate, 6: phosphate, 7: phthalate, 8: sebacate, 9: benzophenone, 10: benzotriazole, 11: hindered amine. Pure substances were provided from Sigma Aldrich (France), TCI Europe N.V. (Belgium), Alfa Aesar (USA) and VWR International (France).

Multiplets	singlet	doublet	triplet	quartet	pentet	doublet of doublets	triplet of triplets
a)							
b)							
c) Functional groups				ubstances			
$\phi-\mathrm{OH}$	$\begin{gathered} 1-8,10,20,23,2 \\ 5,46-48 \\ \hline \end{gathered}$	(-)	(-)	(-)	(-)	(-)	(-)
$\mathrm{R}-\mathrm{OH}$	45	(-)	(-)	(-)	(-)	(-)	(-)
$\phi-$ NHR	(-)	(-)	(-)	(-)	(-)	(-)	(-)
R-NHR'	(-)	(-)	(-)	(-)	(-)	(-)	(-)
$\mathrm{CH}-X$	(-)	(-)	(-)	(-)	(-)	$(-)$	(-)
$\mathrm{CH}-\mathrm{N}$	15	(-)	22	(-)	(-)	(-)	(-)
$\mathrm{CH}-\mathrm{O}$	2,6	(-)	$\begin{aligned} & 3,10-12,29,31 \\ & 33-35,37,46,50 \\ & \hline \end{aligned}$	32	(-)	(-)	(-)
$\mathrm{CH}-\mathrm{S}$	(-)	(-)	(-)	(-)	(-)	(-)	(-)
$\mathrm{HC}=\mathrm{C}$	15	15	(-)	(-)	(-)	7	(-)
$\phi-\mathrm{H}$	1-4,8,10,14	$\begin{gathered} 5-7,9,17,27,46 \\ -48 \\ \hline \end{gathered}$	23	(-)	(-)	9,17,23,46-48	29
$\mathrm{CH}-\mathrm{C}=\mathrm{O}$	31,44	31,32	$\begin{gathered} \hline 6,11,12,19,37 \\ 42,43,51 \\ \hline \end{gathered}$	(-)	(-)	(-)	(-)
$\mathrm{CH}-\mathrm{C}$	1-4,6-10,47,50	(-)	$\begin{gathered} 3,5,11,19,29,3 \\ 4,35,37,42,43, \\ 46,50 \\ \hline \end{gathered}$	(-)	26	(-)	(-)
$\mathrm{CH}-\phi$	$\begin{gathered} \hline 1,4-8,14,17,27 \\ , 34,47,48 \\ \hline \end{gathered}$	7,26	3,6	(-)	(-)	(-)	(-)
$\mathrm{CH}-\mathrm{C}=\mathrm{C}$	(-)	(-)	(-)	(-)	(-)	(-)	(-)
$\mathrm{H}-\mathrm{C}=\mathrm{O}$	(-)	(-)	(-)	(-)	(-)	(-)	(-)
$\mathrm{CH}-\mathrm{C}-\mathrm{X}$	(-)	(-)	(-)	(-)	(-)	(-)	(-)
$\mathrm{CH}-\mathrm{C}-\mathrm{N}$	(-)	(-)	(-)	(-)	(-)	(-)	(-)
$\mathrm{CH}-\mathrm{C}-\mathrm{O}$	(-)	(-)	18,50	(-)	(-)	50	(-)
$\mathrm{CH}-\mathrm{C}-\mathrm{C}=\mathrm{O}$	(-)	(-)	11,12,32	(-)	19,42	51	(-)
$\mathrm{CH}-\mathrm{C}-\phi$	20	(-)	(-)	(-)	(-)	(-)	(-)
$\mathrm{CH}-\mathrm{C}-\mathrm{C}=\mathrm{C}$	(-)	(-)	(-)	(-)	(-)	(-)	(-)

Figure S1. Functional groups and corresponding multiplets for substances listed in Table S1: a) measured spectrum details (solid lines) and multiplets fitted (dashed lines) multiplets from Eqs. (S1)-(S2) and b) their cross-correlations; c) occurrence table of each multiplet in the library (numbers refer to suffix substance codes in Table S1). R, R' denote H or alkyl carbonyl groups.

Figure S2. Pairwise correlation coefficients (see Eq. (13) in the main article) between measured spectra of pure substances and spectra encoded as Gaussian lines.

Figure S3. Detailed graphical representation of stiffness matrix $\mathbf{S}_{\mathbf{R R}}=\left(\left\langle\bar{S}_{k}^{(\delta)}, f_{u, i}^{(\delta)}\right\rangle\right)_{\substack{u=1 . R_{\text {Rolicice }}, i=1 . . T_{u} \\ k=1.1 . R_{\text {clocice }}}}$ and loading vector

$$
\mathbf{S}_{\text {mixture }}=\left(\left\langle S_{\text {mixture }}^{(\delta)}, f_{u, i}^{(\delta)}\right\rangle\right)_{u=1 . . R_{\text {choice }}, i=1 . . T_{u}}
$$

(see Eq. (8) of a main article) for mixture S1. Cell background colors are proportional to the average of cross-correlation maxima. Average and maximum (between brackets) values of m^{1} and m^{3} of $\mathbf{S}_{\text {mixture }}$ are given in the last column.

Figure S4. Graphical representation $\mathbf{S}_{\text {RR }}$ and loading vector $\mathbf{S}_{\text {mixture }}$ (see Eq. (8) of a main article) for mixture S2. Cell background colors are proportional to the average of cross-correlation maxima. Average and maximum (between brackets) values of m^{1} and m^{3} of $\mathbf{S}_{\text {mixture }}$ are given in the last column.

Appendix S1. Coding of chemical segment functions

The proton NMR signal associated to the $i^{\text {th }}$ multiplet ($i=1 . . T_{k}$) of the $k^{\text {th }}$ substance is encoded as a weighted sum of $L_{k, i}$ theoretical lines, denoted $\left\{l_{k, i, j}^{(\delta)}\right\}_{j=1 . . L_{k, i}}$:

$$
\begin{equation*}
f_{k, i}^{(\delta)}=\sum_{j=1}^{L_{k, i}} \alpha_{k, i, j} l_{k, i, j}^{(\delta)} \text { for all } k=1 . . R \text { and } i=1 . . T_{k} \tag{S1}
\end{equation*}
$$

where $L_{k, i}$ is equal to the multiplicity of the segment function (singlet: $L_{k, i}=1$, doublet: $L_{k, i}=2$, etc.). For non-resolved multiplets, multiplicity was chosen according to the number of identified lines.

Since a Gaussian window was applied to FID data prior Fourier transform, all lines in the spectra appeared as a mixture of Gaussian and Lorentzian lines. Gaussian ones were, however, preferred for all multiplets as they did not capture the broadening of the peak bases due to baseline shifts and phase correction errors:

$$
\begin{equation*}
I_{k, i, j}^{(\delta)}=\exp \left(-\left(\frac{\delta-\hat{\delta}_{k, i, j}}{0.6006 \hat{\delta}_{k, i, j}}\right)^{2}\right) \text { for all } k=1 . . R, i=1 . . T_{k} \text { and } j=1 . . L_{k, i} \tag{S2}
\end{equation*}
$$

where $\bar{\delta}_{k, i, j}$ and $\widehat{\delta}_{k, i, j}$ are the center and width of the line. The factor 0.6006 was introduced to reproduce the behavior of the standard Lorentzian $\left[1+\left(\frac{\delta-\bar{\delta}_{k, i, j}}{\hat{\delta}_{k, i, j} / 2}\right)^{2}\right]^{-1}$ for values ranged above half of the peak height. According to Eqs. (S1)-(S2) and by noticing that $\int_{-\infty}^{+\infty} l_{k, i, j}^{(\delta)} d \delta=0.6006 \sqrt{\pi} \widehat{\delta}_{k, i, j}$, coefficients $\left\{\alpha_{k, i, j}\right\}_{j=1 . . L_{k, i}}$ verify:

$$
\begin{equation*}
\sum_{j=1}^{L_{k, i}} \alpha_{k, i, j} \widehat{\delta}_{k, i, j}=\frac{1}{0.6006 \sqrt{\pi}} \tag{S3}
\end{equation*}
$$

In practice, non-linear parameters $\left\{\bar{\delta}_{k, i, j}\right\}_{j=1.1 L_{k, i}}$ and $\left\{\widehat{\delta}_{k, i, j}\right\}_{j=1 . . L_{k, i}}$ were fitted iteratively via a direct search method (simplex method) initialized with the position of the peak maximum and with the double width of the largest monotonous region. Linear coefficients $\left\{\alpha_{k, i, j}\right\}_{j=1 . . L_{k, i}}$ were inferred at each iteration from the corresponding least-square problem. All coefficients were finally normalized to verify $\int_{-\infty}^{+\infty} f_{k, i}^{(\delta)} d \delta=1$.

Appendix S2. Cross-correlation fingerprints of typical multiplets

Substances within an unknown mixture spectrum are identified from their cross-correlations with a library of multiplets (279 in this study). Cross-correlations between typical multiplets, encoded as Gaussian lines, and real spectra are illustrated in Fig. S1. The matching protons are also reported along their frequencies of occurrence among the substances listed in Table S1. Non-resolved multiplets, which corresponded to an ensemble of peaks, are not represented, but they were included in the library. A match corresponding to a multiplet of multiplicity L is recognized by a symmetric cross-correlation including $2 L-1$ peaks (see Fig. S1b). Singlets and triplets are the most abundant patterns for plastic additives used for food contact. Indeed, they have been designed for their polymer compatibility in apolar polymer and their low toxicity. Elementary bricks comprise: aromatic cycles, phenolic compounds and aliphatic chains.

Appendix S3. Correlation matrix associated to the spectral library

The pairwise correlation coefficients $\left\{\rho_{k_{1}, k_{2}}\right\}$ associated to the spectral library were calculated according to Eq. (13) of the main article for all pairs of substances k_{1} and k_{2}. The matrix is represented graphically in Fig. S2. It was calculated by comparing the experimental spectra of pure substances (column-wise) with the ones coded in the spectral library as Gaussian lines (row-wise). The so-computed pair-wise correlations assess the ability to identify unambiguously one substance when it is the only substance present in the mixture. Substances in the library giving similar correlation coefficients have much higher risk to be mistaken.

The effects of experimental errors are assessed by the five repetitions (denoted from R1 to R5) of substances M17 and M19, measured at different concentrations.

Appendix S4. Principles of least-square deconvolution of spectra corresponding to numerical mixtures: S1 and S2

The deconvolution procedure is carried out in a least-square sense based on cross-correlation functions (see Eqs. (7) and (9) in the main article). The principles of construction of the corresponding matrices $\mathbf{S}_{\mathbf{R R}}$ and vectors $\mathbf{S}_{\text {mixture }}$ are illustrated in Figs. S3 and S4 for two combinations of mixtures S1 and S2, respectively. They depict all the local cross-correlation coefficients corresponding to the decomposition each measured spectrum ($R=7$ likely substances + the mixture spectrum) onto the base of multiplets (34 and 46 multiplets respectively). For clarity, the correlation-search regions have been plotted ten to twenty times wider than those used in this study. Maxima of cross-correlations are identified by a square symbol with the grey intensity of each cell background coding for the cross-correlation averaged over all multiplets.

The proper identification of a substance can be identified visually by comparing correlation functions with theoretical ones reported in Fig. S1b. A match should verify a symmetric pattern with an odd number of rows. In the general case, the symmetry of the cross-correlation function (corresponding to $i^{\text {th }}$ multiplet of the $\underline{u}^{\text {th }}$ test substance) $g_{u, i}^{(\delta)}=\left\langle S_{\text {mixture }}^{(\delta)}, f_{u, i}^{(\delta)}\right\rangle$ can be estimated its by two first odd moments around the position of the maximum $\delta_{\max }$:

$$
\begin{equation*}
m_{u, i}^{k=1.3}=\frac{\int_{-\infty}^{+\infty}\left(\delta-\delta_{\max }\right)^{k} g_{u, i}^{(\delta)} d \delta}{\left(\int_{-\infty}^{+\infty} g_{u, i}^{(\delta)} d \delta\right)^{k}} \text { for } i=1 . . T_{u} \text { and } u=1 . . R_{\text {choice }} \tag{S4}
\end{equation*}
$$

The first moment $m_{u, i}^{1}$ is the distance skewness and characterizes the deviation of the position of the center-of-mass to $\delta_{\max }$. The third moment $m_{u, i}^{3}$ assesses the skewness of the distribution, that is mainly the symmetry of the distribution around $\delta_{\max }$, in particular due to tail values. As rule of thumb, a likely match should minimize simultaneously $\sum_{i=1 . T_{u}} m_{u, i}^{1}$ and $\sum_{i=1 . . T_{u}} m_{u, i}^{3}$. The two moment values are tabulated in the last column of Figs. S3 and S4.

Literature cited

(1) Murphy, J. Additives for plastics handbook. 2nd ed.; Elsevier Advanced Technology: Oxford, 2001; p 484.
(2) Pritchard, G. Plastics Additives. Smithers Rapra Technology: Shrewsbury, 2005; p 208.
(3) Crompton, T. R. Additive Migration from Plastics Into Foods: A Guide for the Analytical Chemist. Smithers Rapra Technology Limited: Shrewsbury, 2007.
(4) Forrest, M. J. Coatings and Inks for Food Contact Materials. iSmithers Rapra Publishing: Shrewsbury, 2007; p 132.
(5) Zweifel, H.; Maier, R. D.; Schiller, M. Plastics Additives Handbook. 6th ed.; Hanser Publications: Munich, 2009; p 1222.
(6) RSC ChemSpider - The free chemical database (Royal Society of Chemistry). www.chemspider.com (accessed 10/10/2013).

