Supporting Information

for

Formation and Spectroscopy of Dicyanotriacetylene (NC₈N) in Solid Kr

Michał Turowski^{a*}, Claudine Crépin ^b, Stéphane Douin ^b, and Robert Kołos^a

^a Institute of Physical Chemistry of the Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland

^b Institut des Sciences Moléculaires d'Orsay, UMR 8214 CNRS, Université de Paris-Sud, 91405 Orsay, France

* Corresponding author, email address: mturowski@ichf.edu.pl

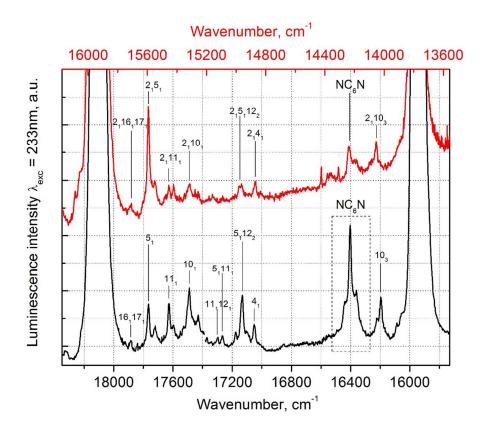


Fig. S1. Two adjacent spectral regions of NC_8N phosphorescence in solid krypton (resultant from a mixture of $HC_3^{14}N$ and $HC_3^{15}N$ precursors), shifted along the wavenumber axis to line up the bands differing only by the excitation of the v_2 mode.

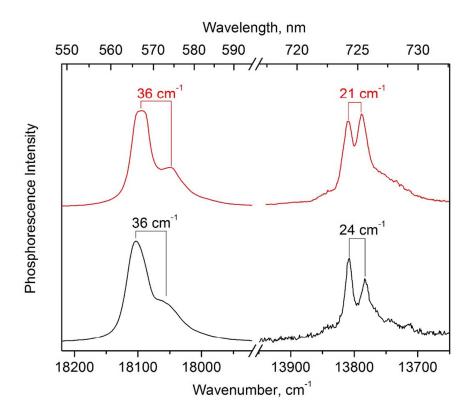


Fig. S2. Selected fragments of NC₈N phosphorescence generated in solid krypton, from a 1:1 $HC_3^{14}N$: $HC_3^{15}N$ mixture of precursors (upper trace, in red) and from $HC_3^{14}N$ alone (bottom trace), showing (left) the θ - θ band structure due to unequal matrix trapping sites, and (right) the possible $2^0_2/4^0_4$ Fermi resonance pair. Spectra recorded for thermally annealed samples.