Supporting Information

Infrared Identification of Proton-bound Rare-gas Dimers (XeHXe)⁺, (KrHKr)⁺, (KrHXe)⁺, and Their Deuterated Species in Solid Hydrogen

Masashi Tsuge,[†] Jaroslaw Kalinowski,[‡] R. Benny Gerber,^{‡,§,I,*} and Yuan-Pern Lee^{†,*}

[†]Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, 1001 Ta-Hsueh Rd., Hsinchu, 30010, Taiwan

[‡]Department of Chemistry, University of Helsinki, FIN-00014, Finland

[§]Institute of Chemistry, University of Jerusalem 91904, Israel

¹Department of Chemistry, University of California, Irvine 92697, CA, USA

		((XeHXe) ⁺ (KrHKr) ⁺		(KrHXe) ⁺					
method		v_1	<i>V</i> 2	<i>V</i> 3	v_1	<i>V</i> 2	V3	v_1	<i>V</i> 2	<i>V</i> 3
R-CCSD(T)(full)	harm.	151 [151]	624 [442]	800 [567]	210 [210]	734 [521]	985 [699]	120 [119]	570 [405]	1384 [985]
	anharm.	132 [149]	615 [441]	726 [551]	203 [197]	737 [511]	919 [676]	122 [116]	574 [405]	1279 [916]
CCSD(T)(full)	harm.	151 [151]	622 [441]	822 [582]	210 [210]	733 [520]	999 [708]	122 [122]	572 [405]	1371 [975]
	anharm.	130 [149]	627 [439]	799 [568]	201 [199]	737 [515]	944 [687]	127 [122]	581 [405]	1259 [921]
MP2(full)	harm.	152 [152]	577 [409]	944 [669]	208 [208]	633 [499]	1010 [716]	129 [128]	536 [380]	1318 [937]
	anharm.	131 [145]	556 [401]	879 [644]	199 [201]	628 [445]	970 [696]	139 [125]	531 [376]	1155 [821]
B3LYP	harm.	140 [140]	542 [384]	976 [692]	194 [194]	601 [427]	1079 [765]	138 [137]	530 [376]	1217 [864]
	anharm.	120 [135]	540 [383]	934 [669]	188 [184]	598 [425]	1027 [742]	140 [125]	533 [378]	1130 [802]

Table S1. Harmonic and anharmonic vibrational wavenumbers (cm⁻¹) of (XeHXe)⁺, (KrHKr)⁺, (KrHXe)⁺, and their deuterated species (given in brackets) calculated with various methods.^{*a,b*}

^{*a*}The v_1 , v_2 , and v_3 modes correspond to the Rg–H–Rg' symmetric stretching, doubly-degenerated Rg–H–Rg' bending, and Rg–H–Rg' antisymmetric stretch modes, respectively. ^{*b*} with aug-cc-pVTZ-PP basis set.

Table S2. Binding energies and shifts in harmonic vibrational wavenumbers (Δv in cm⁻¹) of linear and T-shaped (RgHRg')⁺–Rg/Rg' complexes calculated with the CCSD(T)(full)/aug-cc-pVTZ-PP method.

	Δv_1	Δv_2^a	Δv_3	binding						
				energy ^b						
(XeHXe) ⁺ –Xe complex										
Linear	-20.0	+11.4	+113.8	-12.5						
T-shaped	-0.1	-19.8, +6.0	-11.6	-14.9						
	(KrHKr) ⁺ –Kr complex									
Linear	-6.6	+14.0	+29.6	-10.9						
T-shaped	-0.3	-24.6, -1.1	-14.3	-13.3						
$(KrHXe)^+$ –Xe complex										
Linear (KrHXe) ⁺ –Xe	-20.0	-16.1	+241.2	-16.7						
Linear Xe–(KrHXe) ⁺	+21.6	+47.9	-169.8	-10.1						
T-shaped	-1.8	-30.2, -0.3	+21.8	-15.4						
(KrHXe) ⁺ –Kr complex										
Linear (KrHXe) ⁺ –Kr	-15.0	-12.3	+184.7	-12.9						
Linear Kr–(KrHXe) ⁺	+16.8	+37.3	-123.5	-8.5						
T-shaped	-1.6	-26.1, -0.6	+16.2	-13.0						

"The degenerated v_2 mode (bending) is split into two vibrations in the case of T-shaped complexes because of symmetry.

^bBinding energies in kJ mol⁻¹ are corrected for zero-point vibrational energy.

Figure S1. Partial IR spectra of electron-bombarded matrices with $Xe/p-H_2 = 1/1000$ (upper trace, black) and 1/10000 (lower trace, red). Spectra were measured right after deposition. Lines due to (XeHXe)⁺ and (XeHXe)⁺–Xe are indicated with solid and dotted lines, respectively.