Synthesis, Physical Properties, and Light-Emitting Diode Performance of Phenazine-Based Derivatives with Three, Five and Nine Fused Six-Membered Rings

Pei-Yang Gu,¹ Yongbiao Zhao,² Jing-Hui He,³ Jing Zhang,¹ Chengyuan Wang,¹ Qing-Feng Xu,³ Jian-Mei Lu,³ Xiaowei Sun,^{2*} and Qichun Zhang^{1,4}*

¹ School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.

* Correspondence to Q. Zhang, E-mail: qczhang@ntu.edu.sg.

²School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore.

* Correspondence to X. Sun, E-mail: EXWSun@ntu.edu.sg.

³College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.

⁴Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore

Contents

General Information	S2
Figure S1 ¹ H NMR spectrum of 2a in CDCl ₃	S2
Figure S2 ¹³ C NMR spectrum of 2a in CDCl ₃	S3
Figure S3 HRMS spectrum of 2a	S3
Figure S4 ¹ H NMR spectrum of 2b in CDCl ₃	S4
Figure S5 ¹³ C NMR spectrum of 2b in CDCl ₃	S4
Figure S6 HRMS spectrum of 2b	S5
Figure S7 ¹ H NMR spectrum of 2c in CDCl ₃	S5
Figure S8 ¹³ C NMR spectrum of 2c in CDCl ₃	S6
Figure S9 MS spectrum of 2c	S6
Figure S10 Normalized absorption spectra of 2a recorded in different solvents	S6
Figure S11 Normalized absorption spectra of 2b recorded in different solvents	S7
Figure S12 Normalized absorption spectra of 2c recorded in different solvents	S7
Figure S13 Normalized PL spectra of 2a recorded in different solvents	S7
Figure S14 Normalized PL spectra of 2b recorded in different solvents	S8
Figure S15 TGA curves of 2a , 2b , and 2c with a heating rate of 20 $^{\circ}$ C min ⁻¹ under N ₂	
Figure S16 Cyclic voltammogram of the Ferrocene standard in CH ₂ Cl ₂ solution at the scan r	ate of
100 mV S ⁻¹	S8
Figure S17 The crystals images of compound 2a (A), 2b (B), and 2c (C)	S9

General Information

The fluorescent quantum yields (QYs) in the solution were determined using quinine bisulfate ($\Phi_F = 0.54$ in 0.1 mol L⁻¹ H₂SO₄) using the equation:

$$\phi_r = \frac{F_r}{F_s} \frac{A_s}{A_r} \phi_s \tag{1}$$

In this equation, subscripts s and r represent the sample and reference, respectively. F is the integral area of the fluorescence spectra, A is the absorbance, ϕ is the fluorescence quantum yield.

Figure S1¹H NMR spectrum of 2a in CDCl₃.

Figure S3 HRMS spectrum of 2a

Figure S5 ¹³C NMR spectrum of 2b in CDCl₃.

Figure S6 HRMS spectrum of 2b.

Figure S7¹H NMR spectrum of 2c in CDCl₃.

Figure S10 Normalized absorption spectra of 2a recorded in different solvents.

Figure S11 Normalized absorption spectra of 2b recorded in different solvents.

Figure S12 Normalized absorption spectra of 2c recorded in different solvents.

Figure S13 Normalized PL spectra of 2a recorded in different solvents.

Figure S14 Normalized PL spectra of 2b recorded in different solvents.

Figure S15 TGA curves of 2a, 2b, and 2c with a heating rate of 20 °C min⁻¹ under N₂

Figure S16 Cyclic voltammogram of the ferrocene standard in CH_2Cl_2 solution at the scan rate of 100 mV S⁻¹.

(A)

(B)

(C) Figure S17 The crystal images of compounds 2a (A), 2b (B), and 2c (C)