Supporting Information

Fluorenylidene functionalized lithium phosphonium di- and triylides

Fabian G. Schröder and Jörg Sundermeyer*

Fachbereich Chemie der Philipps-Universität Marburg, Hans-Meerwein-Str., 35032 Marburg, Germany

Content:

- S2 Characterization and Single Crystal X-ray Analysis of [Me₃P⁺-FluH]Br⁻ (1).
- S2 Characterization and Single Crystal X-ray Analysis of [Me₃P=Flu] (2).
- S4 Table S1. Crystallographic data for Compounds 1-4
- S5-11 NMR spectra of Compounds 1-4
- S12 References

Characterization and Single Crystal X-ray Analysis of [Me₃P⁺-FluH]Br⁻ (1). 1 gives rise to a 31 P NMR resonance at 30.8 ppm. The phosphorus bound methyl groups in 1 give rise to a doublet at 2.10 ppm and a $^{2}J_{HP}$ coupling constant of 13.7 Hz in the proton NMR spectrum and a doublet at 8.0 ppm ($^{1}J_{CP} = 54.4$ Hz) in the 13 C NMR spectrum, respectively. The carbon atom in 9–position of the fluorene moiety is observed at 43.0 ppm ($^{1}J_{CP} = 46.0$ Hz) the proton 9–position is downfield shifted to 6.26 ppm and shows a $^{2}J_{HP}$ coupling constant of 19.5 Hz.

Single crystals of **1** were obtained by slow evaporation of a supernatant solution in chloroform. **1** crystallizes in the orthorhombic space group *Pbna* with eight identical formula units and chloroform molecules per unit cell. The phosphorus bound substituent form a close to perfect tetrahedron with C-P-C angles of $108.0(1)^{\circ}$ to $111.7(1)^{\circ}$. The P-C_{Me} bond lengths are identical within limits of uncertainties (d(P-C14) = 1.780(2) Å) and agree well with values found in $[Me_3P^+-C_5H_2Ph_3]ClO_4^-$ (d(P-C_{Me}) = 1.783(2) Å). The P1-C1 bond length amounts to 1.823(2) Å and is slightly shorter than in $[Me_2P^+(FluH)_2]\Gamma$ (d(P-C_{Flu}) = 1.837(2) Å)² which is attributed to the smaller sterical demand of one fluorene moiety in **1**. The bromine atom takes part in weak hydrogen bonding to the proton of the chloroform molecule (d(Br1-H17) = 2.54 Å).

Characterization and Single Crystal X-ray Analysis of [Me₃P=Flu] (2). 2 gives rise to a 31 P NMR resonance at 1.7 ppm. The protons of the phosphorus bound methyl groups in 2 give rise to one doublet at 1.95 ppm and a $^{3}J_{HP}$ coupling constant of 13.4 Hz. Their equivalence indicates a fast rotation around the P-C_{Flu} bond. The carbon atom in 9-position of the fluorene moiety shows a doublet at 58.8 Hz in the 13 C NMR spectrum. Its $^{1}J_{CP}$ coupling constant is of 121.1 Hz indicating an increased P-C_{Flu} interaction.

Single crystals of **2** were obtained from toluene at -30 °C. It crystallizes in the monoclinic space group $P2_1/c$ with four identical phosphorus ylides and toluene molecules per unit cell. In **2** the P– C_{Me} bond lengths (d(P1–C14) = 1.792(2) Å) are of the same magnitude and elongated in

comparison to **1**. The P1–C1 distance amounts to 1.729(2) Å and is in the same range as observed in Me₂P(=Flu)FluH (d(P–C_{Flu}) = 1.724(2) Å)² and in previously reported cyclopentadienylidene phosphoranes (1.717(2)–1.742(3) Å).³⁻⁶ It represents a longer distance as found in non-stabilized phosphorus ylids (e.g. 1.662(8) Å in Ph₃P=CH₂)⁷ but a significant elongation in comparison to P–C single bonds found in **2** and Me₂P(=Flu)FluH (d(P–C_{FluH}) = 1.847(2) Å).² This indicates a significant contribution of both the ylid and ylene resonance structure and therefore a aromatization of the five-membered ring. This is documented by a planar configuration of C1 (Σ (<) = 359.4°) and a obvious contraction of the C1–C2 (1.435(2) Å) and C1–C5 (1.441(2) Å) bond length compared to **1** (1.521(3) and 1.515(3) Å).

Figure S1. Molecular structures of [Me₃P⁺FluH]Br⁻ (1, left) and Me₃P=Flu (2, right). Displacement ellipsoids are shown at the 50% probability level. Hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (deg): 1: P1-C1, 1.823(2); P1-C14, 1.780(2); P1-C15, 1.783(2); P1-C16, 1.785(2); C1-P1-C14, 110.6(1); C1-P1-C15, 108.2(1); C1-P1-C16, 111.7(1); C14-P1-C15, 110.2(1); C14-P1-C16, 108.1(1); C15-P1-C16, 108.0(1). **2**: P1-C1, 1.729(2); P1-C14, 1.792(2); P1-C15, 1.792(2); P1-C16, 1.793(2); C1-P1-C14, 112.7(1); C1-P1-C15, 112.0(1); C1-P1-C16, 113.5(1); C14-P1-C15, 105.9(1); C14-P1-C16, 106.6(1); C15-P1-C16, 105.7(1).

 Table S1. Crystallographic data for Compounds 1-4

Compound	1	2	3 ^{a)}	4
Formula	C ₁₆ H ₁₈ P, CHCl ₃ , Br	$C_{16}H_{17}P, C_7H_8$	C ₄₀ H ₅₂ Li ₂ O ₂ P ₂	$C_{40}H_{50}Li_4O_2P_2$
Formula weight	440.55	332.40	640.64	652.50
Crystal system	orthorhombic	monoclinic	triclinic	monoclinic
Space group	Pbna	$P2_{1}/c$	<i>P</i> -1	$P2_1/c$
Unit cell dimension				
a (Å)	12.8898(4)	14.5317(8)	8.9171(6)	8.2904(4)
b (Å)	13.7001(4)	15.7241(6)	9.6350(7)	23.4831(15)
c (Å)	21.7692(7)	8.1768(5)	10.9153(8)	9.8369(5)
α (°)	90.00	90.00	95.220(6)	90.00
β (°)	90.00	95.232(5)	103.669(6)	110.339(4)
$\chi(^{\circ})$	90.00	90.00	90.252(6)	90.00
$V(\mathring{A}^3)$	3844.3(2)	1860.60(17)	907.14(11)	1795.69(17)
Z	8	4	1	2
Temperature (K)	100(2)	100(2)	100(2)	100(2)
Wavelength (Å)	0.71069	0.71069	0.71069	0.71069
Calculated density (g cm ⁻³)	1.522	1.187	1.173	1.207
Absorption coefficient (mm ⁻¹	2.633	0.148	0.152	0.154
Transmission factors	0.6691 and	0.9376 and		0.9683 and
(min./max.)	0.763	0.9941		0.9908
Crystal size (mm ³)	0.27 x 0. 90 x	0.44 x 0.06 x	0.25 x 0.21 x	0.21 x 0.12 and
	0.06	0.04	0.10	0.06
$\theta(\max)$ (°)	26.72	26.76	26.99	26.74
Reflections measured	27095	14448	11997	14701
Unique reflections	4045	3918	11997	3806
$R_{ m int}$	0.0491	0.0787		0.1009
Number of parameters	202	221	221	236
$R_1 [F^2 > 2\sigma(F^2)]$	0.0329	0.0406	0.0536	0.0372
wR_2	0.0680	0.0659	0.1389	0.0599
GOOF, S	1.095	0.806	0.985	0.652
Largest difference peak and	0.592 and	0.231 and	0.753 and	0.186 and
hole (e Å ³)	-0.677	-0.287	-0.420	-0.249

 $[\]frac{1}{a}$ 3 was obtained as a twin (74/26); therefore, an hklf 5-refinement was undertaken.

NMR Spectra of Compounds 1-4

¹H NMR of Compound **1** (CDCl₃)

¹³C NMR of Compound 1 (CDCl₃)

³¹P NMR of Compound 1 (CDCl₃)

¹H NMR of Compound **2** (THF-d₈)

 ^{13}C NMR of Compound 2 (THF-d₈)

³¹P NMR of Compound **2** (THF-d₈)

 $^{1}\text{H NMR of Compound 3 (THF-d}_{8})$

¹³C NMR of Compound **3** (THF-d₈)

³¹P NMR of Compound **3** (THF-d₈)

⁷Li NMR of Compound **3** (THF-d₈)

¹H NMR of Compound **4** (THF-d₈)

¹³C NMR of Compound 4 (THF-d₈)

³¹P NMR of Compound **4** (THF-d₈)

⁷Li NMR of Compound **4** (THF-d₈)

References

- 1. T. Xu, W. T. Gong, J.-W. Ye, Y. Lin and G.-L. Ning, *Organometallics*, **2010**, 29, 6744-6748.
- 2. E. D. Brady, T. P. Hanusa, M. Pink and V. G. Young, *Inorg. Chem.*, **2000**, 39, 6028-6037.
- 3. C. Lichtenberg, N. S. Hillesheim, M. Elfferding, B. Oelkers and J. Sundermeyer, *Organometallics*, **2012**, 31, 4259-4266.
- 4. F. G. Schröder, C. Lichtenberg, M. Elfferding and J. Sundermeyer, *Organometallics*, **2013**, 32, 5082-5091.
- 5. J. H. Brownie, M. C. Baird and H. Schmider, *Organometallics*, **2007**, 26, 1433-1443.
- 6. H. L. Ammon, G. L. Wheeler and P. H. Watts, J. Am. Chem. Soc., 1973, 95, 6158-6163.
- 7. J. C. J. Bart, Journal of the Chemical Society B: Physical Organic, 1969, 350-365.