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Figure S1. Quantitative EDS analysis of phase-segregated nanoparticles. Quantitative EDS analysis of (a) PON, 

(b) OSN, (c) PHN, and (d) HSN, respectively. While (a) PON and (c) PHN, the original synthetic products, 

exhibit the Ni content as the major component in the phase-segregated nanostructure, Pt becomes the major 

component for (b) OSN and (d) HSN after chemical etching process. The non-marginal presence of Ni component 

in the final etched products of PHN and HSN indicates the formation of Pt-rich PtNi alloy, likely Pt/Ni solid 

solution, structures. 
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Figure S2. TEM images of nanoparticles [PON in (a) and PHN in (b)] and their respective histograms (c and d) 

for particle size distributions. PON shows a narrow size distribution mainly from 34 to 38 nm and PHN exhibits 

a broader distribution mainly from 70 to 100 nm. 
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c) d) Total number of PON = 306  Total number of PHN = 106  
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Figure S3. Lattice deformation of PON by Geometric Phase Analysis (GPA). (a) HRTEM image of <110> edge 

of PON, corresponding to the white dashed circle in the inset model, (b) strain map extracted from GPA for (111) 

plane and (c) strain profile obtained from GPA strain map. The strain profile shows approximately 10 percent of 

dilatation in the side wall (about 5~6 lattice from the surface) to inside of the octahedral nanostructure. 
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Figure S4. Structure and component analysis of PON at 165 minute. (a) TEM image, (b) HRTEM spatial 

resolution analysis, (c) EDS elemental mapping and (d) line profile analysis of PON show three Pt-rich inner 

axes and core separated from Ni domain octahedral nanoparticle, while the edges hardly exhibit any Pt component, 

for Pt diffusion along the <110> edges did not start at this point of the reaction. The orange and white marks in 

HRTEM image represent Pt (d111= 2.26 Å ) and Ni (d111= 2.03 Å , d200= 1.76 Å ) along the <110> zone axis.  
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Figure S5. EDS line profiles with HAADF-STEM images of the reaction intermediate core-shell Pt@Ni 

octahedral nanoparticle and the final product phase-segregated octahedral PtNi nanoparticle. Line scanning for 

(a,b) intermediate core-shell nanostructure and (c,d) phase-segregated final structure was performed along 

different crystal directions. As the reaction proceeds, the Pt core size of nanostructure decreases and the Pt 

proportion in edges and axes increases. The red arrows in the insets of line profile images indicate line scan 

directions for the corresponding nanoparticles. 

 

 

d) c) 

b) a) 
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Figure S6. Structural analysis of core-shell Pt@Ni concave nanocube. (a) HAADF-STEM, (b) HRTEM and (c) 

EDS elemental mapping images of core-shell Pt@Ni concave nanocube. EDS mapping image shows the phase 

segregation between Pt core (orange) and Ni shell (purple) components. In (b), HRTEM image is shown with a 

FFT image along the <100> zone axis. Ni-rich phase in a concave nanocube can be confirmed through d-spacing 

analysis (Ni, d200= 1.76 Å ).  
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Figure S7. d-band center calculations for surface Ni atoms. (a) d-band center was considered for the 4 surface Ni 

atoms (yellow) with and without Pt (blue) on the subsurface layer. (b) Bond length of 4 CO molecules were 

considered which were bound to the 4 surface Ni atoms with and without Pt on the subsurface layer. Also, the 

bond length between the 4 Ni atoms and the 4 CO molecules were evaluated. (c) The density of states for the d-

band in the 4 surface Ni atoms with and without Pt on the subsurface layer. The d-band center shifted upward in 

the presence of Pt from -1.52 eV to -1.44 eV. 
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Figure S8. Relative energy of each position on the surface of Ni nanoparticle (a) without CO and (b) with CO. 

In the absence of CO, the vertex position has the lowest energy. However, the edge position which keeps the 

lowest energy results in the diffusion of the Pt along the edge (red arrow) after it segregates on the vertex in the 

presence of CO. 
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Figure S9. TEM images of intermediates, leading to the formation of PHN, at different reaction times: (a) 10 

min, (b) 12 min, (c) 15 min, (d) 20 min, (e) 30 min, and (f) 300 min. In the initial stage, (a,b) the PtNi alloy 

nanoparticles with six branches are formed from poorly defined Pt-based seeds. (c) Each branch within the 

particle was further developed into new branches, which continued to grow. (d-f) Repetition of this process 

combined with growth of branches into small octahedrons eventually led to the formation of a dendritic 

nanostructure with an overall shape of octahedron. 
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Figure S10. TEM images for Au overgrown phase-segregated PtNi nanoparticles. TEM images of (a,b) PON 

with Au nanoparticles grown and (c,d) PHN with Au nanoparticles grown. Au nanoparticles grew preferentially 

on the edges and vertices of phase-segregated PtNi nanocrystals, suggesting a high reactivity of these sites. 
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Figure S11. XRD patterns of phase-segregated nanoparticles indicate a face-centered cubic structure: (a) HSN, 

(b) PHN, (c) OSN, (d) PON. Color sticks indicate the reference X-ray diffraction lines: blue, Pt (JCPDS #04-

0802), and red, Ni (JCPDS #04-0850). 
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Figure S12. Structural analysis for nanoframes with overgrown Pt phase. TEM and HAADF-STEM images of   

(a,b) OSN_OV and (c,d) HSN_OV. Pt nanoparticles grew along the edges and vertices of skeletal Pt-based 

nanocrystals. EDS analysis of (e) OSN_OV and (f) HSN_OV. 
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Figure S13. TEM analysis of PHN. (a) TEM, and (b) HAADF-STEM images of PHN. (c) HRTEM with FFT 

images of PHN along the <110> zone axis. The phase segregation between Pt-rich and Ni-rich phases in a small 

octahedral branch can be confirmed through d-spacing analysis. The orange and white marks in HRTEM and 

FFT images represent Pt (d111= 2.26 Å , d200= 1.96 Å ) and Ni (d111= 2.03 Å , d200= 1.76 Å ), respectively. 
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Figure S14. TEM analysis of OSN. (a) TEM, (b) HAADF-STEM, and (c) HRTEM images of OSN. The average 

thicknesses of edges and axes of OSN are 1.5 ± 0.2 nm and 1.8 ± 0.3 nm, respectively. The FFT images of OSN 

along the <110> zone axis are also shown (Pt, d111= 2.26 Å , d200= 1.96 Å ). 
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Figure S15. TEM analysis of HSN. (a) TEM, (b) HAADF-STEM, (c) HRTEM images of HSN. The average 

frame thickness is 3.9 ± 1.0 nm. The FFT images of HSN along the <110> zone axis are also shown (Pt, d111= 

2.26 Å , d200= 1.96 Å ) 
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Figure S16. TEM images of the carbon black supported catalysts: (a) OSN/C and (b) HSN/C catalysts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a) b) 



17 

Figure S17. Cyclic voltammogram of nanocatalysts: Pt/C, OSN/C, HSN/C, and OSN_OV/C catalysts in N2-

saturated solution at a scan rate of 50 mV s-1.  
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Figure S18. Electrochemical stability of the HSN/C catalyst. (a) Cyclic voltammogram and (b) the ORR 

polarization curve before and after potential cycling between 0.6 and 1.0 V vs RHE for 10,000 cycles at a scan 

rate of 50 mV s-1. 
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Figure S19. The electron transfer numbers of Pt/C, OSN/C, HSN/C, and OSN_OV/C catalysts during ORR. 

From the rotating ring disk electrode (RRDE) measurements, we could assess oxygen reduction reaction (ORR) 

pathway of the four catalysts (OSN/C, HSN/C, OSN_OV/C, and Pt/C). From the measured ring currents, the 

H2O2 yields and electron transfer numbers of the four catalysts were calculated. The electron transfer numbers of 

all catalysts are close to four, strongly suggesting that the ORR on these four catalysts proceeds via a direct four-

electron process. 
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Figure S20. Geometrical details of the DFT calculations. (a) CO adsorption sites for the model Pt-Ni nanoparticle. 

24 COs occupied the bridge sites on the Ni (110) sites and 8 COs filled up the remaining hollow sites on the (111) 

plane. (b) Reference position for relative energy calculations. Each position was substituted with the Pt atom and 

the total energy was compared to that of the reference position. 

 

a) b) 


