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1. Text 
 

1.1. FEM and analytical modeling of energy release rate vs. crack length 

Abaqus 6.10 is used to perform finite element modeling (FEM) to study the relation 

between energy release rate and crack length when peeling a soft PDMS film from a glass 

substrate as shown in Figure S9a in the Supporting Information. We simplify the problem 

to be 2-dimensional plane strain and the boundary conditions we applied are: i) the bottom 

of the glass slide is fixed; ii) the left edge of the PDMS film is loaded by either fix force F 

or fix deflection , for different crack size a. The PDMS film is modeled as Neo-Hookean 

material while the glass slide is treated as elastic material and their mechanical properties 

as well as geometries are shown in Table S1 in Supporting Information. The crack is 

defined as a seam with length a on the PDMS/Glass interface (the red solid line in Figure 

S9a in the Supporting Information) and near the crack front an integral path (the yellow 

circular path in the zoomed in picture in Figure S9a in the Supporting Information) is 

assigned for the J-integral to obtain the energy release rate at the crack tip. Path 

independence of the J-integral has been checked and ensured. The overall structure is 

meshed by quadratic quadrangle CPE8RH element except near the crack tip (quadratic 

triangular CPE8RH element) and the results are plotted in Figure S9b in the Supporting 

Information by solid circular dots for both force control under F1 = 0.01 N/m (blue) and F2 

= 0.02 N/m (red) and displacement control under 1 = 300 m (blue) and 2 = 600 m 

(red). 

Since the glass is much stiffer compared to the PDMS, analytical approximations 

can be made by neglecting the deformation of the glass slide and treating the debonded part 
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of the PDMS film as a cantilever beam (of length a) undergoing small deflection due to the 

applied loadings (F or ). Then the total strain energy U can be expressed as  
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for displacement control where b is the out of plane thickness for the bilayer structure and 

is set to be unit length for the plane strain problem. These analytical approximations are 

plotted as solid curves in Figure S9b in the Supporting Information which compares 

favorably with the FEM results. It is noticed that under force control, the energy release 

rate increases monotonically with both force and crack length, which serves as the 

foundation of our explanations for cell sheet transfer given in Figure 5. 

 

1.2. Effect of PDMS margin size 

PDMS margin size, which is defined as the distance between the edge of graphene and the 

edge of PDMS, is experimentally found to be a significant control parameter on the yield 

of cell sheet transfer printing, as shown in the right frame of Figure 5f. It is observed that 

the transfer yield is lower than 40% when there is no margin, i.e. when the whole surface 

of the PDMS is covered by graphene and cell sheet. In our fracture mechanics model, we 
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assume that only cell sheets are adhered to polystyrene, hence bare PDMS to polystyrene 

contact zone is considered as the initial interface crack and therefore the margin size is the 

initial crack size. The stress state at the edge of the cell sheet looks very different when 

there is or is not margin, as shown in Figure S10 in the Supporting Information. FEM is 

applied via Abaqus 6.10 and results are plotted in Figure S10b in the Supporting 

Information as solid circular dots for different margin size: 0 μm (blue), 500 μm (red) and 

1000 μm (green). As we can see from Figure S10b in the Supporting Information, larger 

margin size does give us higher normal stretching stresses near the edge of cell sheet when 

peeling the PDMS off polystyrene, which leads to a larger damaged cell zone, and hence 

larger effective crack size. Figure S10c in the Supporting Information offers the contour 

plots of the stress field for different margin sizes. Higher stress is found when the margin 

size is larger. 

 

1.3. Effect of cell sheet moisture 

Water can migrate through cell sheet due to capillary effect and then wet the graphene/cell 

interface such that the adhesion of graphene/cell can be reduced,1 e.g. from ߁′
஼/ீ௥௔௣௛

 to 

஼/ீ௥௔௣௛߁  in Figure S11b in the Supporting Information. The critical forces for 

PDMS/graphene and cell/graphene interfacial cracks to propagate are represented by ܨଷ 

and ܨଶ , respectively. After moisture added in between of graphene and cell sheet, the 

previously stronger adhesion ߁′
஼/ீ௥௔௣௛

′߁) 
஼/ீ௥௔௣௛

൐  ௉஽ெௌ/ீ௥௔௣௛) now becomes the߁

weaker one (߁஼/ீ௥௔௣௛ ൏  ௉஽ெௌ/ீ௥௔௣௛) such that the critical force for cell/graphene crack߁

propagation is smaller than that of PDMS/graphene (ܨଶ ൏  ଵ). Thus, when peel PDMS offܨ
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the wet sample, graphene remains attached on PDMS, as illustrated by Figure S11c in the 

Supporting Information. 

 

1.4. Effect of cell sheet continuity 

For discontinuous cell sheet, though stretching effect can still be induced in preparation 

step, due to the existence of the gaps in between of neighboring cell islands, the stretching 

effect of the cell can be relaxed and such that the shear-induced crack size is not as 

significant as that of continuous cell sheet (see Figure S12a in the Supporting Information). 

With ߁஼/ீ௥௔௣௛  and ߁஼/ீ௟௔௦௦  unchanged, a larger force is needed to initiate crack 

propagation for cell/graphene interface (ܨଶ) than that for cell/glass interface (ܨଵ) as shown 

in Figure S12b in the Supporting Information, which means, when quasi-statically 

increasing the applied force ܨ, the crack of the cell/glass interface begins to propagate first, 

i.e. sample will stay with graphene and be peeled off from glass.   

 

Reference 

1. Kasemo, B. Biological surface science. Surf. Sci. 2002, 500, 656-677. 
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2. Table 

 

Table S1. Properties of the PDMS film and the glass slide 

 
Young’s  
Modulus 

Poisson’s  
Ratio 

Thickness 
(m) 

Material  
Model 

PDMS 36 KPa 0.49 500 Neo-Hookean 

Glass 70 GPa 0.3 1000 Linear Elastic 

 

 

3. Figures 

 

See next pages. 
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Figure S1. Detailed fabrication process of the stretchable instrumented cell-culture-
platform. (a) A schematic overview of the fabrication process. (b) AutoCAD designs of
impedance and temperature sensors, along with the patterned graphene nanoribbons.
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Figure S3. Characterization of patterned graphene nanoribbons. (a) AFM topological
image of the patterned graphene on PDMS. Spring constants of cantilevers (TESP, Bruker
probes) is 42 N/m and all AFM data are measured with a tapping mode. Data are visualized
by the NanoScope Analysis software (Bruker). (b) AFM topological graph of patterned
graphene on PDMS. (c) Water contact angles of various substrates: PDMS, graphene,
patterned graphene (widths of line and spacing; 5 μm), and cover glass.
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Figure S4. Phase-contrast microscope images of cell alignments in respect to pattern
sizes and culture time. C2C12 myoblasts are cultured on the 7 different graphene patterns
with different line and space widths (0, 3, 5, 10, 20, 50, and 100 μm) to find the best pattern
width for cell alignments. Each sample is observed at three different time (24, 48, and 72 h
after the culture) by the phase-contrast microscopy.
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Figure S5. Images of experimental setups for the sensor characterization. (a)
Characterization of the temperature sensor in the growth medium by the probe station and
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maintaining its environment temperature as 37 °C in an incubating oven.
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Figure S6. Impedance change during proliferation and differentiation of C2C12
myoblasts. (a) Phase contrast microscope images of C2C12 myoblasts proliferating on the
instrumented cell-culture-platform after 1 and 7 days of culture. Time-dependent changes of
(b) impedance and (c) I-V curve as the C2C12 myoblasts proliferate. (d) Time-dependent
impedance change during the differentiation of C2C12 myoblasts cultured in the growth
medium (left) and differentiation medium (middle). The right frame shows the impedance
change of fibroblast in the growth medium (control). (e) Time-dependent I-V curve changes
during the differentiation of C2C12 myoblasts cultured in the growth medium (left), and
differentiation medium (middle). The right frame shows the I-V curve change of fibroblast in
growth medium (control).
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Figure S7. A schematic overview of the synthesis process of ceria nanoparticles.



Figure S8. Effects of ceria nanoparticles on cellular viability. A plot of relative viability of
cells depending on the concentration of (a) hydrogen peroxide (H2O2) and (b) ceria
nanoparticles (Ceria NPs). (c) A graph of relative viability of cells versus concentrations of
Ceria NPs with 5 mM and 10 mM of H2O2 treatments. All data are acquired after treating
H2O2 and Ceria NPs for 30 min, then the samples are incubated in the MTT solution
(Amresco) for 3 h. Data are quantified by using a microplate reader (SpectraMax M3,
Moelcular Devices). (d) Fluorescence images of H2O2˗exposed C2C12 cells with/without
Ceria NPs at different time periods. H2O2-exposed cells with/without Ceria NPs are stained
with LIVE/DEAD Viability Kit and observed by a fluorescence microscopy.
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Figure S9. Theoretical analysis for crack propagation in cell sheet. (a) FEM simulation of
PDMS/Glass interfacial crack under force control (ܨ) or displacement control (∆). (b)
Comparison of ܩ ~ ܽ	 relations between the FEM results (dots) and the analytical
approximations (curves) for both the force control under 1ܨ = 0.01 N/m (blue) and 2ܨ = 0.02
N/m (red) and the displacement control under ∆1 = 300 μm (blue) and ∆2 = 600 μm (red).
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Figure S10. Theoretical analysis for the effect of PDMS margin on cell sheet transfer
printing. (a) Schematic images for the preparation step with or without PDMS margin. (b)
Comparison of the FEM results (solid circular dots) of the stress (௬ߪ) distributions along the
cell/PS interface between different margin sizes: 0 μm (blue), 500 μm (red) and 1000 μm
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Figure S12. Theoretical analysis for the effect of cell sheet continuity on transfer
printing. (a) Schematic image of a sample with discontinuous cell sheet on glass after
preparation step. The sizes of cell/glass crack and effective cell/graphene interface crack are
denoted by ܽ଴ and ܽଵ, respectively. (b) Due to the relaxation of gaps between neighboring cell
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significant. Thus, though ܽଵ is greater than ܽ଴, the critical force for crack propagation of
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Figure S15. The fluorescence images and histological analysis of mice transplanted
with cell sheet. (a) The fluorescence images show that both 1-layer and 5-layer of
transplanted cell sheets maintain their structure and original location for over 7 days. (b)
Image of H&E staining and (c) fluorescence image of the transplanted cell sheet expressing
GFP for histological analysis of the monolayer cell sheet transplanted at the scarred region.
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Figure S16. Transfer printing of hMSCs sheet. (a) Observation of hMSCs sheet after
transfer printing onto the protein coated glass by staining the cells with hematoxylin. (b) The
maintenance of cytoskeletal organization of hMSCs sheet after transfer printing on the glass.
(c) The fluorescence images of the hMSCs sheet transfer-printed onto brain (left) and heart
(right) tissues. For cell sheet transplantation, brain and heart of anesthetized mice are
exposed by surgery. (d) The fluorescence image of the multiple transfer printings of hMSCs
sheets (five sheets in total) onto the heart tissues. Left and right show experimental and
control image, respectively.
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