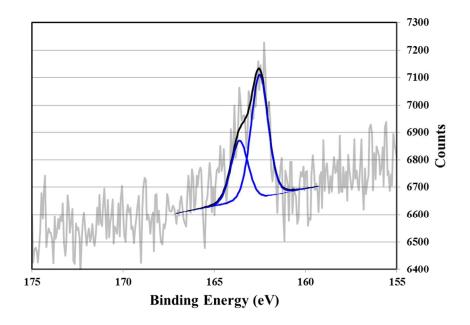
**Supporting Information** 

## Stealth Surface Modification of Surface-Enhanced Raman Scattering Substrates for Sensitive and Accurate Detection in Protein Solutions

Fang Sun, Jean-Rene Ella-Menye, Daniel David Galvan, Tao Bai, Hsiang-Chieh Hung, Ying-Nien Chou, Peng Zhang, Shaoyi Jiang, and Qiuming Yu<sup>\*</sup>


Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA

| 4-MPBA                   |                                   | СВТ                      |                          |
|--------------------------|-----------------------------------|--------------------------|--------------------------|
| SERS (cm <sup>-1</sup> ) | Assignments <sup>a</sup>          | SERS (cm <sup>-1</sup> ) | Assignments <sup>a</sup> |
| 420                      | 7a; $\beta_{CCC} + \nu_{CS}$      | 455                      | γνς                      |
| 473                      | 16b; $\gamma_{CCC} + \beta_{OBO}$ | 520                      | Si                       |
| 614                      | 6b; $\beta_{CCC} + \beta_{OBO}$   | 672                      | $v_{CS}$                 |
| 694                      | 6a; $\beta_{CCC} + \nu_{CS}$      | 756                      | $\nu_{C4N}^{+}$          |
| 728                      | 4b; $\gamma_{CCC}$                | 847                      | $\beta_{CSAu}$           |
| 754                      | 11; γ <sub>CH</sub>               | 891                      | $v_{CCOO} + v_{CC}$      |
| 1000                     | 12; $\beta_{CCC}$                 | 935                      | $\beta_{\rm HCH}$        |
| 1024                     | 18a; β <sub>CH</sub>              | 1079                     | $\nu_{C4N}^{+}$          |
| 1065                     | $\nu_{\rm CS}$                    | 1132                     | $\beta_{CH3}$            |
| 1075                     | 1; β <sub>CCC</sub>               | 1246                     | <b>ү</b> сн2             |
| 1187                     | 9a; $\beta_{CH+}\beta_{BOH}$      | 1365                     | $v_{\rm COO}$            |
| 1283                     | 3; $\beta_{CH}$ + $\beta_{BOH}$   | 1448                     | <b>ү</b> снз             |
| 1472 <sup>b</sup>        | 19b; v <sub>CC</sub>              | 1585                     | v <sub>coo</sub>         |
| 1487                     | 19a; v <sub>CC</sub>              |                          |                          |
| 1574 <sup>b</sup>        | 8b; v <sub>CC</sub>               |                          |                          |
| 1587                     | 8a; v <sub>CC</sub>               |                          |                          |

Table S1. SERS Vibrational Frequencies for 4-MPBA and CBT

 $^{a}$  v; stretching,  $\beta;$  in plane bending,  $\gamma;$  out of plane bending

<sup>b</sup> 8b and 19b non-totally symmetric ring-stretching vibrational modes increase while 8a and 19a totally symmetric ring-stretching vibrational modes decrease in SERS spectra of 4-MPBA after fructose binding due to Herzberg-Teller contributions.



**Figure S1.** High-resolution XPS spectra of the S 2p region of pure CBT SAM. The peaks were fit using S  $2p_{3/2}$  and  $2p_{1/2}$  with a 2:1 area ratio and a splitting of 1.2 eV. Only the binding energy of S  $2p_{3/2}$  at 162.0 eV for the surface bounded sulfur was obtained, indicating that a good CBT SAM was formed.