SUPPORTING INFORMATION

A New "ONE-STEP" Thiol Functionalization Procedure for Ni by Self-Assembled Monolayers

Claudio Fontanesi^a*, Francesco Tassinari^a, Francesca Parenti^a, Hagai Cohen^b, Prakash Chandra Mondal^c, Vankayala Kiran ^c, Angelo Giglia^d, Luca Pasquali^{d,e,f}, and Ron Naaman^c*

^aDSCG, University of Modena and Reggio Emilia, Via Campi 183, Modena-41125

^b Department of Chemical Research Support, The Weizmann Institute of Science, Rehovot-76100,

Israel

^cDepartment of Chemical Physics, The Weizmann Institute of Science, Rehovot-76100 Israel ^dCNR - Istituto Officina dei Materiali, S.S. 14, km 163.5 in Area Science Park, I-34012 Trieste, Italy

^eDipartimento di Ingegneria "Enzo Ferrari", Università di Modena e Reggio Emilia, Via Vignolese 905, Modena-41125, Italy

^fDepartment of Physics, University of Johannesburg, PO Box 524, Auckland Park, 2006, South

Africa

Figure S1. Electrochemical deposition of PCT-L polymer on nickel electrode. Current vs voltage graph, 10 subsequent CV cycles ($E_{ini} = -0.1 \text{ V}$, $E_{inversion} = -0.8 \text{ V}$), with a scan rate of 0.05 V s⁻¹. Solution composition: 0.5 mM PCT-L containing 0.1 M TBATFB in dry chloroform.

FigureS2. Cyclic voltammograms of Ni/L-cysteine/TBO interface (Black line) and Ni/L-cysteine (red line). The voltammograms were recorded in 10 mM phosphate buffer containing 0.1 M KCl water solution, pH =7. The scan rate used was 0.1 V s⁻¹ for each case.

Electrochemistry of Au/L-Cysteine/TBO

The hybrid Au/L-Cysteine/TBO CVs, recorded in the -0.35 to 0.25 V potential ranges, show a quasi-reversible pattern in Figure S2. Reduction/oxidation peaks feature a peak-to-peak potential

separation of about 0.18 V at a scan rate of 0.1 V s⁻¹, showing a CV pattern analogous to the results obtained using the nickel instead of gold.

Figure S3. CV of the Au/L-cysteine/TBO interface (working electrode), 10 mM phosphate buffer of 0.1 M KCl water solution, pH =7. The scan rate used was 0.1 V s⁻¹.

XPS 1-Hexadecanethiol

Table I SI sets out values of atomic concentrations (%), elemental ratios and film thickness collected in the case of four different samples: two different pristine Ni surfaces (Pristine entry) and two different functionalized Ni surfaces (SAM sample1 and 2). Eventually data are shown for measurements carried out at SAM 60° incident X-ray grazing angle. The first four columns show atomic elemental ratios, Ni(3p)/Ni(2p) is the ratio between the Ni(3p) and Ni(2p) intensities, Sox/S and represent the ratios in intensities concerning the sulphur in the oxidized/reduced oxidation states, Oinner/O the oxygen signal recorded at 100° Å depth and on the surface, C/S the atomic carbon to sulfur ratio, d_C the estimated SAM thickness.

Table I SI. XPS atomic c entry details.	oncentr	ations	(%), 6	eleme	ental ratios and f	ilm thic	ckness; see	e text f	for
	Ni 3p	O	C	S	Ni(3p)/Ni(2p)	Sox/S	O _{inner} /O	C/S	d _C /Å
Pristine	26.0	29.5	22.9		1.203		0.195		11.4
SAM sample 1	27.6	7.2	46.4	3.9	1.843	0.36	0.09	11.9	26.0
SAM sample 2	29.2	6.6	44.5	3.8	1.840	0.39	0.073	11.9	24.8
SAM 60° grazing angle	23.4	8.65	50.1	4.0	1.679	0.22	0.06	12.6	14.4

POLYMER CHARACTERIZATION¹

Figure S4. ¹H-NMR spectrum of the PCT-L in CDCl₃ (400 MHz).

GPC

GPC was carried out on a Hewlett–Packard system equipped with a Hewlett–Packard 5m mixed PL gel column and a diode-array UV detector, using THF as the eluent, with a flow rate of 1.0 mL minK1, at room temperature. The GPC system was calibrated using a series of monodisperse polystyrene standards. The GPC data of PCT-L (Figure S5) shows two major peaks, one with molecular weight (Mw)=24036 and polydispersity index (PDI) = 1.15 and the other with Mw = 4683 and PDI = 1.5.

The first peak of the GPC is attributed to an interchain aggregated form of the polymer, while the second peak is attributed to the free standing chain.

Figure S5. GPC monitoring graph PCT-L polymer.

MW Avera	aes			Sa	mple Inje	ction Repo	rt		
Peak No	Мр	Mn	Mw	Mz	Mz+1	Mv	PD		
1 2 3	23373 5782 321	20833 3122 323	24036 4683 327	27704 6312 331	31503 7587 337	23518 4441 326	1.15375 1.5 1.01238		
4	0	0	0	0	0	0	0		
Processed	Peaks								
Peak No	Start RT	Max f			Height (mV)	% Height	Area (mV.secs)	% Area	
r cak reo	(mins)	(iiiiii	-, (
1 2 3	(mins) 4.30 5.53 7.75	5. 6.	07 8	5.53 7.75	41.727 86.5427 15.8558	0	2666.91	100 100 100	

UV-Vis and Circular Dichroism Spectra

The UV-Vis and CD spectra of a PCT-L drop casted film on quartz are shown in Figure S6 and S7 respectively.

Figure S6. UV-Vis spectrum of PCT-L polymer film on quartz.

Figure S7. CD spectrum of PCT-L polymer film on quartz.

References

(1) Cagnoli, R.; Lanzi, M.; Mucci, A.; Parenti, F.; Schenetti, L. Polymerization of Cysteine Functionalized Thiophenes. *Polymer* **2005**, *46*, 3588–3596.