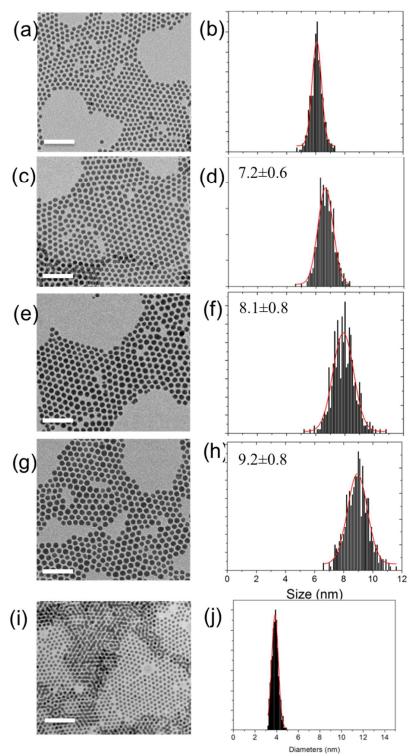
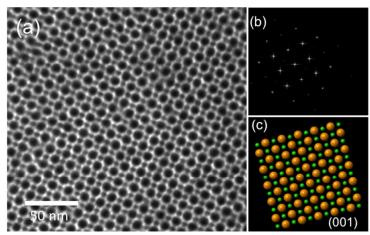
Supporting Information

Metal-Metal Binary Nanoparticle Superlattices: A Case Study of Mixing Co and Ag Nanoparticles


Zhijie Yang^{1,2}, Jingjing Wei^{1,2}, Marie-Paule Pileni^{1,2,3}*

1 Sorbonne Universités, UPMC Univ Paris 06, UMR 8233, MONARIS, F-75005, Paris, France


2 CNRS, UMR 8233, MONARIS, F-75005, Paris, France

3 CEA/IRAMIS, CEA Saclay, 91191, Gif-sur-Yvette, France

* To whom correspondence should be addressed. E-mail: marie-paule.pileni@upmc.fr

Figure S1. Tem images of the nanoparticles that were used as building blocks for the growth of binary nanoparticle superlattices: (a) 6.0-nm Co; (c) 7.2-nm Co; (e) 8.1-nm Co; (g) 9.2-nm Co; (i) 4.0-nm Ag; (b), (d), (f), (h) and (j) are the corresponding size histogram.

Figure S2. AuCu-type CoAg binary nanoparticle superlattices with (001) planes parallel to the substrate: (a) TEM image; (b) corresponding FFT pattern; (c) crystal model.

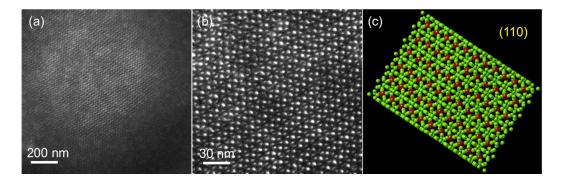
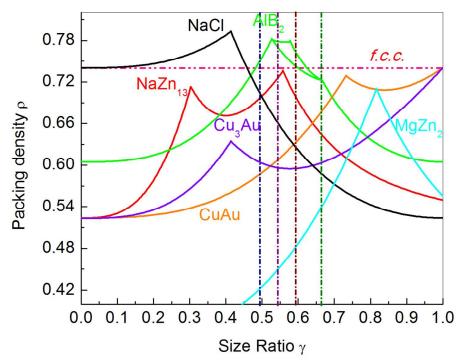
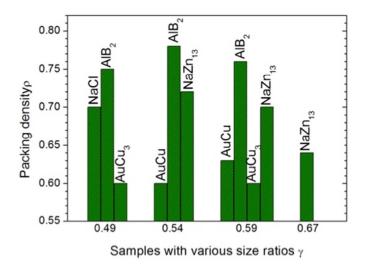




Figure S3. TEM images of (110) planes of $NaZn_{13}$ -type structure (a,b). Panel (c) is the model of (110) plane of $NaZn_{13}$.

Figure S4. Calculated space-filling curves for NaCl, AuCu, AlB₂, MgZn₂, AuCu₃ and NaZn₁₃ binary structures. Dashed red line is the space-filling of single-component fcc structure. The Dashed vertical lines show γ for nanocrystals studied in this work.

Figure S5. The space filling of the all the binary structures observed at all experimental γ ratios.