SUPPORTING INFORMATION

Structural, Optical and Catalytic Support Properties of γ-Al₂O₃ Inverse Opals

Geoffrey I.N. Waterhouse^{*a,b,c}, Wan-Ting Chen^a, Andrew Chan^a, Haishun Jin^{a,d}, Dongxiao Sun-Waterhouse^a, and Bruce C.C. Cowie^e

^aSchool of Chemical Sciences, The University of Auckland, Auckland, New Zealand.
^bThe MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand.
^cThe Dodd-Walls Centre for Photonic and Quantum Technologies, New Zealand.
^dSAIT China Lab, Samsung R&D Institute, Beijing 100028, China
^eAustralian Synchrotron, Melbourne, Australia

*Corresponding author:

Email: g.waterhouse@auckland.ac.nz Telephone number: 64-9-9237212 Fax number: 64-9-373 7422

Figure S1. UV-Vis transmittance spectra for PMMA #1, PMMA #2 and PMMA #3 thin films. The spectra were collected along the [111] direction in the colloidal crystals (i.e. at normal incidence to the (111) plane). The photonic band gap (λ_{max}) for diffraction on fcc(111) planes red-shifted linearly as the diameter of the PMMA colloids in the templates increased (see Table 1).

Figure S2. SEM micrographs for (a,b) PMMA #3 and (c,d) γ -Al₂O₃ #3 thin films. Images on the left were taken at 5000× magnification, those on the right at 25000× magnification. Note the preservation of the face-centred cubic structure on fabrication of the alumina inverse opal in spite of the film cracking and shrinking by ~15% in all three spatial dimensions (an overall loss of film volume of approximately 39 %).

Figure S3. Relationship between the photonic band gap position for diffraction on fcc(111) planes of γ -Al₂O₃ inverse opals and that of the PMMA colloidal crystal template from which they were fabricated. All data was collected at $\theta = 0^{\circ}$ with respect to the surface normal of the fcc(111) planes (i.e. along the [111] direction).

Figure S4. (top) N_2 physisorption isotherm collected at 77 K for Al_2O_3 inverse opal powder following calcination in air at 550 °C for 4 h to remove the PMMA colloidal crystal template. (bottom) Corresponding BJH adsorption dV/dR pore volume and cumulative pore volume plots calculated from the adsorption branch in the physisorption isotherm assuming a cyclindrical pore shape.

Figure S5. XRD patterns for a sol-gel alumina nanopowder as a function of calcination temperature. The calcination time at each temperature was 4 h.