Core-Shell Ti@Si Coaxial Nanorod Arrays Formed Directly on Current Collectors for Lithium-Ion Batteries

Xinghua Meng, Da Deng*

Department of Chemical Engineering and Materials Science, Wayne State University,

5050 Anthony Wayne Dr, Detroit, MI, United States, 48202

Email: <u>da.deng@wayne.edu</u>

Figure S1. Top-view FESEM images of the results from control experiments of magnesiothermically reduced TiO_2 nanorod arrays on titanium foil without SiO_2 coating: (a) after Mg reduction of the TiO_2 nanorod arrays; (b) metallic Ti nanorod arrays obtained after 0.5 M HCl treatment of (a) to remove MgO. (c-d) Minor phases of other morphologies after Mg reduction of the TiO_2 nanorod arrays and before HCl etching and it could be attributed to the use of excessive amount of Mg powder.

Figure S2. Raman spectra of the magnesiothermically reduced TiO₂ nanorod arrays on titanium foils without SiO₂ coating: (a) after Mg reduction of the TiO₂ nanorod arrays; (b) metallic Ti nanorod arrays obtained after 0.5 M HCl treatment of (a) to remove MgO.

Figure S3. Additional characterization of the Ti/MgO@Si/MgO nanorod arrays after magnesiothermic reduction treatment of TiO₂@SiO₂ nanorod arrays: (a) FESEM image of the typical morphology at low-magnification view; (b) high-magnification view of few typical nanorods showing their rough external surface; (c) TEM image of a typical Ti/MgO@Si/MgO nanorod showing the evenly distributed MgO along the nanorod with rough surface; (d-g) minor phase of other morphologies observed which could be attributed to the excessive amount of Mg used and the formation of structured MgO on the surface of the nanorods.

Figure S4. EDS analysis and elemental mapping of the intermediate component of Ti/MgO@Si/MgO nanorod arrays on metallic titanium substrate after magnesiothermic reduction of the TiO₂@SiO₂ nanorod arrays and before etching by dilute HCl to remove MgO.

Figure S5. Additional characterization of the Ti@Si coaxial nanorod arrays on Ti foil after etching off MgO by HCI: (a) low-magnification overall view showing the general morphology and distribution of Ti@Si nanorod arrays, (b) zoom-in high-magnification view.

Figure S6. Optical images of (a) the as-prepared Ti@Si nanorod arrays; the yellow to brown color is typical for Si nanomaterials; and (b) metallic Ti nanorod arrays obtained by magnesiothermic reduction of TiO₂ nanorod arrays without SiO₂ coating, followed by etching off MgO by dilute HCl treatment; the black color is typical for metallic nanomaterials.