Versatile Synthesis of Phospholides from Open-Chain Precursors. Application to Annelated Pyrrole and Silole-Phosphole Rings

Youzhi Xu,^a Zhihua Wang,^a Zhenjie Gan,^a Qiuzhen Xi,^a Zheng Duan,^{*a} François Mathey^{*a,b}

Experimental section

All reactions were routinely performed under an inert atmosphere of nitrogen by using standard Schlenk techniques and dry deoxygenated solvents. Dry THF was obtained by distillation from Na/benzophenone. *n*-butyl lithium (1.6 M or 2.4 M in hexane) and lithium wire were purchased from Alfa Aesar. Silica gel (200-300 mesh) purchased from Qingdao Hai Yang Chemical Industry Co. Ltd. was used for chromatographic separations. ¹H, ¹³C and ³¹P NMR spectra were recorded on Bruker 300 and 400 MHz spectrometer. Chemical shifts are expressed in ppm from internal TMS (¹H and ¹³C). All coupling constants (*J* values) are reported in Hertz (Hz). HRMS were obtained on an Agilent 1290-6540 Q-Tof spectrometer by electrospray ionization (ESI). Element analytic data were obtained on a Thermo Electron Corporation flash EA 1112 element spectrometer.

General procedure for the synthesis of phosphines 2a-i

The starting *ortho*-bromophenylalkynes were synthesized by Sonogashira coupling.¹¹ To a solution of alkyne (10 mmol) in THF (40 mL) was added dropwise *n*-butyllithium in *n*-hexane (6.8 mL, 1.6 mol/L, 11.0 mmol) at -78° C over 5 min. under N₂ atmosphere. The reaction mixture was stirred for 50 min, then Ph₂PCI (2.1 g, 12 mmol) was added at -78 °C, then the temperature was slowly raised to room temperature to give a pale yellow solution. After removal of the solvent under reduced pressure, the residue was chromatographed over silica gel (hexane/ethyl acetate = 20/1) to give pure products.

2a: pale yellow solid (83% yield); ¹H NMR (300 MHz, CDCl₃) δ = 7.00 (dd, *J* = 7.8 Hz, *J* = 3.6 Hz, 1H), 7.28-7.56 (m, 17H), 7.72 (dd, *J* = 7.4 Hz, *J* = 3.6 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ = 88.9 (d, *J*_{PC} = 7.3 Hz), 96.6 (d, *J*_{PC} = 2.7 Hz), 123.2, 127.9 (d, *J*_{PC} = 28.4 Hz), 128.3(2CH), 128.4(CH), 128.7 (d, *J*_{PC} = 7.1 Hz, CH), 129.0(CH), 131.6 (2CH), 132.4 (d, *J*_{PC} = 3.4 Hz, CH), 132.5(CH), 134.3 (d, *J*_{PC} = 20.1 Hz, CH), 136.5 (d,

 $J_{PC} = 10.6 \text{ Hz}$, 140.9 (d, $J_{PC} = 12.6 \text{ Hz}$); ³¹P{¹H} NMR (162 MHz, CDCl₃) δ = -8.5; HRMS Calcd. for C₂₆H₂₀P [M + H⁺] 363.1297, Found: 363.1298.

2b: pale yellow solid (75% yield); ¹H NMR (300 MHz, CDCl₃) δ = 2.29 (s, 3H), 6.81 (br, 1H), 7.02-7.20 (m, 5H), 7.25-7.36 (m, 11H), 7.55 (br, 1H); ¹³C NMR (75 MHz, CDCl₃) δ = 21.6 (CH₃), 88.1, 96.7, 120.0, 128.0 (d, *J*_{PC} = 28.3 Hz), 128.1 (CH), 128.3 (CH), 128.6 (d, *J*_{PC} = 7.2 Hz, CH), 128.9 (d, *J*_{PC} = 5.9 Hz, CH), 131.4 (CH), 132.2 (CH), 132.4 (CH), 134.2 (d, *J*_{PC} = 20.2 Hz, CH), 136.5 (d, *J*_{PC} = 10.5 Hz), 138.4, 140.6 (d, *J*_{PC} = 12.3 Hz); ³¹P{¹H} NMR (162 MHz, CDCl₃) δ = -8.6; HRMS Calcd. for C₂₇H₂₂P [M + H⁺] 377.1453. Found: 377.1455.

2c: pale yellow oil (80% yield); ¹H NMR (300 MHz, CDCl₃) δ = 0.13(s, 9H), 6.82 (dd, *J* = 7.5 Hz, *J* = 3.6 Hz, 1H), 7.20-7.40 (m, 12H), 7.56-7.60 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ = -0.3 (CH₃), 101.8 (d, *J*_{PC} = 3.0 Hz), 103.5 (d, *J*_{PC} = 6.8 Hz), 127.4 (d, *J*_{PC} = 28.1 Hz), 128.0 (CH), 128.3 (CH), 128.4 (d, *J*_{PC} = 7.1 Hz, CH), 128.7 (CH), 132.0 (CH), 132.5 (d, *J*_{PC} = 3.3 Hz, CH), 134.1 (d, *J*_{PC} = 20.1 Hz, CH), 136.3 (d, *J*_{PC} = 10.6Hz), 141.0 (d, *J*_{PC} = 13.5 Hz); ³¹P{¹H} NMR (162 MHz, CDCl₃) δ = -8.1; HRMS Calcd. for C₂₃H₂₄PSi [M + H⁺] 359.1379, Found: 359.1385.

2d: pale yellow solid (80% yield); ¹H NMR (300 MHz, CDCl₃) δ = 3.75(s, 3H), 6.73-6.84 (m, 3H), 7.10-7.37 (m, 14H), 7.53 (dd, *J* = 3.0 Hz, *J* = 7.2 Hz, 1H); 13C NMR (75 MHz, CDCl₃) δ = 55.2 (OCH₃), 87.4 (d, *J*_{PC} = 7.4 Hz), 96.5, 113.7 (CH), 115.1, 127.9 (CH), 128.0 (d, *J*_{PC} = 28.5 Hz), 128.3 (CH), 128.5 (d, *J*_{PC} = 7.2 Hz, CH), 128.8 (CH), 132.0 (d, *J*_{PC} = 3.5 Hz, CH), 132.3 (CH), 132.9 (CH), 134.1 (d, *J*_{PC} = 20.0 Hz, CH), 136.5 (d, *J*_{PC} = 10.4 Hz), 140.4 (d, *J*_{PC} = 12.0 Hz), 159.6; ³¹P{¹H} NMR (162 MHz, CDCl₃) δ = -8.7; HRMS Calcd. for C₂₇H₂₂OP [M + H+] 393.1402, Found: 393.1406.

2e *P*-oxide: white soil (68% yield); ¹H NMR (300 MHz, CDCl₃) $\delta = 0.74$ (t, *J*_{HH} = 5.7 Hz, 3H), 1.12-1.15 (m, 4H), 1.91 (t, *J*_{HH} = 6.6 Hz, 2H), 7.24-7.29 (m, 1H), 7.35-7.48 (m, 8H), 7.62-7.74 (m, 5H); ¹³C NMR (75 MHz, CDCl₃) $\delta = 13.6$ (CH₃), 19.1 (CH₂), 21.9 (CH₂), 29.8 (CH₂), 79.6 (d, *J*_{PC} = 6.0 Hz), 99.3, 127.2 (d, *J*_{PC} = 11.3 Hz, CH), 127.3 (d, *J*_{PC} = 6.8 Hz), 128.2 (d, *J*_{PC} = 12.8 Hz, CH), 131.6 (d, *J*_{PC} = 3.0 Hz, CH), 131.7 (d, *J*_{PC} = 2.3 Hz, CH), 132.0 (d, *J*_{PC} = 10.5 Hz, CH), 132.5 (d, *J*_{PC} = 105.8 Hz), 133.5 (d, *J*_{PC} = 102.0 Hz), 133.7 (d, *J*_{PC} = 9.0 Hz, CH), 133.9 (d, *J*_{PC} = 9.0 Hz, CH); ³¹P{¹H} NMR (162 MHz, CDCl₃) $\delta = 28.3$; HRMS Calcd. for C₂₄H₂₄OP [M + H+] 359.1559, Found: 359.1601.

2f *P*-oxide: white solid (72% yield); ¹H NMR (300 MHz, CDCl₃) δ = 0.86 (t, *J*_{HH} = 7.2 Hz, 3H), 1.24-1.31 (m, 2H), 1.46-1.54 (m, 2H), 2.51(t, *J*_{HH} = 7.6 Hz, 2H), 6.88-7.00 (m,

4H),7.30-7.37 (m, 5H), 7.39-7.45 (m, 3H), 7.54-7.58 (m, 1H), 7.74-7.85 (m, 5H); ¹³C NMR (75 MHz, CDCl₃) δ = 13.9 (CH₃), 22.3 (CH₂), 33.3 (CH₂), 35.5 (CH₂), 87.9 (d, *J*_{PC} = 5.7 Hz), 97.7, 119.6 (CH), 126.6 (d, *J*_{PC} = 7.1 Hz, CH), 127.8 (d, *J*_{PC} = 11.5 Hz, CH), 128.2 (CH), 128.3 (d, *J*_{PC} = 12.4 Hz, CH), 131.3 (CH), 131.7 (d, *J*_{PC} = 2.7 Hz, CH), 131.8 (d, *J*_{PC} = 2.3 Hz), 132.1 (d, *J*_{PC} = 9.9 Hz, CH), 132.3 (d, *J*_{PC} = 105.4 Hz), 133.6 (d, *J*_{PC} = 101.3 Hz), 133.8 (d, *J*_{PC} = 4.7 Hz), 133.9 (d, *J*_{PC} = 4.9 Hz), 143.7 (CH); HRMS Calcd. for C₃₀H₂₈OP [M + H+] 435.1872, Found: 435.1883.

2g: pale yellow solid (75% yield); ¹H NMR (300 MHz, CDCl₃) δ = 6.86 (dd, *J* = 3.6 Hz, *J* = 7.5 Hz,1H), 7.19 (t, *J*_{HH} = 7.5 Hz,1H), 7.28-7.51 (m, 15H), 7.66-7.74 (m, 3H), 8.14-8.17 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ = 93.4 (d, *J*_{PC} = 7.0 Hz), 94.3 (d, *J*_{PC} = 3.0 Hz), 120.9, 125.2 (CH), 126.4 (CH), 126.81 (CH), 126.82 (d, *J*_{PC} = 2.6 Hz, CH), 128.2 (CH), 128.5 (CH), 128.6 (CH), 128.75 (d, *J*_{PC} = 7.0 Hz, CH), 128.9 (CH), 129.0 (CH), 130.7 (CH), 132.8 (CH), 132.9 (d, *J*_{PC} = 3.9 Hz, CH), 133.2, 133.4, 134.2 (d, *J*_{PC} = 19.8 Hz, CH), 136.6 (d, *J*_{PC} = 10.9 Hz),140.4 (d, *J*_{PC} = 12.5 Hz); ³¹P{¹H} NMR (162 MHz, CDCl₃) δ = -9.2; HRMS Calcd. for C₃₀H₂₂P [M + H⁺] 413.1453, Found: 413.1453.

2h: pale yellow solid (78% yield); ¹H NMR (300 MHz, CDCl₃) δ = 3.66 (s, 3H), 6.78 (s, 1H), 6.95 (dd, *J* = 7.5Hz, *J* = 3.6 Hz, 1H), 7.14-7.43 (m, 15H), 7.64 (d, *J*_{HH}= 7.8 Hz, 1H), 7.73 (dd, *J*= 7.2 Hz, *J* = 3.3 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ = 30.6(d, *J*_{PC} = 3.2 Hz), 87.6, 94.2 (d, *J*_{PC} = 6.9 Hz), 107.7 (CH), 109.4 (CH), 120.0 (CH), 121.0 (CH), 122.0, 123.0 (CH), 127.3, 127.7(d, *J*_{PC} = 29.7 Hz), 128.5 (CH), 128.6 (CH),128.7 (d, *J*_{PC} = 7.1 Hz, CH), 128.9 (CH), 132.6 (d, *J*_{PC} = 3.9 Hz, CH), 132.7 (CH), 134.1 (d, *J*_{PC} = 19.8 Hz, CH), 136.3 (d, *J*_{PC} = 10.8 Hz), 137.4, 140.1 (d, *J*_{PC} = 12.8 Hz); ³¹P{¹H} NMR (162 MHz, CDCl₃) δ = -8.9; HRMS Calcd. for C₂₉H₂₃NP [M + H⁺] 416.1562, Found: 416.1564.

2i: colorless oil (90% yield); ¹H NMR (400 MHz, CDCl₃) δ = 0.70 (s, 9H), 7.19(dd, *J* = 3.6 Hz, *J* = 7.4 Hz,1H), 7.41 (t, *J*_{HH}= 7.4 Hz,1H), 7.45-7.48 (m, 3H), 7.51-7.56 (m, 7H), 7.65-7.69 (m, 4H), 7.73-7.75 (m, 1H), 7.90 (dd, *J* = 3.6 Hz, *J* = 7.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ = -0.4, 91.7 (d, *J*_{PC} = 7.3 Hz), 98.1 (d, *J*_{PC} = 2.4 Hz), 127.8 (CH) , 128.5 (d, *J*_{PC} = 17.3 Hz), 128.6 (CH), 128.7 (d, *J*_{PC} = 4.4 Hz), 128.74 (CH), 128.9 (d, *J*_{PC} = 7.0 Hz, CH), 129.0 (CH), 129.1 (CH), 132.1 (d, *J*_{PC} = 3.5 Hz, CH), 133.0 (CH), 133.1 (CH), 134.0 (CH), 134.4 (d, *J*_{PC} = 20.1 Hz, CH), 136.9 (d, *J*_{PC} = 11.4 Hz), 141.0 (d, *J*_{PC} = 13.2 Hz), 142.1; ³¹P{¹H} NMR (162 MHz, CDCl₃) δ = -9.0; HRMS Calcd. for C₂₉H₂₈PSi [M + H⁺] 435.1692, Found: 435.1699.

General procedure for the synthesis of phosphines **4a**,**b**

The synthesis of the starting enynes has been reported in the literature.⁵ To a solution of enyne (10 mmol) in THF (40 mL) was added dropwise *n*-butyllithium in *n*-hexane (6.8 mL, 1.6 mol/L, 11.0 mmol) at -78° C over 5 min under N₂ atmosphere. The reaction mixture was stirred for 50 min, then Ph₂PCI (2.1g, 12mmol) was added at -78 °C, then the temperature was slowly increased back to room temperature to give a pale yellow solution. After removal of the solvent under reduced pressure, the residue was chromatographed on silica gel (hexane/ethyl acetate = 20/1) to give pure products.

4a *P*-oxide: pale yellow solid (80% yield); ¹H NMR (300 MHz, CDCl₃) δ = 1.08 (t, *J*_{HH} = 7.4 Hz, 3H), 1.23 (t, *J*_{HH} = 7.4Hz, 3H), 2.25 (s, 3H), 2.47-2.63 (m, 4H), 6.74- 6.76 (m, 2H), 6.93-6.96 (m, 2H), 7.29-7.38 (m, 6H), 7.76-7.83 (m, 4H); ¹³C NMR (75 MHz, CDCl₃) δ = 13.2 (CH₃), 14.8 (CH₃), 21.4 (CH₃), 23.0 (d, *J*_{PC} = 9.7 Hz, CH₂), 27.9 (d, *J*_{PC} = 11.4 Hz, CH₂), 88.9 (d, *J*_{PC} = 11.7 Hz), 100.7, 119.3, 128.1 (d, *J*_{PC} = 12.1 Hz, CH), 128.6 (CH), 131.1 (CH), 131.3 (d, *J*_{PC} = 2.5 Hz, CH), 131.7 (d, *J*_{PC} = 9.9 Hz, CH), 133.5 (d, *J*_{PC} = 102.4 Hz), 137.9 (d, *J*_{PC} = 4.9 Hz), 138.5, 139.6 (d, *J*_{PC} = 93.6 Hz); ³¹P{¹H} NMR (162 MHz, CDCl₃) δ = 29.4; HRMS Calcd. for C₂₇H₂₈OP [M + H⁺] 399.1872, Found: 399.1872.

4b *P*-oxide: colorless oil (83% yield); ¹H NMR (300 MHz, CDCl₃) δ = 0.81 (t, *J*_{HH} = 7.5 Hz, 3H), 0.94 (t, *J*_{HH} = 7.5 Hz, 3H), 1.38-1.50 (m, 2H), 1.60-1.72 (m, 2H), 2.38-2.54 (m, 4H), 6.79-6.82 (m, 2H), 7.03-7.37 (m, 9H), 7.71-7.78 (m, 4H); ¹³C NMR (75 MHz, CDCl₃) δ = 13.8 (CH₃), 14.2 (CH₃), 21.7 (CH₂), 23.6 (CH₂), 32.1 (d, *J*_{PC} = 9.3 Hz, CH₂), 36.5(d, *J*_{PC} = 11.0 Hz, CH₂), 89.6 (d, *J*_{PC} = 11.9 Hz), 100.3, 122.5, 127.9 (CH), 128.1 (d, *J*_{PC} = 9.9 Hz, CH), 128.3 (CH), 131.1 (CH), 131.2 (d, *J*_{PC} = 2.7 Hz, CH), 131.7 (d, *J*_{PC} = 9.9 Hz, CH), 133.6 (d, *J*_{PC} = 102.5 Hz), 136.5(d, *J*_{PC} = 4.9 Hz), 139.8 (d, *J*_{PC} = 92.8 Hz); ³¹P{¹H} NMR (162 MHz, CDCl₃) δ = 29.6; HRMS Calcd. for C₂₈H₃₀OP [M + H⁺] 413.2028, Found: 413.2031.

General procedure for the synthesis of phosphindoles 7

To a solution of **2a-h** (2 mmol) in THF (8 mL) was added 80 mg of lithium wire under N₂ atmosphere. The reaction mixture was stirred for 2h, the excess of lithium wire was removed, then 2 eq. of CH₃I or benzyl bromide was added at 0 °C. Then S₈ or H₂O₂ was added 10 min later, the reaction mixture was stirred for another 2h. After removal

of the solvent under reduced pressure, the residue was treated with water (10 mL), and extracted with dichloromethane. The organic layer was dried over anhydrous Na₂SO₄. After filtration and removal of the solvent, the residue of oxide was chromatographed on silica gel (dichloromethane/ethyl acetate = 8/1). The sulfide was chromatographed on silica gel (*n*-hexane/dichloromethane = 2/1).

7a: pale yellow oil (67% yield); ¹H NMR (300 MHz, CDCl₃) δ = 1.7 (d, *J*_{PH} = 12.9 Hz, 3H), 7.27-7.39 (m, 7H), 7.67-7.80 (m, 3H); ¹³C NMR (75 MHz, CDCl₃) δ = 15.7 (d, *J*_{PC} = 67.2 Hz, PCH₃), 124.6 (d, *J*_{PC} = 9.4 Hz, CH), 126.4 (d, *J*_{PC} = 6.1 Hz, CH), 128.2 (d, *J*_{PC} = 10.3 Hz, CH), 128.8 (d, *J*_{PC} = 10.4 Hz, CH), 129.0(CH), 129.1(CH), 132.0 (d, *J*_{PC} = 91.2 Hz), 132.8 (d, *J*_{PC} = 3.2 Hz), 133.0 (d, *J*_{PC} = 1.8 Hz, CH), 134.6 (d, *J*_{PC} = 20.1 Hz, CH), 138.6 (d, *J*_{PC} = 92.5 Hz), 140.6 (d, *J*_{PC} = 28.4 Hz); ³¹P{¹H} NMR (162 MHz, CDCl₃) δ = 45.2; HRMS Calcd. for C₁₅H₁₄OP [M + H⁺] 241.0776, Found: 241.0780.

7b: white solid (53% yield); ¹H NMR (300 MHz, CDCl₃) δ = 1.98 (d, *J*_{PH} = 13.5Hz, 3H), 2.37 (s, 3H), 7.22-7.51 (m, 6H), 7.78 (t, *J*_{HH} = 8.5 Hz, 1H), 7.87-7.90 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ = 21.4 (d, *J*_{PC} = 51.6 Hz, PCH₃), 21.4 (CH₃), 124.5 (d, *J*_{PC} = 8.7 Hz, CH), 126.6 (d, *J*_{PC} = 6.5Hz, CH), 127.8 (d, *J*_{PC} = 11.5 Hz, CH), 128.7 (d, *J*_{PC} = 11.1 Hz, CH), 129.73 (d, *J*_{PC} = 11.6 Hz), 129.7, (CH), 132.5 (d, *J*_{PC} = 2.0 Hz, CH), 133.1 (d, *J*_{PC} = 17.5 Hz, CH), 135.6 (d, *J*_{PC} = 89.5 Hz), 139.02, 139.7 (d, *J*_{PC} = 75.1 Hz), 141.1 (d, *J*_{PC} = 24.6 Hz); ³¹P{¹H} NMR (162 MHz, CDCl₃) δ = 45.0; HRMS Calcd. for C₁₆H₁₆PS [M + H⁺] 271.0704, Found: 271.0708. Anal. Calcd. for C₁₆H₁₅PS: C, 71.09; H, 5.59. Found: C, 71.08; H, 5.73.

7c. colorless oil (46% yield); ¹H NMR (300 MHz, CDCl₃) δ = 0. 25 (s, 9H), 1.62 (d, *J*_{PH} = 12.9 Hz, 3H), 7.21-7.39 (m, 4H), 7.65 (t, *J*_{HH} = 7.6 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ = -0.9 (d, *J*_{PC} = 1.3 Hz, CH₃), 15.9 (d, *J*_{PC} = 66.5 Hz, PCH₃), 124.3 (d, *J*_{PC} = 10.7 Hz, CH), 127.8 (d, *J*_{PC} = 9.9 Hz, CH), 129.1 (d, *J*_{PC} = 9.4 Hz, CH), 132.5 (d, *J*_{PC} = 1.9 Hz, CH), 134.8 (d, *J*_{PC} = 99.0 Hz), 141.1 (d, *J*_{PC} = 117.3 Hz), 141.3 (d, *J*_{PC} = 22.8 Hz), 150.5 (d, *J*_{PC} = 8.0 Hz, CH); ³¹P{¹H} NMR (162 MHz, CDCl₃) δ = 53.9; HRMS Calcd. for C₁₂H₁₈POSi [M + H⁺] 237.0859. Found: 237.0867.

7d: white solid (65% yield); ¹H NMR (300 MHz, CDCl₃) δ = 1.93 (d, *J*_{PH} = 13.5 Hz, 3H), 3.75 (s, 3H), 6.89 (d, *J*_{PH} = 8.7 Hz, 2H), 7.29-7.43 (m, 4H), 7.69-7.75 (m, 1H) , 7.91 (d, *J*_{PH} = 8.4 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ = 21.4 (d, *J*_{PC} = 51.6 Hz, PCH₃), 55.4 (OCH₃), 114.4 (CH), 124.5 (d, *J*_{PC} = 8.7 Hz, CH), 125.1 (d, *J*_{PC} = 11.3 Hz), 127.7 (d, *J*_{PC} = 11.5 Hz, CH), 128.1 (d, *J*_{PC} = 6.7 Hz, CH), 128.5 (d, *J*_{PC} = 11.2 Hz, CH), 132.0 (d, *J*_{PC} = 17.5 Hz, CH), 132.6 (d, *J*_{PC} = 1.9 Hz, CH), 135.2 (d, *J*_{PC} = 89.8 Hz), 139.0 (d, $J_{PC} = 75.2 \text{ Hz}$, 141.3 (d, $J_{PC} = 24.6 \text{ Hz}$), 160.2; ³¹P{¹H} NMR (162 MHz, CDCl₃) δ = 44.7; HRMS Calcd. for C₁₆H₁₆OPS [M + H⁺] 287.0654, Found: 287.0659. Anal. Calcd. for C₁₆H₁₅OPS: C, 67.12; H, 5.28. Found: C, 67.26; H, 5.37.

7e: white solid (60% yield); ¹H NMR (300 MHz, CDCI₃) δ = 0.98 (t, *J*_{HH} = 7.5 Hz, 3H), 1.40-1.52 (m, 2H), 1.64-1.75(m, 2H),1.88(d, *J*_{PH} = 13.5 Hz, 3H), 2.43-2.71(m, 2H), 6.87 (d, *J*_{PH} = 37.2 Hz, 1H),7.30-7.47(m, 3H),7.73(t, *J*_{HH} = 8.6 Hz, 1H); ¹³C NMR (75 MHz, CDCI₃) δ = 13.9 (CH₃), 20.4 (d, *J*_{PC} = 50.9 Hz, PCH₃), 22.5 (CH₂), 26.7 (d, *J*_{PC} = 11.7 Hz, CH₂), 30.1 (d, *J*_{PC} = 5.7 Hz, CH₂), 123.8 (d, *J*_{PC} = 9.1 Hz, CH), 127.7 (d, *J*_{PC} = 11.1 Hz, CH), 128.1 (d, *J*_{PC} = 10.7 Hz, CH), 132.3 (d, *J*_{PC} = 2.2 Hz, CH), 134.9 (d, *J*_{PC} = 18.0 Hz, CH), 135.1 (d, *J*_{PC} = 87.7 Hz), 141.6 (d, *J*_{PC} = 26.7 Hz) , 143.7 (d, *J*_{PC} = 71.5 Hz); ³¹P{¹H} NMR (162 MHz, CDCI₃) δ= 46.2; HRMS Calcd. for C₁₃H₁₈PS [M + H⁺] 237.0861, Found: 237.0867. Anal. Calcd. for C₁₃H₁₇PS: C, 66.07; H, 7.25. Found: C, 66.06; H, 7.37.

7f: white solid (60% yield); ¹H NMR (300 MHz, CDCl₃) δ = 0.93 (t, *J*_{HH} = 7.3 Hz, 3H), 1.32-1.43 (m, 2H), 1.55-1.66 (m, 2H), 1.76 (d, *J*_{PH} = 12.9 Hz, 3H), 2.62 (t, *J*_{HH} = 7.6 Hz, 2H), 7.22-7.47 (m, 6H), 7.73-7.78 (m, 3H); ¹³C NMR (75 MHz, CDCl₃) δ = 13.7 (CH₃), 15.5 (d, *J*_{PC} = 67.1 Hz, PCH₃), 22.1 (CH₂), 33.2 (CH₂), 35.2 (CH₂), 124.3 (d, *J*_{PC} = 9.3 Hz, CH), 126.1 (d, *J*_{PC} = 6.2 Hz, CH), 127.8 (d, *J*_{PC} = 10.3 Hz, CH), 128.3 (d, *J*_{PC} = 10.5 Hz, CH), 128.9 (CH), 129.8 (d, *J*_{PC} = 10.8 Hz), 131.8 (d, *J*_{PC} = 105.4 Hz), 132.7 (d, *J*_{PC} = 1.9 Hz, CH), 133.3 (d, *J*_{PC} = 20.2 Hz, CH), 138.2(d, *J*_{PC} = 92.0 Hz), 140.5(d, *J*_{PC} = 28.2 Hz), 143.9; ³¹P{¹H} NMR (162 MHz, CDCl₃) δ = 45.2; HRMS Calcd. for C₁₉H₂₂OP [M + H⁺] 297.1402, Found: 297.1406.

7g: white solid (40% yield); ¹H NMR (300 MHz, CDCl₃) δ = 3.14-3.55 (m, 2H), 6.83-6.85 (m, 2H), 7.00-7.52 (m, 11H), 7.83-7.90 (m, 2H), 7.99-8.07 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ = 36.6 (d, *J*_{PC} = 61.1 Hz, PCH2), 124.6 (d, *J*_{PC} = 9.3 Hz, CH), 125.5(CH), 125.6(CH), 126.0(CH), 126.5(CH), 126.7 (d, *J*_{PC} = 4.3 Hz, CH), 126.8 (d, *J*_{PC} = 3.4 Hz, CH), 128.2 (d, *J*_{PC} = 2.9 Hz, CH), 128.6 (CH), 128.7 (d, *J*_{PC} = 9.8 Hz, CH), 129.0 (CH), 129.4 (d, *J*_{PC} = 9.3 Hz, CH), 129.8 (d, *J*_{PC} = 102.7 Hz), 129.8 (d, *J*_{PC} = 5.3 Hz, CH), 130.6 (d, *J*_{PC} = 7.3 Hz), 131.0 (d, *J*_{PC} = 6.0 Hz), 131.2 (d, *J*_{PC} = 9.3 Hz), 133.1 (d, *J*_{PC} = 1.8 Hz, CH), 134.1, 136.6 (d, *J*_{PC} = 87.6 Hz), 141.2 (d, *J*_{PC} = 27.8 Hz), 141.3 (d, *J*_{PC} = 19.7 Hz, CH); ³¹P{¹H} NMR (162 MHz, CDCl₃) δ = 47.3; HRMS Calcd. for C₂₅H₂₀OP [M + H⁺] 367.1246, Found: 367.1250.

7h: white solid (57% yield); ¹H NMR (300 MHz, CDCl₃) δ = 1.77 (d, *J*_{PH} = 13.2 Hz, 3H), 3.87 (s, 3H), 7.09-7.65 (m, 9H), 7.78 (t, *J*_{HH}= 8.2 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃)

δ = 15.9 (d, *J*_{PC} = 68.3 Hz, PCH₃), 32.1 (NCH₃), 105.6 (d, *J*_{PC} = 3.3Hz, CH), 109.4 (CH), 120.2 (CH), 121.4 (CH), 123.4 (CH), 124.7 (d, *J*_{PC} = 8.9 Hz, CH), 127.7, 128.3 (d, *J*_{PC} = 10.4 Hz, CH), 128.7 (d, *J*_{PC} = 10.4 Hz, CH), 131.0 (d, *J*_{PC} = 105.9 Hz), 131.8 (d, *J*_{PC} = 92.9 Hz), 132.5 (d, *J*_{PC} = 16.3 Hz), 133.1 (d, *J*_{PC} = 1.8Hz, CH), 133.6 (d, *J*_{PC} = 18.6 Hz, CH) , 139.4, 141.0 (d, *J*_{PC} = 28.5Hz); ³¹P{¹H} NMR (162 MHz, CDCl₃) δ = 46.2; HRMS Calcd. for C₁₈H₁₇NOP [M + H⁺] 294.1042, Found: 294.1043.

General procedure for the synthesis of phosphole sulfides 9

To a solution of **4a,b** (2 mmol) in THF (8 mL) was added 80 mg of lithium wire under N₂ atmosphere. The reaction mixture was stirred for 2h, the excess lithium wire was removed, then 2 eq. of CH₃I was added at 0 °C. Then, 10 min later, 1.5 eq. of S₈ was added and the reaction mixture was stirred for 2h. After removal of the solvent under reduced pressure, the residue was chromatographed on silica gel (*n*-hexane/dichloromethane = 2/1).

9a: colorless oil (48% yield); ¹H NMR (300 MHz, CDCl₃) δ = 1.12-1.26 (m, 6H), 1.83 (d, *J*_{PH} = 12.9 Hz, 3H), 2.34-2.73 (m, 7H), 6.95 (d, *J*_{PH} = 38.1 Hz, 1H), 7.18(d, *J*_{HH} = 7.8 Hz, 2H), 7.78 (d, *J*_{HH} = 7.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ = 12.8 (CH₃), 14.9 (CH₃), 18.1 (d, *J*_{PC} = 14.0 Hz, CH₂), 20.2 (d, *J*_{PC} = 47.6 Hz, PCH₃), 21.4 (CH₃), 22.7 (d, *J*_{PC} = 12.8 Hz, CH₂), 126.2 (d, *J*_{PC} = 6.2 Hz, CH), 129.61 (d, *J*_{PC} = 12.0 Hz), 129.62(CH), 133.5 (d, *J*_{PC} = 25.6 Hz, CH), 135.5 (d, *J*_{PC} = 77.7 Hz), 138.4 (d, *J*_{PC} = 73.9 Hz), 138.6, 148.1 (d, *J*_{PC} = 22.9 Hz); ³¹P{¹H} NMR (162 MHz, CDCl₃) δ = 52.9; HRMS Calcd. for C₁₆H₂₂PS [M + H⁺] 277.1174, Found: 277.1177. Anal. Calcd. for C₁₆H₂₁PS: C, 69.53; H, 7.66. Found: C, 69.71; H, 8.09.

9b: pale yellow oil (46% yield); ¹H NMR (300 MHz, CDCl₃) δ = 0.97-1.03 (q, *J*_{HH} = 11.7 Hz, 6H), 1.52-1.70 (m, 4H), 1.83 (d, *J*_{PH} = 12.6 Hz, 3H), 2.31-2.46 (m, 3H), 2.54-2.64 (m, 1H), 6.99 (d, *J*_{PH} = 38.1 Hz, 1H), 7.27-7.40 (m, 3H), 7.87-7.90 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ = 14.0 (CH₃), 14.4 (CH₃), 20.2 (d, *J*_{PC} = 47.7 Hz, PCH₃), 21.5 (CH₂), 23.2 (CH₂), 27.2 (d, *J*_{PC} = 13.7 Hz, CH₂), 31.5 (d, *J*_{PC} = 12.7 Hz, CH₂), 126.3 (d, *J*_{PC} = 6.0 Hz, CH), 128.6 (CH), 128.8 (CH), 132.3 (d, *J*_{PC} = 12.1 Hz), 134.8 (d, *J*_{PC} = 25.7 Hz, CH), 135.5 (d, *J*_{PC} = 76.8 Hz), 138.3 (d, *J*_{PC} = 73.8 Hz), 147.0 (d, *J*_{PC} = 22.6 Hz); ³¹P{¹H} NMR (162 MHz, CDCl₃) δ = 53.0; HRMS Calcd. for C₁₇H₂₄PS [M + H⁺] 291.1330, Found: 291.1335.

Synthesis of P-phenylphosphole sulfide 7i

To a solution of **2a** (2 mmol) in THF (8 mL) was added 80 mg of lithium wire under N₂ atmosphere. The reaction mixture was stirred for 2h, the excess lithium wire was removed, then 2 eq. of I₂ was added at 0 °C. Then S₈ was added 10 min later, the reaction mixture was stirred for another 2h. After removal of the solvent under reduced pressure, the residue was treated with water (10 mL), and extracted with dichloromethane. The organic layer was dried over anhydrous Na₂SO₄. After filtration and removal of the solvent, The sulfide was chromatographed on silica gel (nhexane/dichloromethane = 2/1) to give **7i** as a white solid (55% yield); ¹H NMR (300 MHz, CDCl₃) δ = 7.20-7.43 (m, 9H), 7.53-7.70 (m, 4H), 7.81-7.88 (m, 2H); ¹³C NMR $(75 \text{ MHz}, \text{CDCl}_3) \delta = 124.8 \text{ (d, } J_{PC} = 8.8 \text{ Hz}, \text{CH}), 127.0 \text{ (d, } J_{PC} = 6.7 \text{ Hz}, \text{CH}), 128.4$ (d, *J*_{PC} = 11.6 Hz, CH), 128.8 (CH), 128.9 (CH), 128.9 (d, *J*_{PC} = 13.5 Hz, CH), 129.2 (d, J_{PC} = 11.3 Hz, CH), 129.2 (d, J_{PC} = 76.5 Hz), 130.7 (d, J_{PC} = 11.7 Hz, CH), 132.1 (d, JPC = 2.8 Hz, CH), 132.2 (d, JPC = 11.2 Hz), 132.6 (d, JPC = 2.1 Hz, CH), 135.9 (d, $J_{PC} = 17.2 \text{ Hz}, \text{CH}$, 136.9 (d, $J_{PC} = 93.0 \text{ Hz}$), 140.2 (d, $J_{PC} = 78.4 \text{ Hz}$), 141.8 (d, $J_{PC} =$ 24.4 Hz); ${}^{31}P{}^{1}H{}$ NMR (162 MHz, CDCl₃) δ = 43.4; HRMS Calcd. for C₂₀H₁₆SP [M + H⁺] 319.0704, Found: 319.0710.

Heterotetracene 11

Same procedure as before, starting from phosphine 2i.

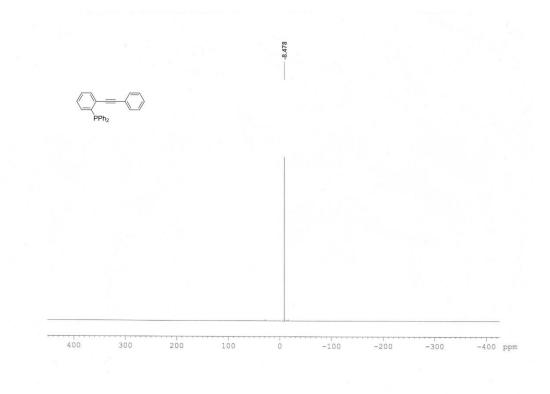
11c: white solid(47% yield) ; ¹H NMR (400 MHz, CDCl₃) δ = 0.50 (d, *J*_{PH} = 2.0 Hz, 6H), 1.88 (d, *J*_{PH} = 13.2 Hz, 3H), 7.28-7.51 (m, 5H), 7.60 (d, *J*_{HH} = 7.2 Hz, 1H), 7.68 (d, *J*_{HH} = 7.2 Hz, 1H), 7.77(t, *J*_{HH} = 8.0 Hz,1H); ¹³C NMR (100 MHz, CDCl₃) δ = -4.0 (d, *J*_{PC} = 9.6 Hz, CH₃), 15.6 (d, *J*_{PC} = 66.1 Hz, PCH₃), 123.9 (CH) ,125.0 (d, *J*_{PC} = 8.3 Hz, CH), 127.8 (CH),128.4 (d, *J*_{PC} = 1.4 Hz, CH), 128.5 (d, *J*_{PC} = 24.0 Hz, CH), 130.5 (CH), 132.8 (CH), 133.0 (d, *J*_{PC} = 1.8 Hz, CH), 134.5 (d, *J*_{PC} = 110.1 Hz), 140.1 (d, *J*_{PC} = 8.1 Hz), 141.6 (d, *J*_{PC} = 29.0 Hz), 143.3 (d, *J*_{PC} = 14.6 Hz), 153.5 (d, *J*_{PC} = 86.0 Hz), 156.8 (d, *J*_{PC} = 9.5 Hz); ³¹P{¹H} NMR (162 MHz, CDCl₃) δ = 39.5; HRMS Calcd. for C₁₇H₁₈OPSi [M + H⁺] 297.0859, Found: 297.0866.

11d: white solid (52% yield); ¹H NMR (300 MHz, CDCl₃) δ = 0.50 (s, 6H), 2.05 (d, *J*_{PH} = 13.2Hz, 3H), 7.29-7.61(m, 6H), 7.76-7.87 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ = - 3.9 (d, *J*_{PC} = 6.4 Hz, CH₃), 21.3 (d, *J*_{PC} = 51.1 Hz, PCH₃), 123.7 (CH), 125.1 (d, *J*_{PC} = 7.7 Hz, CH), 127.9 (CH), 128.1 (d, *J*_{PC} = 13.0 Hz, CH), 128.5 (d, *J*_{PC} = 11.3 Hz, CH), 130.5 (CH), 132.5 (d, *J*_{PC} = 2.1 Hz, CH), 132.8 (CH), 138.4 (d, *J*_{PC} = 93.2 Hz), 140.4

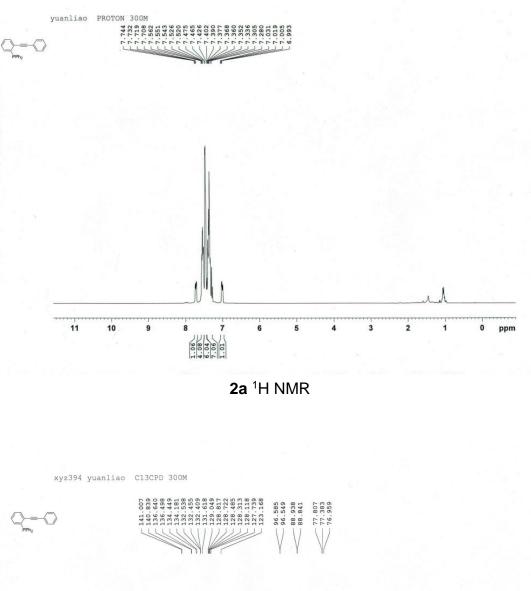
(d, $J_{PC} = 8.3 \text{ Hz}$), 142.0 (d, $J_{PC} = 26.1 \text{ Hz}$), 142.8 (d, $J_{PC} = 15.4 \text{ Hz}$), 153.9 (d, $J_{PC} = 68.5 \text{ Hz}$), 155.4 (d, $J_{PC} = 6.3 \text{ Hz}$); ³¹P{¹H} NMR (162 MHz, CDCl₃) $\delta = 37.5$; HRMS Calcd. for C₁₇H₁₈PSSi [M + H⁺] 313.0630, Found: 313.0630. Anal. Calcd. for C₁₇H₁₇PSSi: C, 65.35; H, 5.48. Found: C, 64.88; H, 5.50.

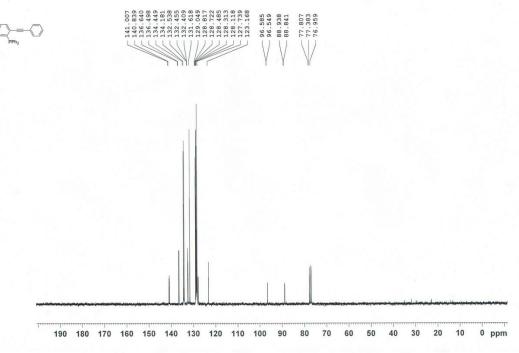
Synthesis of 14b

The alkyne **12** was synthesized in 86% yield using a Sonogashira coupling reaction as shown in scheme (7).

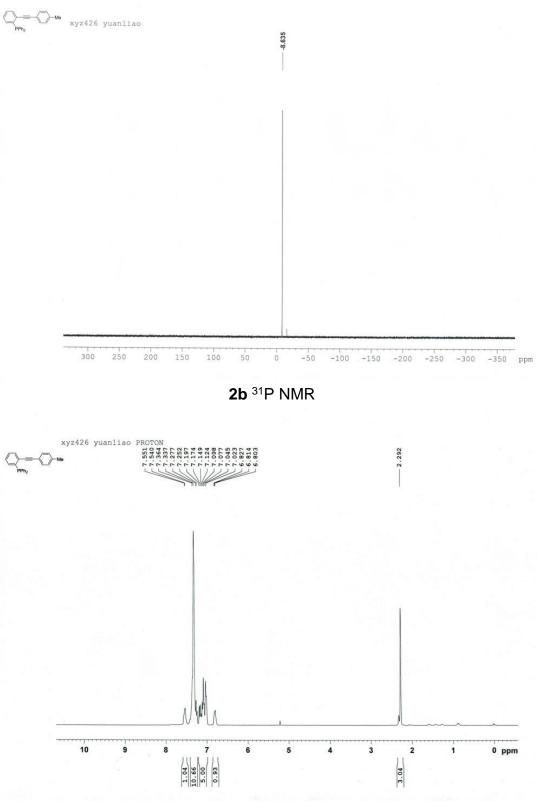

Phosphine **13**

To a solution of **12** (2.6g, 8 mmol) in THF (30 mL) was added dropwise *n*-butyllithium in *n*-hexane (5.5 mL, 1.6 mol/L, 8.8 mmol) at -78° C over 5 min under N₂ atmosphere. The reaction mixture was stirred for 50 min, then Ph₂PCI (2.1g, 9.6mmol) was added at -78 °C, then the temperature was slowly raised back to room temperature to give a pale yellow solution. After removal of the solvent under reduced pressure, the residue was chromatographed on silica gel (hexane/ethyl acetate = 20/1) to give **13** as a pale yellow solid (2.57g, 75% yield). ¹H NMR (300 MHz, CDCl₃) δ = 2.41(s, 3H), 3.94 (s, 3H), 7.02 (t, *J*_{PH} = 7.3 Hz, 1H), 7.18-7.42 (m, 13H), 7.54-7.58 (m, 4H); ¹³C NMR (75 MHz, CDCl₃) δ = 21.6 (CH₃), 31.1 (NCH₃), 80.2 (d, *J*_{PC} = 3.1Hz), 99.7, 109.7(CH), 110.7 (d, *J*_{PC} = 7.5 Hz), 119.4, 120.5 (CH), 121.7 (d, *J*_{PC} = 3.7 Hz, CH), 123.2 (CH), 128.0 (d, *J*_{PC} = 35.9 Hz), 131.6 (CH), 132.9 (d, *J*_{PC} = 18.7 Hz, CH), 137.8 (d, *J*_{PC} = 8.4 Hz), 138.4 (d, *J*_{PC} = 3.5 Hz), 139.0; ³¹P{¹H} NMR (162 MHz, CDCl₃) δ = -34.4; HRMS Calcd. for C₃₀H₂₅NP [M + H⁺] 430.1719, Found: 430.1720.

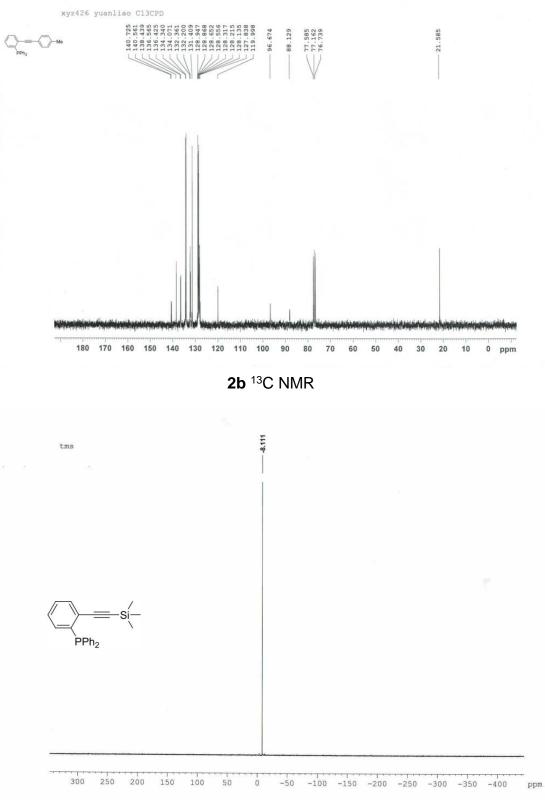

Compound 14b

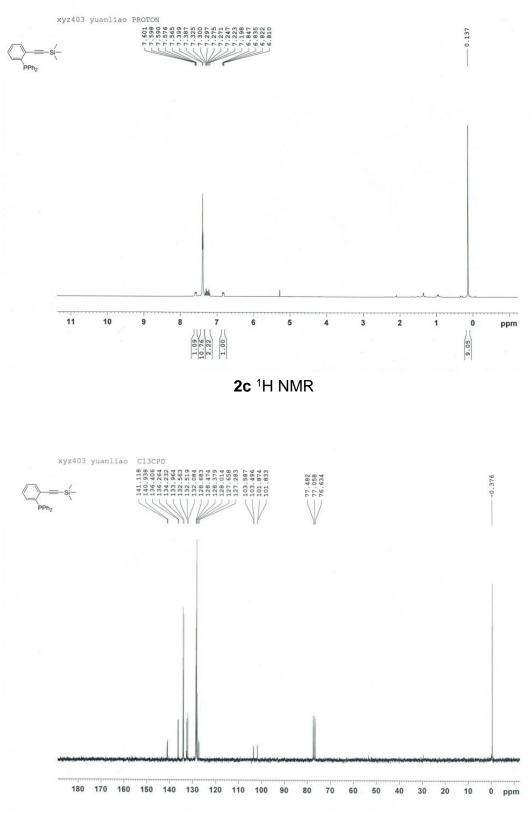

To a solution of **13** (858mg, 2 mmol) in THF (10 mL) was added 80 mg of lithium wire under N₂ atmosphere. The reaction mixture was stirred for 2h, remove the excess lithium wire, then 2eq.of CH₃I was added at 0 °C. Then, 10min later, S₈ (96mg,1.5 eq) was added and the reaction mixture was stirred for additional 2h. After removal of the solvent under reduced pressure, the residue was chromatographed on silica gel (*n*hexane/dichloromethane = 2/1) to get **14b** as an unstable yellow solid (355 mg, 55% yield). ¹H NMR (300 MHz, CDCl₃) δ = 2.06 (d, *J*_{PH} = 13.8 Hz, 3H), 2.32 (s, 3H), 3.66 (s, 3H), 7.10-7.13 (m, 2H), 7.21-7.24 (m, 3H), 7.36 (d, *J*_{PH} = 33 Hz, 1H), 7.74-7.85 (m, 3H); ¹³C NMR (75 MHz, CDCl₃) δ = 21.4, 22.2 (d, *J*_{PC} = 55.4 Hz), 30.6, 110.6 (CH), 119.4 (CH), 120.2 (d, $J_{PC} = 10.6$ Hz, CH), 122.1 (CH), 122.5 (CH), 125.3 (d, $J_{PC} = 9.8$ Hz), 126.3(d, $J_{PC} = 6.9$ Hz, CH), 129.5 (CH), 130.1(d, $J_{PC} = 11.2$ Hz), 136.2 (d, $J_{PC} = 89.2$ Hz), 139.0, 141.2 (d, $J_{PC} = 9.8$ Hz), 145.9(d, $J_{PC} = 73.8$ Hz), 148.5 (d, $J_{PC} = 36.5$ Hz); ³¹P{¹H} NMR (162 MHz, CDCl₃) δ = 31.9; HRMS Calcd. for C₁₉H₁₉NPS [M + H⁺] 324.0970, Found: 324.0973.

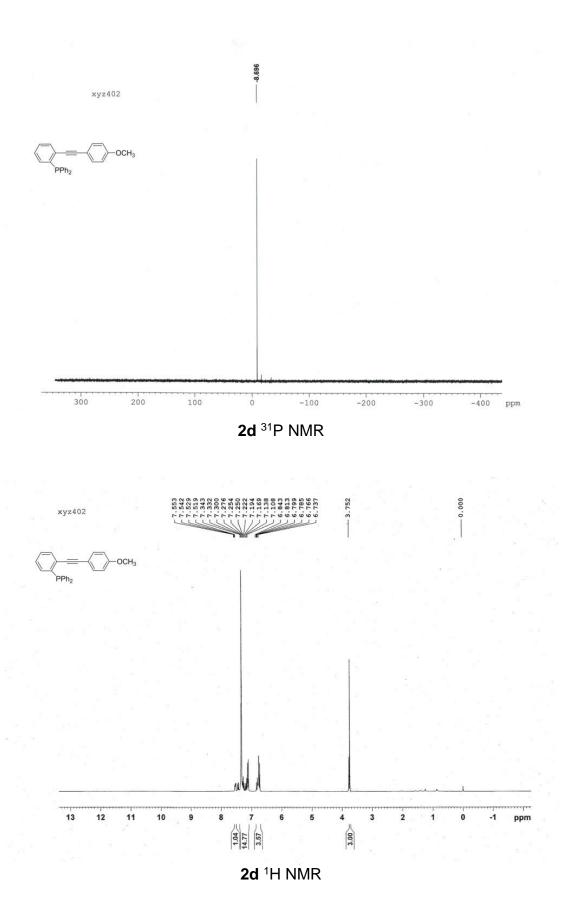
NMR DATA

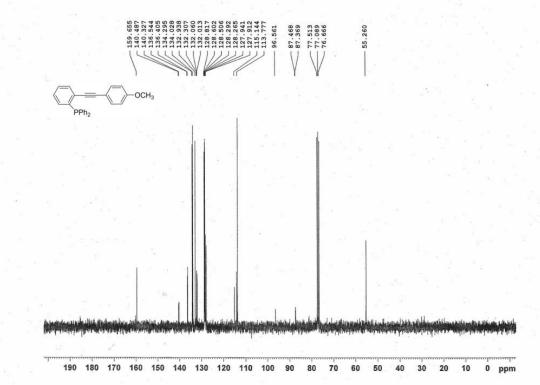


2a ³¹P NMR

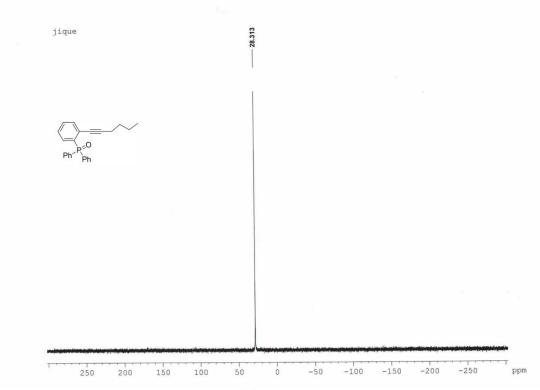



2a ¹³C NMR

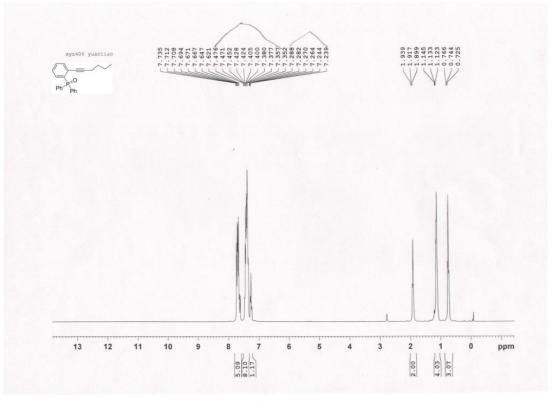


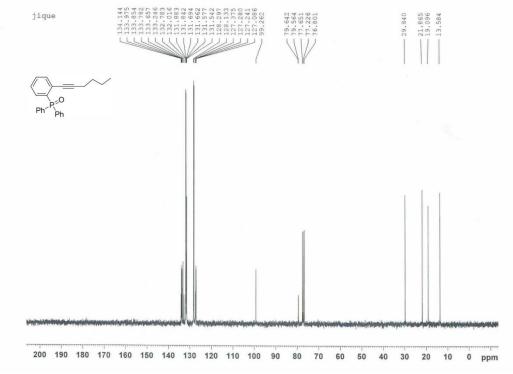


2c ³¹P NMR

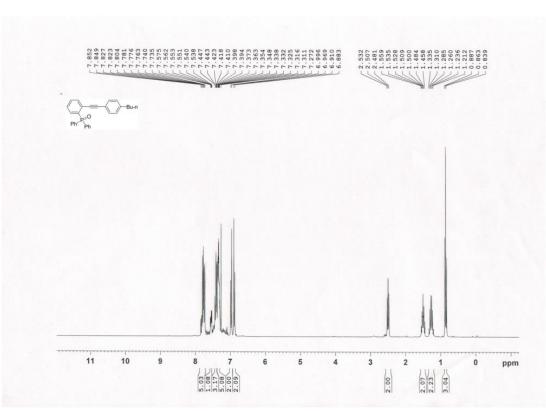


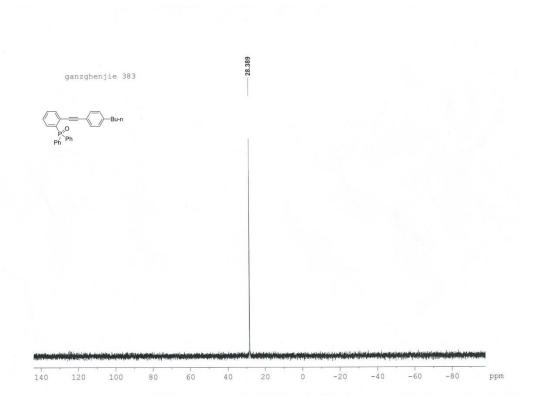
2c ¹³C NMR

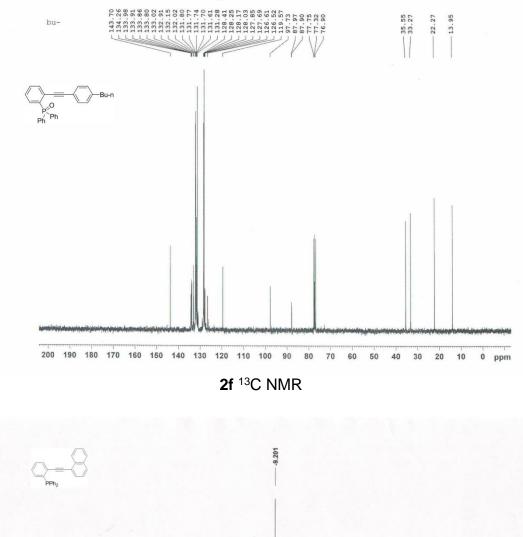


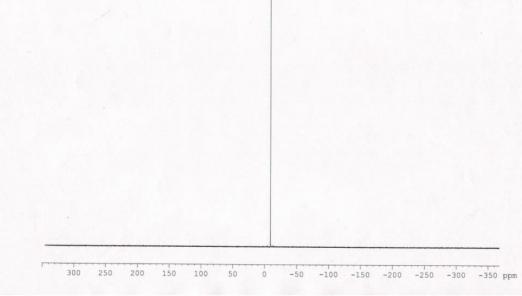


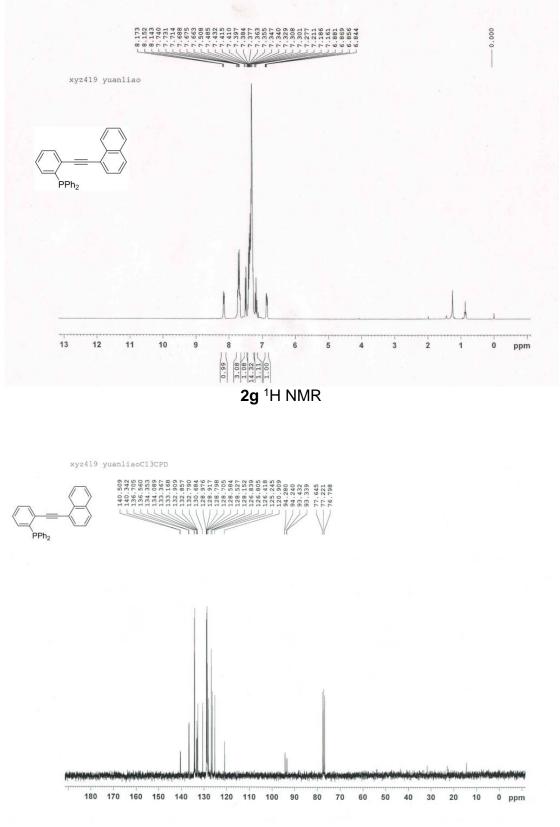
2e ³¹P NMR

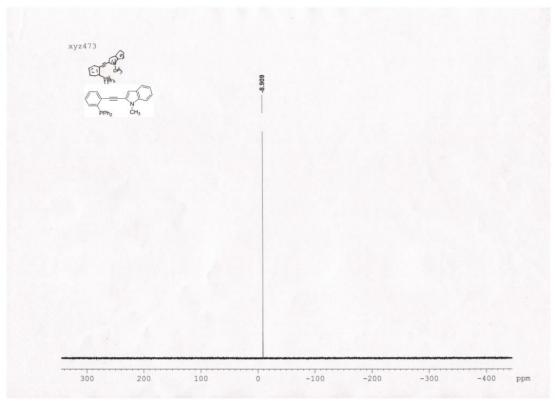


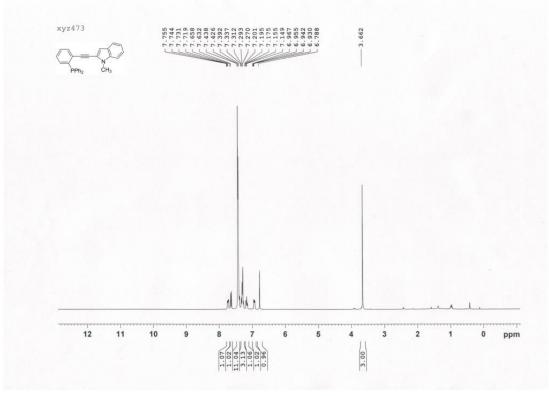


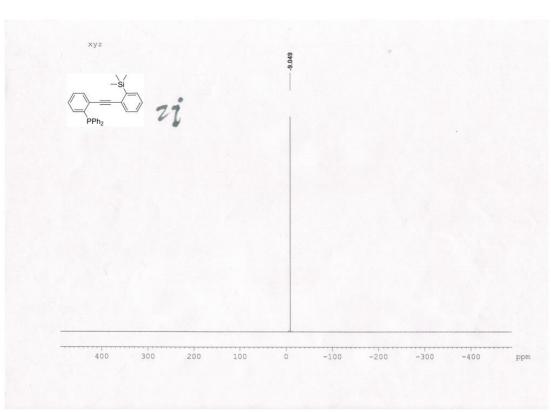

2e ¹³C NMR



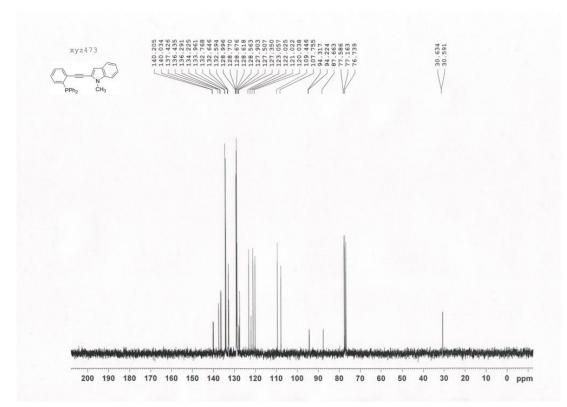

2f ³¹P NMR

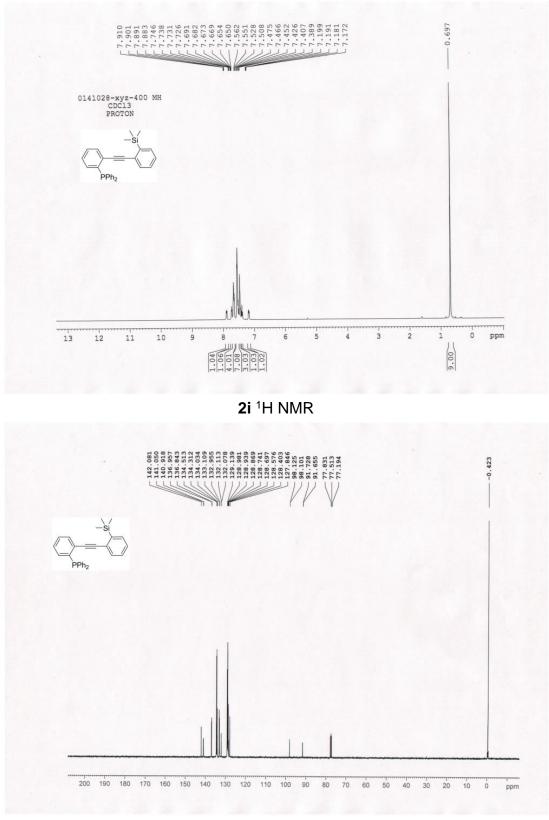



2g ³¹P NMR

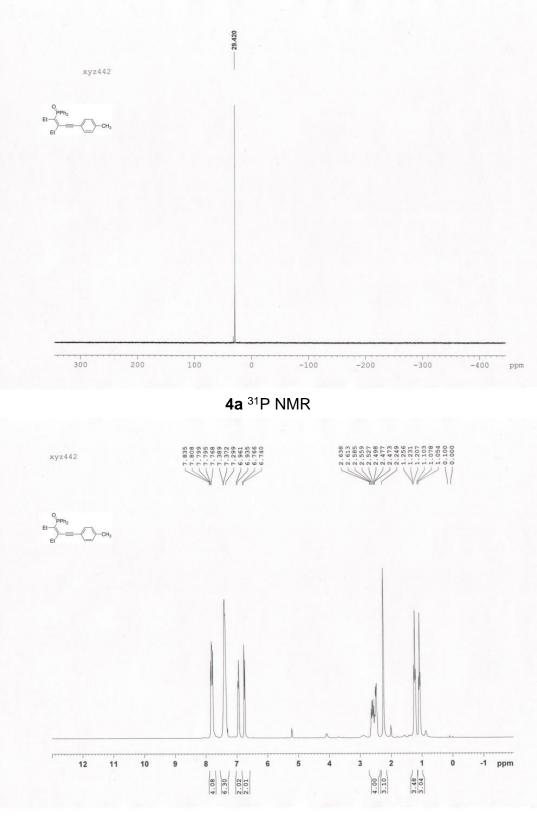


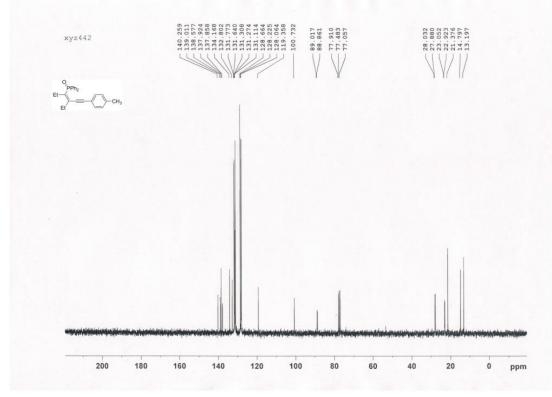
2h ³¹P NMR

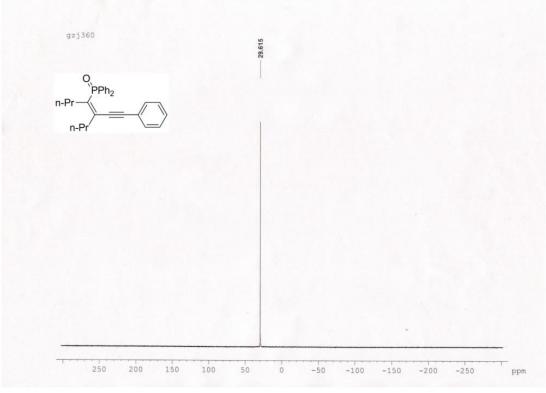


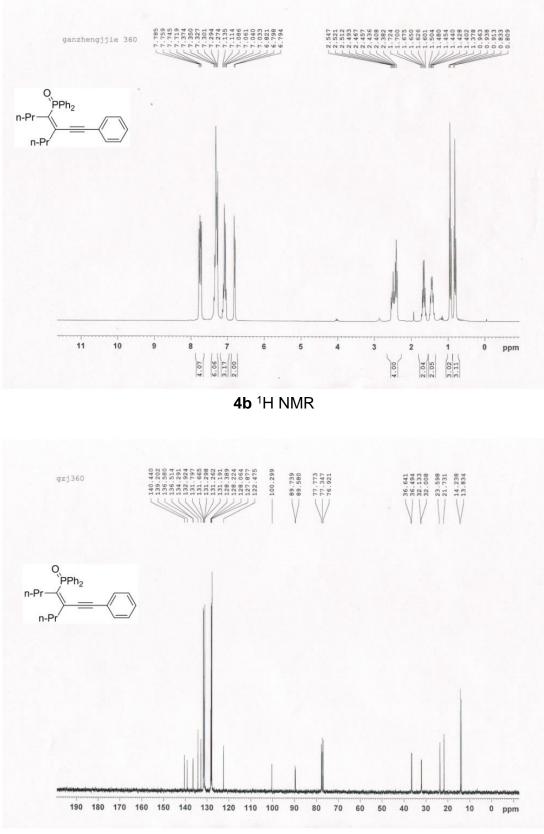

2h ¹H NMR

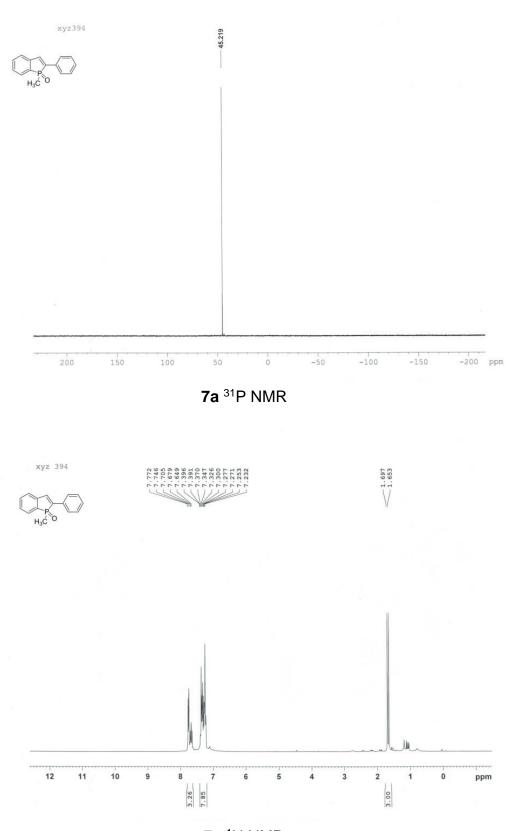
2i ³¹P NMR



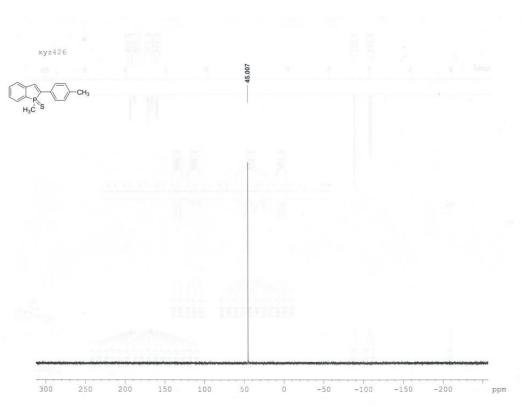



2i ¹³C NMR

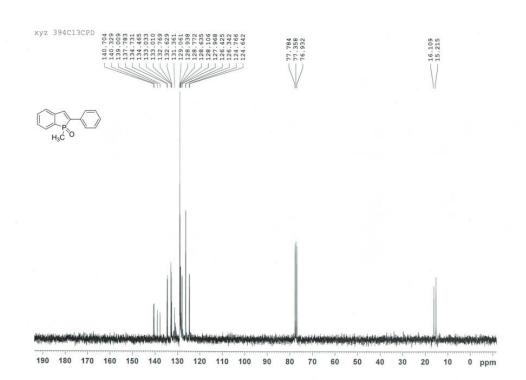


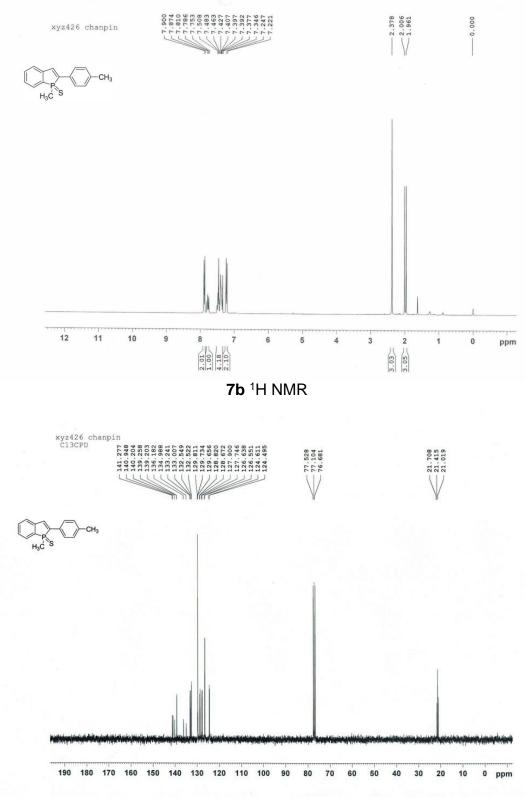


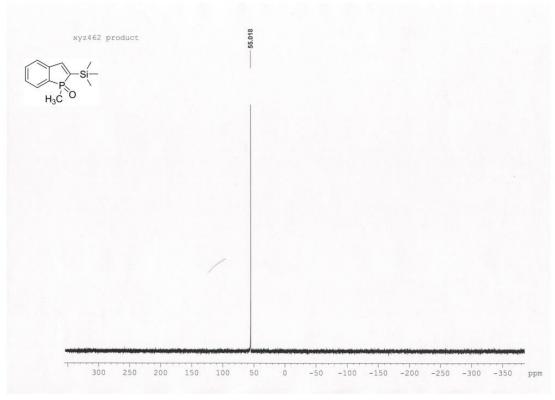
4b ³¹P NMR



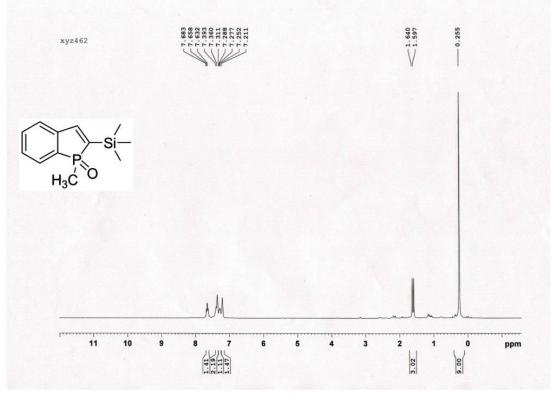
4b ¹³C NMR

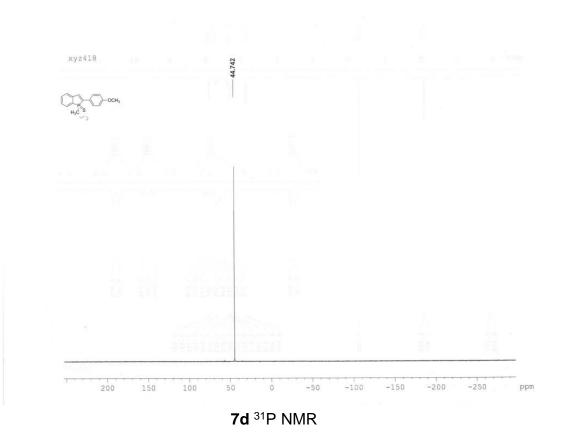


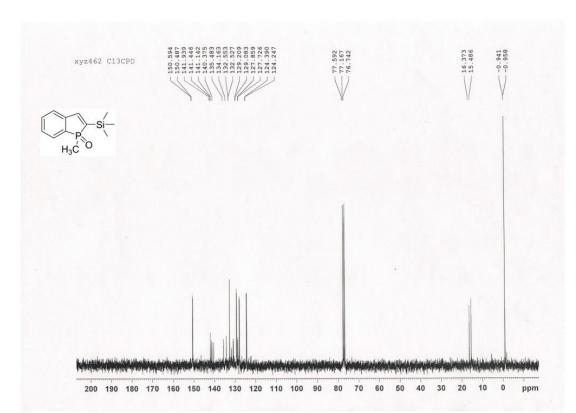

7a ¹H NMR

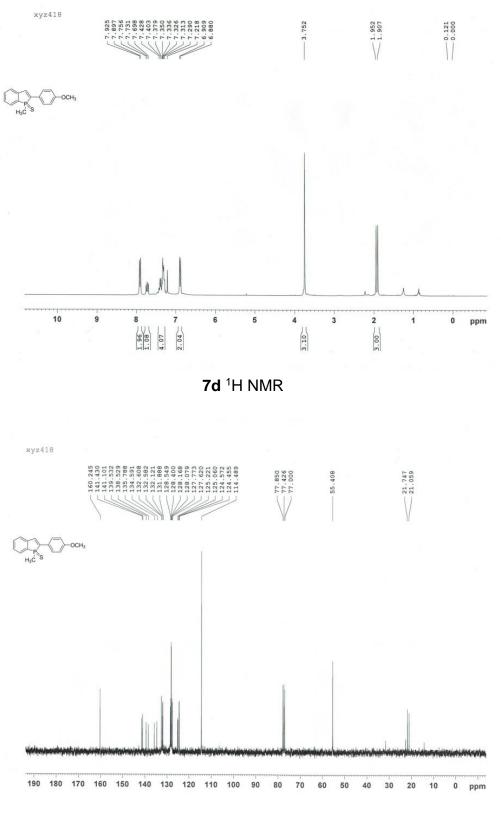


7a ¹³C NMR

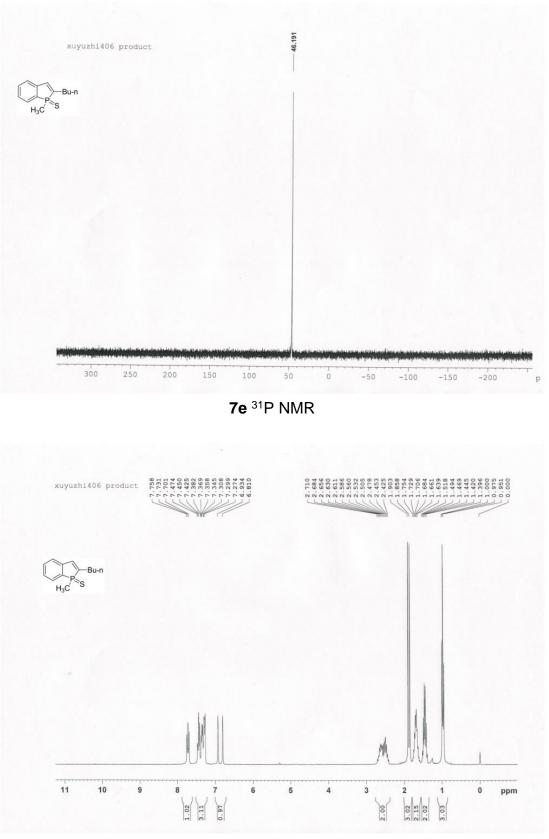


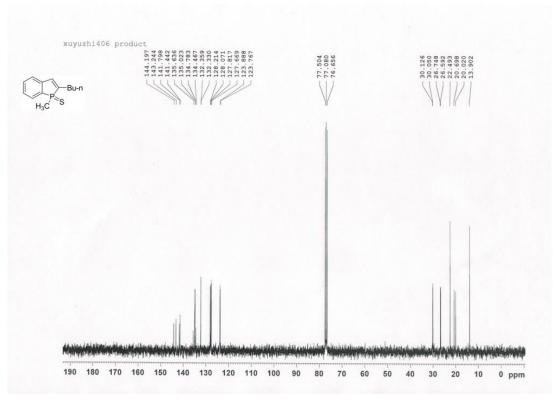


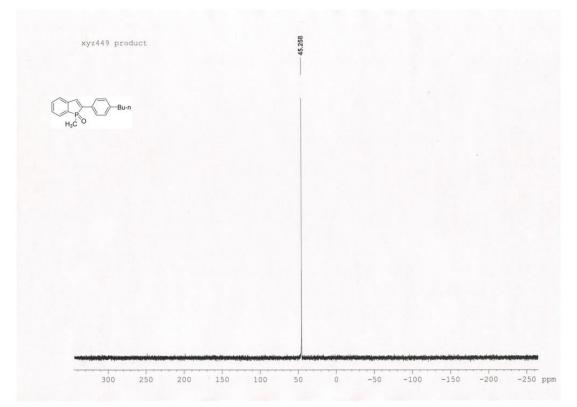

7c ³¹P NMR

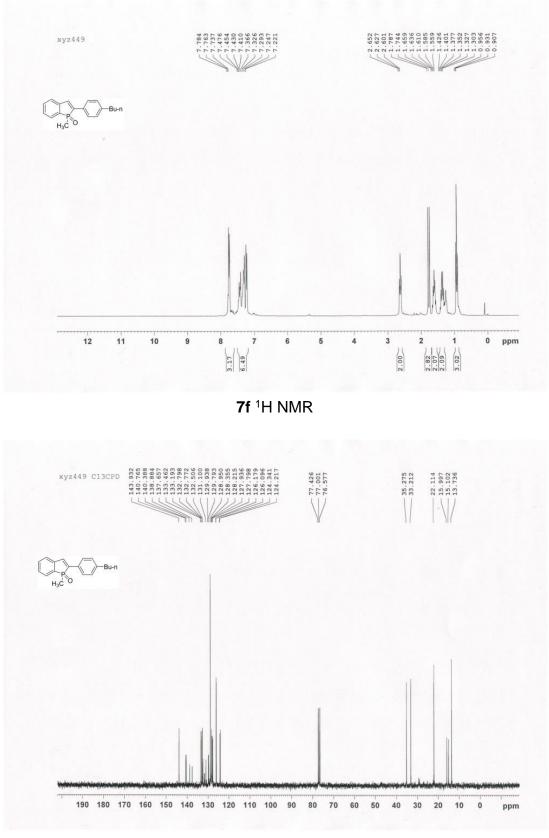


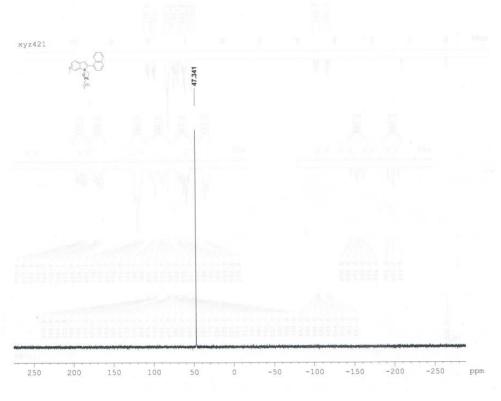
7c ¹H NMR

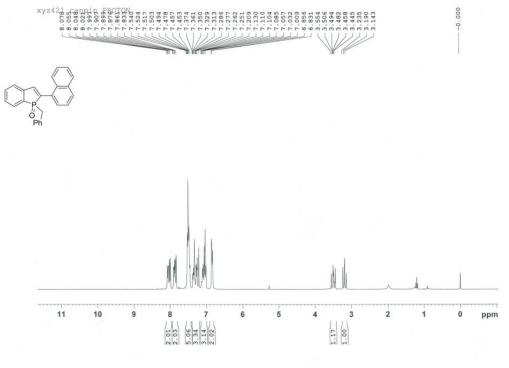


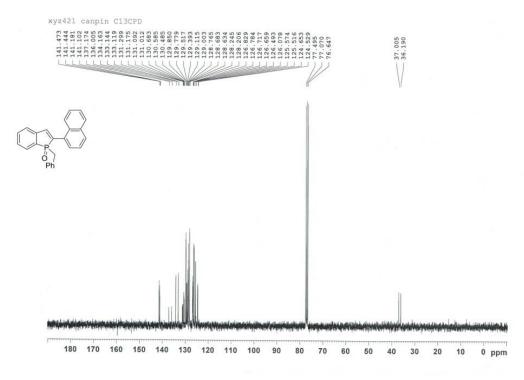


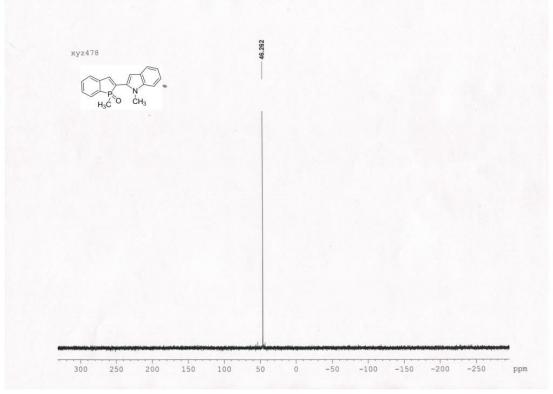

7d ¹³C NMR

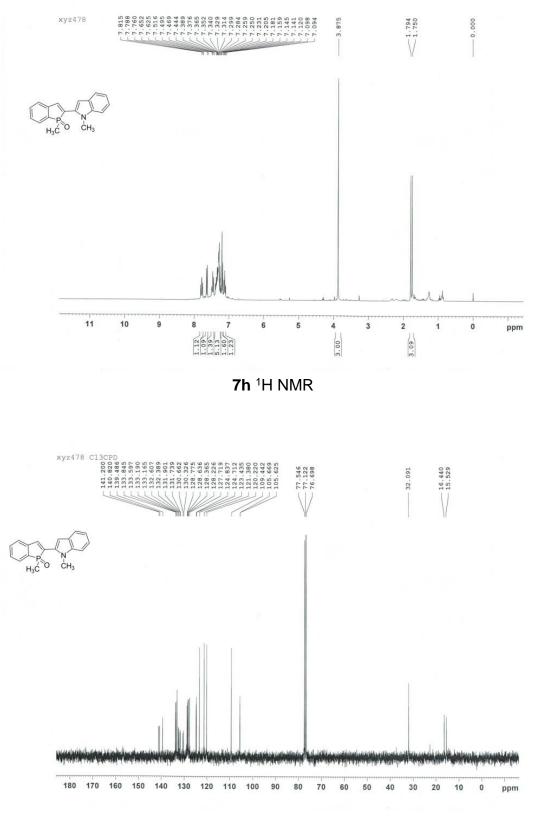

7e ¹H NMR

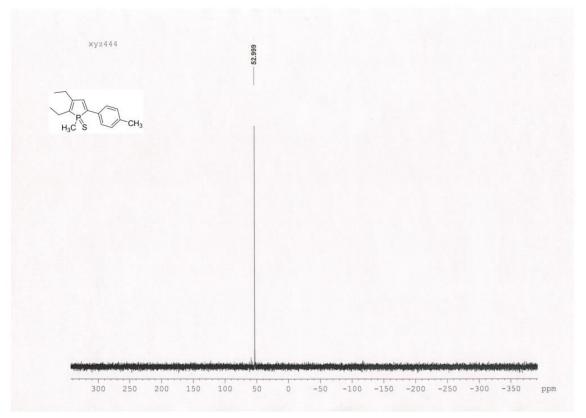


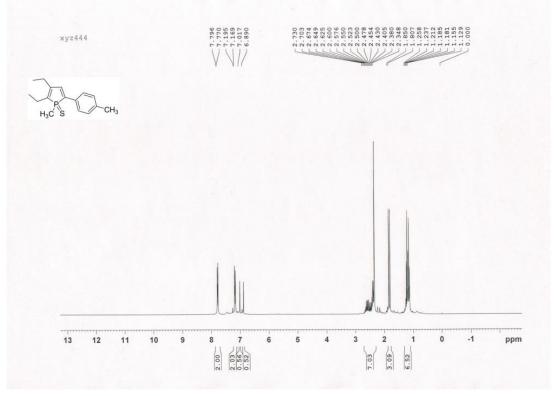

7f ³¹P NMR

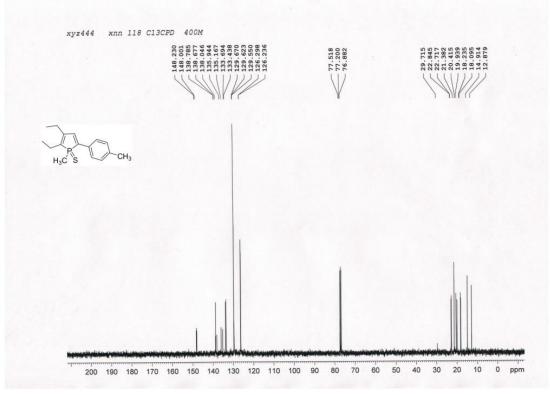

7f ¹³C NMR

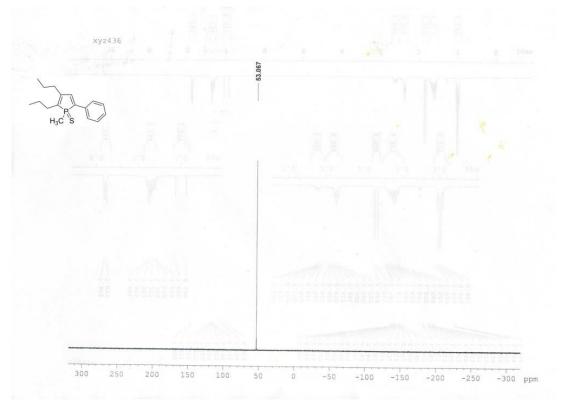

7g ³¹P NMR

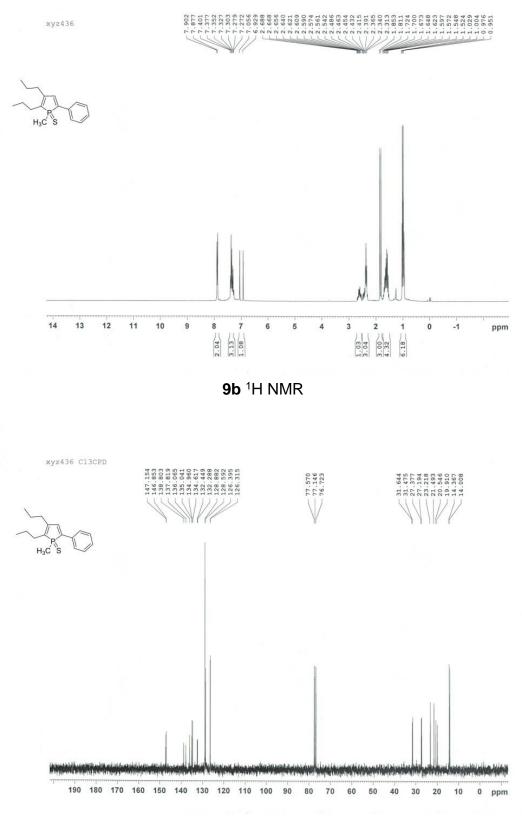

7g ¹H NMR

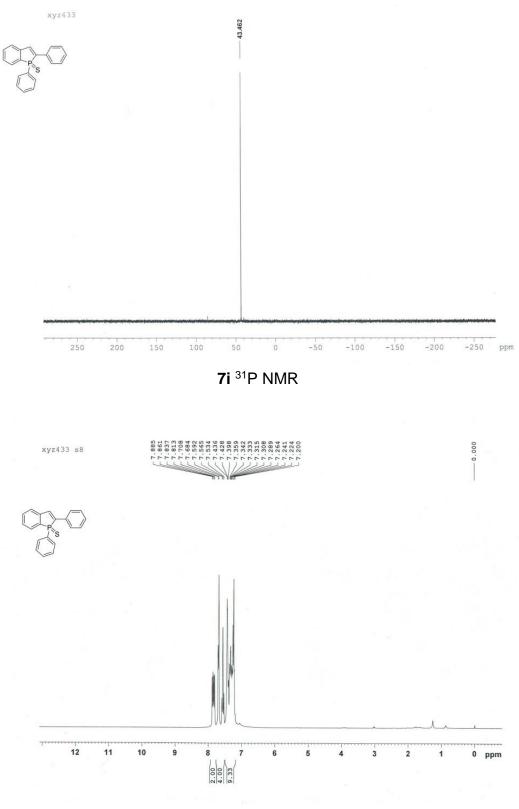



7h ³¹P NMR

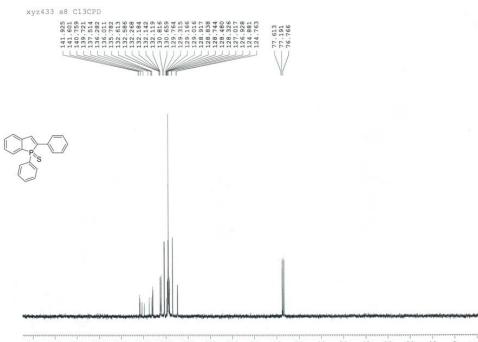

7h ¹³C NMR


9a ³¹P NMR

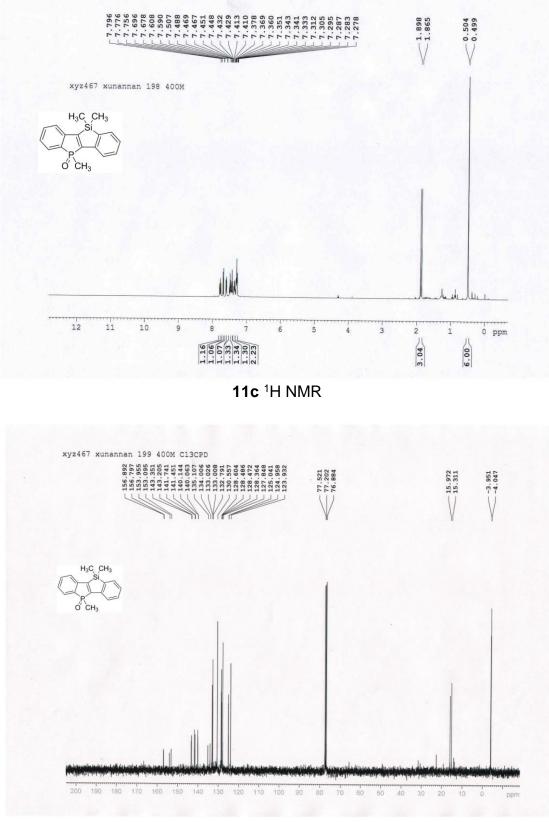

9a ¹H NMR



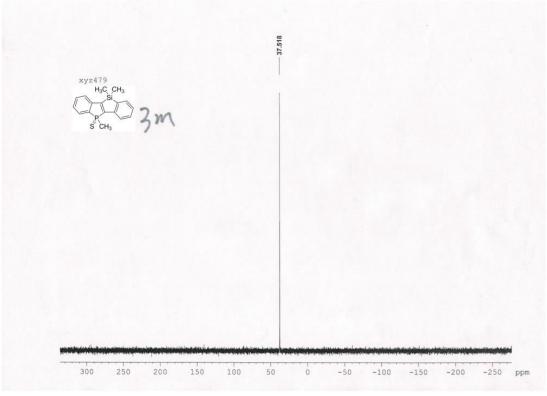

9b ³¹P NMR

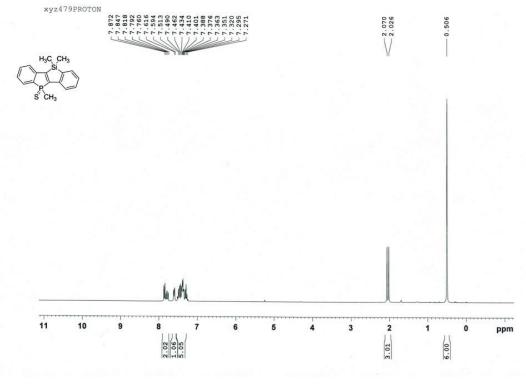


9b ¹³C NMR

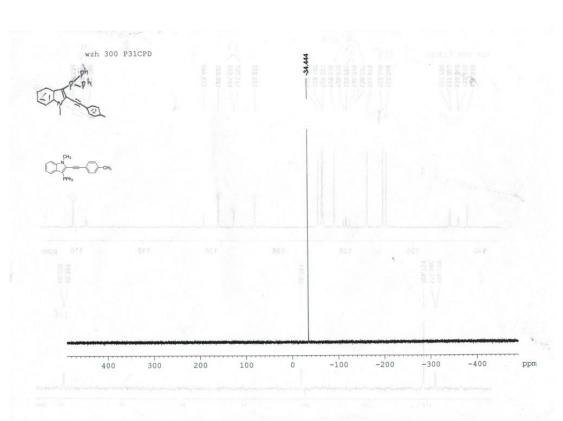


7i ¹H NMR

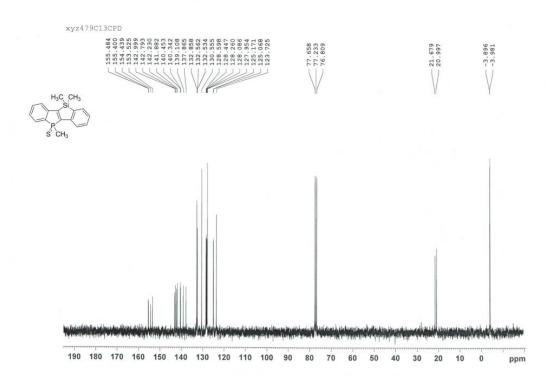


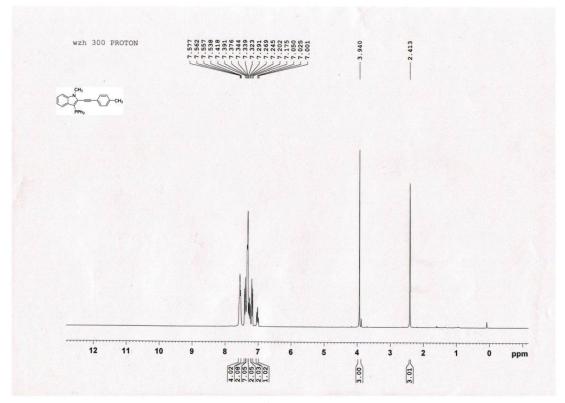

11c ³¹P NMR

11c ¹³C NMR

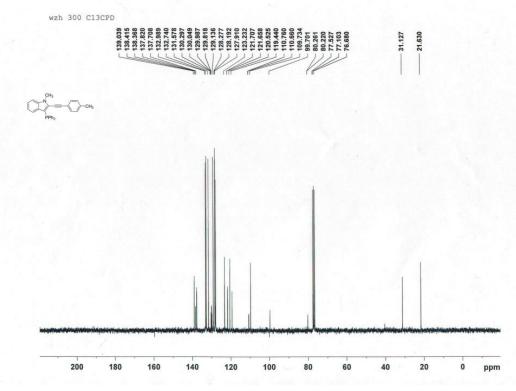


11d ³¹P NMR

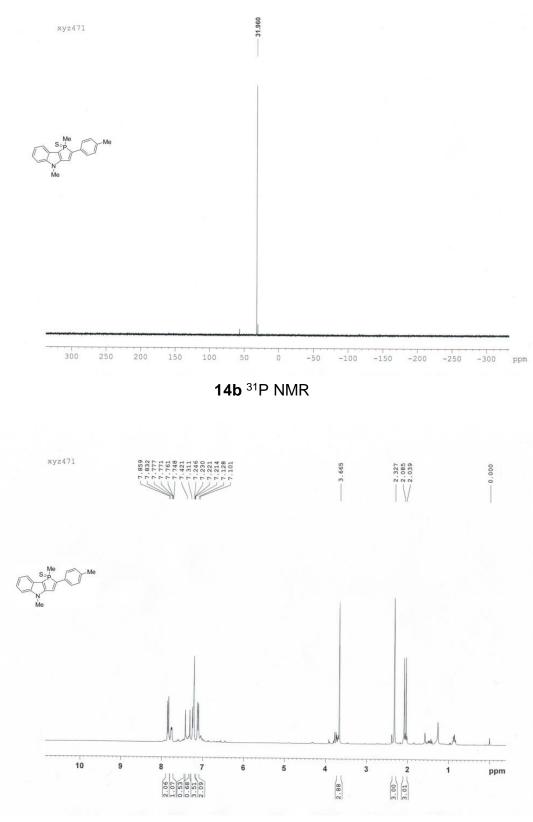


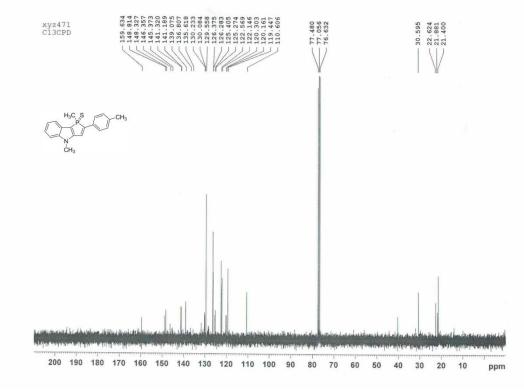


13 ³¹P NMR



11d ¹³C NMR




13 ¹H NMR

13 ¹³C NMR

14b ¹H NMR

14b ¹³C NMR