Supporting Information

Rh(III)-Catalyzed Decarboxylative ortho-Heteroarylation of Aromatic Carboxylic Acids by Using the Carboxylic Acid as a Traceless Directing Group

Xurong Qin,^{†,‡} Denan Sun,[†] Qiulin You,[†] Yangyang Cheng,[†] Jingbo Lan^{*,†} and Jingsong You^{*,†}

[†]Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, and State Key Laboratory of Biotherapy, West China Medical School, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China.

Fax: (+86) 28-85412203; E-mail: jingbolan@scu.edu.cn; jsyou@scu.edu.cn

[‡]College of Pharmaceutical Science, Southwest University, 2 Tiansheng Road, Chongqing 400716, China.

Table of contents

I. General Remarks	S3
II. Optimization of the Decarboxylative ortho-Heteroarylation of	Aromatic
Carboxylic Acids	S3
III. General Procedure for the Decarboxylative ortho-Heteroarylation of	Aromatic
Carboxylic Acids	S6
IV. The H/D Exchange Experiments for Each Coupling Partner (1c and 2a)	S7
V. Kinetic Isotope Experiments	
VI. Competition Experiments	S10
VII. Decarboxylation of 2-(Benzothiophen-2-yl)-6-methoxybenzoic Acid	S11
VIII. Experimental Data for the Described Substances	S12
IX. References	S26
X. Copies of ¹ H, ¹³ C and ¹ H- ¹ H NOESY NMR Spectra	S27

I. General Remarks

NMR spectra were obtained on a Bruker AV II-400 MHz spectrometer. The ¹H NMR (400 MHz) chemical shifts were measured relative to CDCl₃, TMS or DMSO-*d*₆ as the internal reference (CDCl₃: δ = 7.26 ppm; TMS: δ = 0.00 ppm; DMSO-*d*₆: δ = 2.50 ppm). The ¹³C NMR (100 MHz) chemical shifts were given using CDCl₃ or DMSO-*d*₆ as the internal standard (CDCl₃: δ = 77.16 ppm; DMSO-*d*₆: δ = 39.52 ppm). High-resolution mass spectra (HRMS) were obtained with a Waters-Q-TOF-Premier (ESI). Melting points were determined with XRC-1 and are uncorrected.

Unless otherwise noted, all reagents were obtained from commercial suppliers and used without further purification. RhCl₃·3H₂O were purchased from Shaanxi Kaida Chemical Engineering (China) CO., Ltd. AgSbF₆ was purchased from Alfa Aesar. Ag₂CO₃ was purchased from Tianjin Yin Li Da Chemical Engineering (China) CO., Ltd. Cu(OAc)₂·H₂O was purchased from Shanghai Kefeng Chemical Reagent (China) CO., Ltd. [Cp*RhCl₂]₂,¹ and indole derivatives,² indolizine derivatives,³ were prepared according to the literature procedures. All solvents were purified and dried according to standard methods prior to use.

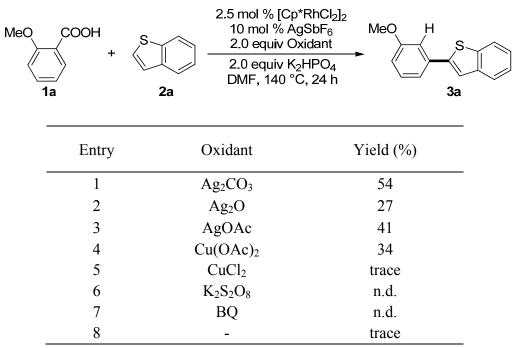
II. Optimization of the Decarboxylative *ortho*-Heteroarylation of Aromatic Carboxylic Acids

A flame-dried Schlenk test tube with a magnetic stirring bar was charged with the catalyst (2.5-5.0 mol %), oxidant (2.0 equiv), base (2.0 equiv), 2-methoxybenzoic acid (**1a**, 0.25 mmol), benzothiophene (**2a**, 3.0 equiv), and solvent (1.0 mL). The reaction mixture was stirred for 10 min at room temperature under a N₂ atmosphere, and then heated at 130-150 °C in a pre-heated oil bath for the indicated time. The reaction mixture was then cooled to ambient temperature, diluted with 20 mL of CH₂Cl₂, filtered through a celite pad, and washed with 10-20 mL of CH₂Cl₂. The combined organic extracts were concentrated, and the resulting residue was purified by column chromatography on silica gel (petroleum/ethyl acetate = 50/1 v/v) to provide the desired product **3a**.

Me	о <u>соон</u> +		Cat., Oxidant, Ba Solvent, 140 °C, 2		S S
	<u>1</u> a	2a		3a	
Entry	Catalyst	Oxidant	Base	Solvent	Yield (%)
1	Pd(OAc) ₂	Ag ₂ CO ₃	KOAc	1,4-dioxane	n.d.
2	$Pd(OAc)_2$	Ag_2CO_3	NaOAc	1,4-dioxane	n.d.
3	$Pd(OAc)_2$	Ag ₂ CO ₃	K ₂ HPO ₄	1,4-dioxane	n.d.
4	$Pd(OAc)_2$	Ag ₂ CO ₃	K ₂ HPO ₄	t-BuOH	n.d.
5	$Pd(OAc)_2$	Ag_2CO_3	K ₂ HPO ₄	DMF	n.d.
6	$Pd(OAc)_2$	Ag ₂ CO ₃	-	diglyme	n.d.
7	$Pd(OAc)_2$	Cu(OAc) ₂	-	DMF	n.d.
8 ^c	[Cp*RhCl ₂] ₂	Ag ₂ CO ₃	-	DMF	35

(1) *Table S1.* Optimization of the Reaction Conditions by Screening Catalyst^{*a,b*}

^{*a*}Reactions were carried out using Pd(OAc)₂ (5.0 mol %), oxidant (2.0 equiv), base (2.0 equiv), 2-methoxybenzoic acid (0.25 mmol), benzothiophene (3.0 equiv), and solvent (1.0 mL) at 140 °C for 24 h under a N₂ atmosphere. ^{*b*}Yield of isolated product. ^{*c*}[Cp*RhCl₂]₂ (2.5 mol %), AgSbF₆ (10 mol %), 4 Å MS (100 mg). DMF = dimethyl formamide.


(2) *Table S2.* Screening $Base^{a,b}$

MeO COOH + S + I A 2a	2.5 mol % [Cp*RhCl ₂] ₂ 10 mol % AgSbF ₆ 2.0 equiv Ag ₂ CO ₃ 2.0 equiv Base DMF, 140 °C, 24 h	$\rightarrow \qquad \qquad$
Entry	Base	Yield (%)
1	LiCl	27
2	LiOAc	28
3	NaOAc	24
4	KOAc	38
5	Bu ₄ NOAc	35
6	Bu ₄ NBr	trace
7	Cs_2CO_3	n.d.
8	K_2CO_3	trace
9	KHCO ₃	34
10	KH ₂ PO ₄	50
11	K ₃ PO ₄	38
12	KF	trace
13	KHF ₂	14
14	K ₂ HPO ₄	54

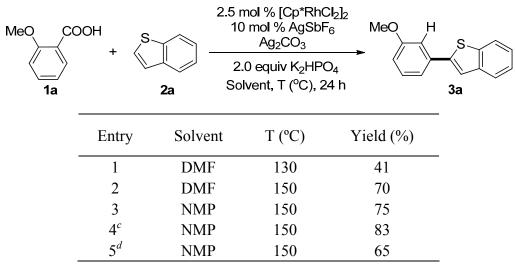
15 Na_2HPO_4 51	
-------------------	--

^{*a*}Reactions were carried out using $[Cp*RhCl_2]_2$ (2.5 mol %), AgSbF₆ (10 mol %), Ag₂CO₃ (2.0 equiv), base (2.0 equiv), 2-methoxybenzoic acid (0.25 mmol), benzothiophene (3.0 equiv), 4 Å MS (100 mg), and DMF (1.0 mL) at 140 °C for 24 h under a N₂ atmosphere. ^{*b*}Yield of isolated product. DMF = dimethyl formamide.

(3) *Table S3.* Screening Oxidant^{*a,b*}

^{*a*}Reactions were carried out using $[Cp*RhCl_2]_2$ (2.5 mol %), AgSbF₆ (10 mol %), oxidant (2.0 equiv), K₂HPO₄ (2.0 equiv), 2-methoxybenzoic acid (0.25 mmol), benzothiophene (3.0 equiv), 4 Å MS (100 mg), and DMF (1.0 mL) at 140 °C for 24 h under a N₂ atmosphere. ^{*b*}Yield of isolated product. DMF = dimethyl formamide.

(4) *Table S4.* Screening Solvent^{*a,b*}


MeO Co 1a	DOH + S 2a	2.5 mol % [Cp*RhCl ₂] ₂ 10 mol % AgSbF ₆ 2.0 equiv Ag ₂ CO ₃ 2.0 equiv K ₂ HPO ₄ Solvent, 140 °C, 24 h	MeO H 3a
	Entry	Solvent	Yield (%)
-	1	DCE	n.d.
	2	1,4-dioxane	35
	3	diglyme	14
	4	<i>t</i> -AmylOH	trace
	5	t-BuOH	trace
	6	DMA	52
	7	DMSO	n.d.
	8	PhCF ₃	33

9	PhCl	40
10	xylene	n.d.
11	AcOH	trace
12	NMP	65
13	NMP/PhCl ($v/v = 4/1$)	45
14	DMF/DMSO ($v/v = 20/1$)	33

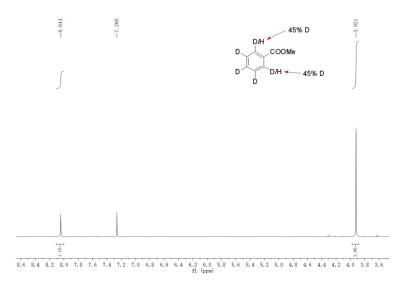
^{*a*}Reactions were carried out using $[Cp*RhCl_2]_2$ (2.5 mol %), AgSbF₆ (10 mol %), Ag₂CO₃ (2.0 equiv), K₂HPO₄ (2.0 equiv), 2-methoxybenzoic acid (0.25 mmol), benzothiophene (3.0 equiv), 4 Å MS (100 mg), and solvent (1.0 mL) at 140 °C for 24 h under a N₂ atmosphere. ^{*b*}Yield of isolated product. DCE = 1,2-dichloroethane, DMF = dimethyl formamide, DMA = dimethyl acetamide, DMSO = dimethyl sulfoxide, NMP = 1-methylpyrrolidin-2-one.

(5) Table S5. Screening Temperature, the Amount of Ag₂CO₃, and without

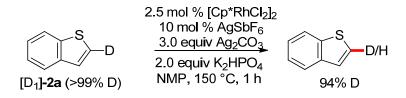
 $AgSbF_6^{a,b}$

^{*a*}Reactions were carried out using $[Cp*RhCl_2]_2$ (2.5 mol %), AgSbF₆ (10 mol %), Ag₂CO₃ (2.0 equiv), K₂HPO₄ (2.0 equiv), 2-methoxybenzoic acid (0.25 mmol), benzothiophene (3.0 equiv), 4 Å MS (100 mg), and solvent (1.0 mL) under a N₂ atmosphere. ^{*b*}Yield of isolated product. ^{*c*}Ag₂CO₃ (3.0 equiv). DMF = dimethyl formamide. NMP = 1-methylpyrrolidin-2-one. ^{*d*}Without AgSbF₆.

III. General Procedure for the Decarboxylative *ortho*-Heteroarylation of Aromatic Carboxylic Acids


A flame-dried Schlenk test tube with a magnetic stirring bar was charged with $[Cp*RhCl_2]_2$ (2.5 mol %), AgSbF₆ (10 mol %), Ag₂CO₃ (0.75 mmol, 3.0 equiv), K₂HPO₄ (0.5 mmol, 2.0 equiv), benzoic acid (0.25 mmol), heteroarene (0.75 mmol, 3.0 equiv), 4 Å MS (100 mg), and NMP (1.0 mL) under a N₂ atmosphere. The reaction mixture was stirred for 10 min at room temperature under an N₂ atmosphere, and then

heated at 150~160 °C in a pre-heated oil bath. The reaction mixture was then cooled to ambient temperature, diluted with 20 mL of CH_2Cl_2 , filtered through a celite pad, and washed with 10-20 mL of CH_2Cl_2 . The combined organic extracts were concentrated and the resulting residue was purified by column chromatography on silica gel to provide the desired product.


IV. The H/D Exchange Experiments for Each Coupling Partner (1c and 2a)

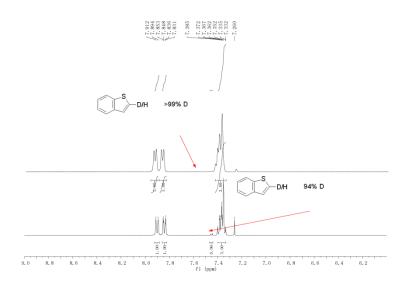
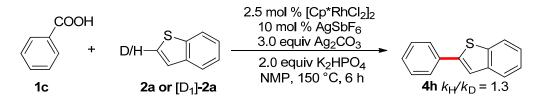

A flame-dried Schlenk test tube with a magnetic stirring bar was charged with $[Cp*RhCl_2]_2$ (3.9 mg, 6.25 µmol, 2.5 mol %), AgSbF₆ (8.6 mg, 25.0 µmol, 10 mol %), 2,3,4,5,6-pentadeuteriobenzoic acid⁴ (0.25 mmol), Ag₂CO₃ (0.75 mmol, 3.0 equiv), K₂HPO₄ (0.50 mmol, 2.0 equiv), and 4 Å MS (100 mg) in NMP (1.0 mL). The reaction mixture was stirred for 10 min at room temperature under a N₂ atmosphere, and then heated at 150 °C in a pre-heated oil bath for 1 h. After the mixture was cooled, iodomethane (1.5 mmol, 6.0 equiv), and K₂CO₃ (0.75 mmol, 3.0 equiv) were added, and the resulting mixture was stirred under air at room temperature for 3 h. The reaction mixture was diluted with 20 mL of EtOAc, filtered through a celite pad, washed with sat. NH₄Cl solution, and dried over anhydrous Na₂SO₄. The combined organic extracts were concentrated and the resulting residue was purified by column chromatography on silica gel to provide the desired product. The deuterated ratio was calculated from ¹H NMR analysis.

Figure. S1. Copy of ¹H NMR Spectra of H/D Exchange Experiment of 2,3,4,5,6-Pentadeuteriobenzoic Acid.



A flame-dried Schlenk test tube with a magnetic stirring bar was charged with $[Cp*RhCl_2]_2$ (3.9 mg, 6.25 µmol, 2.5 mol %), AgSbF₆ (8.6 mg, 25.0 µmol, 10 mol %), 2-deuterio-benzothiophene⁵ (0.25 mmol), Ag₂CO₃ (0.75 mmol, 3.0 equiv), K₂HPO₄ (0.50 mmol, 2.0 equiv), and 4 Å MS (100 mg) in NMP (1.0 mL). The reaction mixture was stirred for 10 min at room temperature under a N₂ atmosphere, and then heated at 150 °C in a pre-heated oil bath for 1 h. After the mixture was cooled to room temperature, diluted with 20 mL of EtOAc, filtered through a celite pad, washed with sat. NH₄Cl solution, and dried over anhydrous Na₂SO₄. The combined organic extracts were concentrated and the resulting residue was purified by column chromatography on silica gel to provide the desired product. The deuterated ratio was calculated from ¹H NMR analysis.

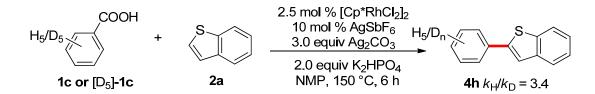


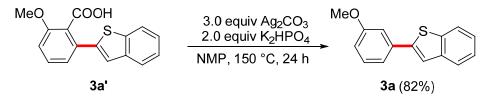
Figure. S2 Copy of ¹H NMR Spectra of H/D Exchange Experiment of 2-Deuterio-benzothiophene.

V. Kinetic Isotope Experiments

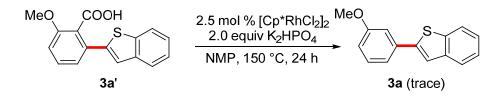
Two sets of reactions were carried out in a parallel manner. In each case benzoic acid was allowed to react with benzothiophene and 2-deuterio-benzothiophene, respectively. The sealed tubes were screw capped and heated to 150 $^{\circ}$ C (oil bath). After being stirred for 6 h, the reaction mixture was cooled to room temperature, diluted with 20 mL of EtOAc, filtered through a celite pad, washed with sat. NH₄Cl solution, and dried over anhydrous Na₂SO₄. The yield of **4h** was determined by ¹H NMR of the crude product using 1,3,5-trimethoxybenzene as internal standard.

Two sets of reactions were carried out in a parallel manner. In each case benzothiophene was allowed to react with 2,3,4,5,6-pentadeuteriobenzoic acid and benzoic acid, respectively. The sealed tubes were screw capped and heated to 150 °C

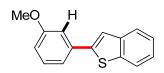
(oil bath). After being stirred for 6 h, the reaction mixture was cooled to room temperature, diluted with 20 mL of EtOAc, filtered through a celite pad, washed with sat. NH_4Cl solution, and dried over anhydrous Na_2SO_4 . The yield of **4h** was determined by ¹H NMR of the crude product using 1,3,5-trimethoxybenzene as internal standard.


VI. Competition Experiments

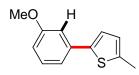
$ \begin{array}{c} $	COOH + S	2.5 mol % [C 10 mol % / 3.0 equiv / 2.0 equiv NMP, 150	$AgSbF_6$ Ag_2CO_3 K_2HPO_4	$\begin{array}{c} & & \\ & \\ R^1 \end{array} + \begin{array}{c} & \\ & \\ R^2 \end{array} + \begin{array}{c} \\ & \\ R^2 \end{array}$
	Entry	\mathbf{R}^1	R^2	Ratio of products
	1	CN	OMe	4b/3a = 1 : 2.5
	2	CN	Br	4b/4a = 1 : 1.3
	3	Br	OMe	4a/3a = 1 : 1.8


Table S6. Intermolecular Competition Experiments of Benzoic Acids

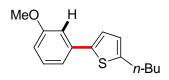
A flame-dried Schlenk test tube with a magnetic stirring bar was charged with $[Cp*RhCl_2]_2$ (3.9 mg, 6.25 µmol, 2.5 mol %), AgSbF₆ (8.6 mg, 25.0 µmol, 10 mol %), benzoic acid **A** (0.125 mmol), benzoic acid **B** (0.125 mmol), benzothiophene (0.75 mmol, 3.0 equiv), Ag₂CO₃ (207 mg, 0.75 mmol), K₂HPO₄ (87 mg, 0.50 mmol), 4 Å MS (100 mg), and NMP (1.0 mL). The reaction mixture was stirred for 10 min at room temperature under a N₂ atmosphere, and then heated at 150 °C in a pre-heated oil bath for 5 h. The reaction mixture was cooled to room temperature, diluted with 20 mL of EtOAc, filtered through a celite pad, washed with sat. NH₄Cl solution, and dried over anhydrous Na₂SO₄. The solvent was then removed under reduced pressure. The ratio was determined by ¹H NMR of the crude product.



A flame-dried Schlenk test tube with a magnetic stirring bar was charged with Ag_2CO_3 (0.75)mmol, 3.0 equiv), K₂HPO₄ (0.5)mmol, 2.0 equiv), 2-(benzothiophen-2-yl)-6-methoxybenzoic acid (0.25 mmol), 4 Å MS (100 mg), and NMP (1.0 mL) under a N₂ atmosphere. The reaction mixture was stirred for 10 min at room temperature under a N2 atmosphere, and then heated at 150 °C in a pre-heated oil bath. The reaction mixture was then cooled to ambient temperature, diluted with 20 mL of CH_2Cl_2 , filtered through a celite pad, and washed with 10-20 mL of CH_2Cl_2 . The combined organic extracts were concentrated and the resulting residue was purified by column chromatography on silica gel to provide the desired product.


A flame-dried Schlenk test tube with a magnetic stirring bar was charged with $[Cp*RhCl_2]_2$ (6.25 µmol, 2.5 mol %), K_2HPO_4 (0.5 mmol, 2.0 equiv), 2-(benzothiophen-2-yl)-6-methoxybenzoic acid (0.25 mmol), 4 Å MS (100 mg), and NMP (1.0 mL) under a N₂ atmosphere. The reaction mixture was stirred for 10 min at room temperature under a N₂ atmosphere, and then heated at 150 °C in a pre-heated oil bath. The reaction mixture was then cooled to ambient temperature, diluted with 20 mL of CH₂Cl₂, filtered through a celite pad, and washed with 10-20 mL of CH₂Cl₂. The combined organic extracts were concentrated and the resulting residue was purified by column chromatography on silica gel to provide the desired product.

VIII. Experimental Data for the Described Substances

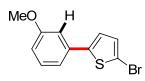

2-(3-Methoxyphenyl)benzothiophene (3a)⁶

Purification via silica gel column chromatography (petroleum ether/EtOAc = 50/1 v/v) afforded the desired product as a yellow solid (49.5 mg, 83%). M.p.: 94-96 °C. ¹H NMR (400 MHz, CDCl₃): δ = 3.80 (s, 3H), 6.81 (d, *J* = 7.6 Hz, 1H), 7.17 (s, 1H), 7.21-7.29 (m, 4H), 7.46 (s, 1H), 7.68 (d, *J* = 7.6 Hz, 1H), 7.74 (d, *J* = 7.6 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 55.5, 112.3, 113.9, 119.2, 119.8, 122.4, 123.7, 124.5, 124.7, 130.1, 135.8, 139.6, 140.7, 144.2, 160.1 ppm. HRMS (ESI⁺): calcd for C₁₅H₁₃OS [M+H]⁺ 241.0687, found 241.0681.

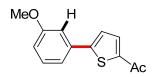
2-(3-Methoxyphenyl)-5-methylthiophene (3b)


Purification via silica gel column chromatography (petroleum ether/EtOAc = 100/1 v/v) afforded the desired product as yellow oil (29.5 mg, 58%). ¹H NMR (400 MHz, CDCl₃): δ = 2.50 (s, 3H), 3.84 (s, 3H), 6.72-6.73 (m, 1H), 6.78 (dd, *J* = 8.0 Hz, 2.0 Hz, 1H), 7.08-7.09 (m, 1H), 7.10 (d, *J* = 3.6 Hz, 1H), 7.14 (d, *J* = 7.6 Hz, 1H), 7.25 (t, *J* = 8.0 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 15.6, 55.4, 111.3, 112.6, 118.3, 123.3, 126.3, 129.9, 136.2, 139.8, 141.9, 160.0 ppm. HRMS (ESI⁺): calcd for C₁₂H₁₃OS [M+H]⁺ 205.0687, found 205.0682.

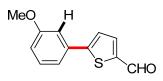
2-Butyl-5-(3-methoxyphenyl)thiophene (3c)


Purification via silica gel column chromatography (petroleum ether/EtOAc = 50/1 v/v)

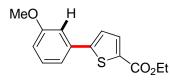
afforded the desired product as yellow oil (42.0 mg, 68%). ¹H NMR (400 MHz, CDCl₃): $\delta = 0.93$ (t, J = 7.4 Hz, 3H), 1.37-1.47 (m, 2H), 1.65-1.72 (m, 2H), 2.80 (t, J = 7.6 Hz, 2H), 3.84 (s, 3H), 6.73 (d, J = 3.6 Hz, 1H), 6.78 (dd, J = 8.0 Hz, 1.6 Hz, 1H), 7.09 (s, 1H), 7.11 (d, J = 3.6 Hz, 1H), 7.15 (d, J = 7.6 Hz, 1H), 7.24-7.28 (m, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 14.0$, 22.3, 30.1, 33.9, 55.4, 111.2, 112.6, 118.3, 123.0, 125.1, 129.9, 136.2, 141.6, 145.9, 160.0 ppm. HRMS (ESI⁺): calcd for C₁₅H₁₉OS [M+H]⁺ 247.1157, found 247.1162.


2-Chloro-5-(3-methoxyphenyl)thiophene (3d)

Purification via silica gel column chromatography (petroleum ether/EtOAc = 100/1 v/v) afforded the desired product as yellow oil (37.3 mg, 67%). ¹H NMR (400 MHz, CDCl₃): δ = 3.88 (s, 3H), 6.87 (dd, *J* = 8.4 Hz, 1.6 Hz, 1H), 6.92 (d, *J* = 4.0 Hz, 1H), 7.07 (s, 1H), 7.10 (d, *J* = 3.6 Hz, 1H), 7.13 (d, *J* = 7.6 Hz, 1H), 7.31 (t, *J* = 8.0 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 55.5, 111.4, 113.4, 118.3, 122.6, 127.2, 129.3, 130.2, 135.1, 142.9, 160.1 ppm. HRMS (ESI⁺): calcd for C₁₁H₁₀ClOS [M+H]⁺ 225.0141, found 225.0140.

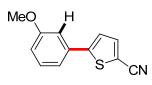

2-Bromo-5-(3-methoxyphenyl)thiophene (3e)

Purification via silica gel column chromatography (petroleum ether/EtOAc = 100/1 v/v) afforded the desired product as a yellow oil (38.5 mg, 57%). ¹H NMR (400 MHz, CDCl₃): δ = 3.87 (s, 3H), 6.86 (dd, *J* = 8.0 Hz, 2.0 Hz, 1H), 7.04-7.07 (m, 3H), 7.12-7.14 (m, 1H), 7.29 (t, *J* = 8.0 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 55.5, 111.5, 111.6, 113.4, 118.3, 123.6, 130.2, 130.9, 135.1, 145.8, 160.1 ppm. HRMS (ESI⁺): calcd for C₁₁H₁₀BrOS [M+H]⁺ 268.9636, found 268.9636.

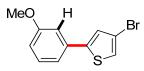

1-(5-(3-Methoxyphenyl)thiophen-2-yl)ethanone (3f)

Purification via silica gel column chromatography (petroleum ether/EtOAc = 30/1 v/v) afforded the desired product as a yellow solid (37.0 mg, 64%). M.p.: 76-78 °C. ¹H NMR (400 MHz, CDCl₃): δ = 2.57 (s, 3H), 3.86 (s, 3H), 6.91 (dd, *J* = 8.4 Hz, 1.6 Hz, 1H), 7.17 (s, 1H), 7.23-7.26 (m, 1H), 7.31-7.35 (m, 2H), 7.65 (d, *J* = 4.0 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 26.7, 55.5, 112.0, 114.7, 118.9, 124.2, 130.3, 133.5, 134.7, 143.3, 152.7, 160.2, 190.8 ppm. HRMS (ESI⁺): calcd for C₁₃H₁₂NaO₂OS [M+Na]⁺ 255.0456, found 255.0450.

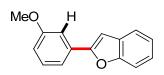
5-(3-Methoxyphenyl)thiophene-2-carbaldehyde (3g)


Purification via silica gel column chromatography (petroleum ether/EtOAc = 30/1 v/v) afforded the desired product as yellow oil (30.0 mg, 55%). ¹H NMR (400 MHz, CDCl₃): δ = 3.79 (s, 3H), 6.86 (dd, *J* = 8.0 Hz, 2.8 Hz, 1H), 7.11 (t, *J* = 2.0 Hz, 1H), 7.18-7.20 (m, 1H), 7.25 (t, *J* = 8.0 Hz, 1H), 7.32 (d, *J* = 4.0 Hz, 1H), 7.66 (d, *J* = 4.0 Hz, 1H), 9.82 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 55.6, 112.2, 115.1, 119.1, 124.4, 130.4, 134.5, 137.4, 142.7, 154.3, 160.3, 182.9 ppm. HRMS (ESI⁺): calcd for C₁₂H₁₀NaO₂S [M+Na]⁺ 241.0299, found 241.0302.

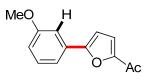
Ethyl 5-(3-methoxyphenyl)thiophene-2-carboxylate (3h)


Purification via silica gel column chromatography (petroleum ether/EtOAc = 30/1 v/v) afforded the desired product as yellow oil (49.3 mg, 75%). ¹H NMR (400 MHz,

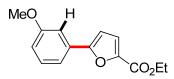
CDCl₃): $\delta = 1.37$ (t, J = 7.2 Hz, 3H), 3.86 (s, 3H), 4.34 (q, J = 7.2 Hz, 2H), 6.89 (dd, J = 8.0 Hz, 2.0 Hz, 1H), 7.16 (s, 1H), 7.22 (d, J = 7.6 Hz, 1H), 7.27 (d, J = 3.6 Hz, 1H), 7.30 (t, J = 8.0 Hz, 1H), 7.75 (d, J = 4.0 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 14.5$, 55.5, 61.3, 111.9, 114.4, 118.9, 123.9, 130.3, 132.7, 134.3, 134.9, 151.0, 160.2, 162.4 ppm. HRMS (ESI⁺): calcd for C₁₄H₁₄NaO₃S [M+Na]⁺ 285.0561, found 285.0561.


5-(3-Methoxyphenyl)thiophene-2-carbonitrile (3i)

Purification via silica gel column chromatography (petroleum ether/EtOAc = 30/1 v/v) afforded the desired product as a yellow solid (44.1 mg, 82%). M.p.: 55-57 °C. ¹H NMR (400 MHz, CDCl₃): δ = 3.86 (s, 3H), 6.93 (dd, *J* = 8.0 Hz, 2.0 Hz, 1H), 7.11 (s, 1H), 7.17 (dd, *J* = 7.6 Hz, 0.4 Hz, 1H), 7.26-7.27 (m, 1H), 7.33 (t, *J* = 8.0 Hz, 1H), 7.58 (d, *J* = 4.0 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 55.5, 108.4, 112.3, 114.5, 114.9, 119.1, 123.6, 130.5, 133.6, 138.4, 151.8, 160.3 ppm. HRMS (ESI⁺): calcd for C₁₂H₉NNaOS [M+Na]⁺ 238.0303, found 238.0302.

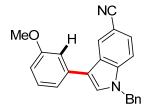

4-Bromo-2-(3-methoxyphenyl)thiophene (3j)

Purification via silica gel column chromatography (petroleum ether/EtOAc = 100/1 v/v) afforded the desired product as yellow oil (43.8 mg, 65%). ¹H NMR (400 MHz, CDCl₃): δ = 3.84 (s, 3H), 6.85 (dd, *J* = 8.0 Hz, 1.6 Hz, 1H), 7.07 (s, 1H), 7.13-7.17 (m, 2H), 7.20 (s, 1H), 7.28 (t, *J* = 7.8 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 55.5, 110.6, 111.5, 113.9, 118.4, 122.1, 126.0, 130.2, 134.6, 145.4, 160.1 ppm. HRMS (ESI⁺): calcd for C₁₁H₁₀BrOS [M+H]⁺ 268.9636, found 268.9636.

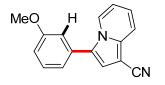

2-(3-Methoxyphenyl)benzofuran (3k)

Purification via silica gel column chromatography (petroleum ether/EtOAc = 50/1 v/v) afforded the desired product as yellow oil (31.3 mg, 56%). ¹H NMR (400 MHz, CDCl₃): δ = 3.89 (s, 3H), 6.89 (dd, *J* = 8.4 Hz, 1.6 Hz, 1H), 7.02 (s, 1H), 7.21 (t, *J* = 7.4 Hz, 1H), 7.26-7.30 (m, 1H), 7.33 (t, *J* = 7.8 Hz, 1H), 7.41 (s, 1H), 7.44 (d, *J* = 8.0 Hz, 1H), 7.57 (d, *J* = 7.2 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 55.5, 101.8, 110.3, 111.3, 114.6, 117.7, 121.1, 123.1, 124.5, 129.3, 130.0, 131.9, 155.0, 155.9, 160.1 ppm. HRMS (ESI⁺): calcd for C₁₅H₁₃O₂ [M+H]⁺ 225.0916, found 225.0916.

1-(5-(3-Methoxyphenyl)furan-2-yl)ethanone (3l)

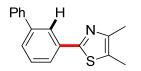

Purification via silica gel column chromatography (petroleum ether/EtOAc = 50/1 v/v) afforded the desired product as yellow oil (30.8 mg, 57%). ¹H NMR (400 MHz, CDCl₃): δ = 2.52 (s, 3H), 3.87 (s, 3H), 6.76 (d, *J* = 3.6 Hz, 1H), 6.91 (d, *J* = 7.6 Hz, 1H), 7.25-7.26 (m, 1H), 7.32 (s, 1H), 7.34-7.39 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 26.1, 55.6, 107.9, 110.5, 115.1, 117.7, 119.5, 130.2, 130.8, 152.1, 157.6, 160.2, 186.6 ppm. HRMS (ESI⁺): calcd for C₁₃H₁₂NaO₃ [M+Na]⁺ 239.0684, found 239.0685.

Ethyl 5-(3-methoxyphenyl)furan-2-carboxylate (3m)

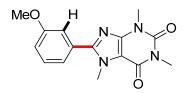

Purification via silica gel column chromatography (petroleum ether/EtOAc = 25/1 v/v) afforded the desired product as yellow oil (46.1 mg, 75%). ¹H NMR (400 MHz,

CDCl₃): $\delta = 1.38$ (t, J = 7.0 Hz, 3H), 3.87 (s, 3H), 4.36 (q, J = 7.0 Hz, 2H), 6.72 (d, J = 3.6 Hz, 1H), 6.88 (dd, J = 8.0 Hz, 1.6 Hz, 1H), 7.22 (d, J = 3.6 Hz, 1H), 7.30-7.32 (m, 2H), 7.34 (t, J = 7.2 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 14.5$, 55.6, 61.0, 107.3, 110.2, 115.0, 117.6, 119.9, 130.0, 131.0, 144.1, 157.5, 159.0, 160.1 ppm. HRMS (ESI⁺): calcd for C₁₄H₁₄NaO₄ [M+Na]⁺ 269.0790, found 269.0792.

1-Benzyl-3-(3-methoxyphenyl)-1*H*-indole-5-carbonitrile (3n)

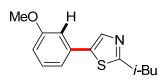

Following the general procedure, $[Cp*RhCl_2]_2$ (7.8 mg, 5.0 mol %) and AgSbF₆ (17.2 mg, 20 mol %) was added, and the reaction mixture was heated at 160 °C for 48 h. Purification via silica gel column chromatography (petroleum ether/EtOAc = 15/1 v/v) afforded the desired product as a yellow solid (38.0 mg, 45%). M.p.: 54-56 °C. ¹H NMR (400 MHz, CDCl₃): δ = 3.88 (s, 3H), 5.38 (s, 2H), 6.87 (dd, *J* = 8.4 Hz, 2.0 Hz, 1H), 7.12 (s, 1H), 7.13-7.20 (m, 3H), 7.31-7.41 (m, 6H), 7.44 (dd, *J* = 8.8 Hz, 1.2 Hz, 1H), 8.28 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 50.6, 55.5, 103.5, 111.1, 112.2, 113.5, 118.6, 120.2, 120.8, 125.3, 126.0, 126.5, 127.0, 128.1, 128.4, 129.2, 130.2, 135.4, 136.2, 138.6, 160.3 ppm. HRMS (ESI⁺): calcd for C₂₃H₁₉N₂O [M+H]⁺ 339.1497, found 339.1494.

3-(3-Methoxyphenyl)indolizine-1-carbonitrile (30)

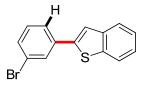

Following the general procedure, $[Cp*RhCl_2]_2$ (7.8 mg, 5.0 mol %) and AgSbF₆ (17.2 mg, 20 mol %) was added, and the reaction mixture was heated at 160 °C for 48 h. Purification via silica gel column chromatography (petroleum ether/EtOAc = 10/1 v/v) afforded the desired product as yellow oil (32.2 mg, 52%). ¹H NMR (400 MHz,

CDCl₃): δ = 3.87 (s, 3H), 6.73 (t, *J* = 6.8 Hz, 1H), 6.98 (d, *J* = 8.0 Hz, 1H), 7.04-7.06 (m, 2H), 7.10-7.12 (m, 2H), 7.41 (t, *J* = 8.0 Hz, 1H), 7.69 (d, *J* = 8.8 Hz, 1H), 8.31 (d, *J* = 7.2 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 55.6, 82.4, 113.3, 114.1, 114.6, 116.5, 117.1, 118.4, 121.0, 122.5, 124.1, 127.0, 130.5, 131.6, 138.6, 160.3 ppm. HRMS (ESI⁺): calcd for C₁₆H₁₂N₂NaO [M+Na]⁺ 271.0847, found 271.0846.

2-([1,1'-Biphenyl]-3-yl)-4,5-dimethylthiazole (3p)

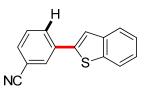

Following the general procedure, $[Cp*RhCl_2]_2$ (7.8 mg, 5.0 mol %) and AgSbF₆ (17.2 mg, 20 mol %) was added, and the reaction mixture was heated at 160 °C for 48 h. Purification via silica gel column chromatography (petroleum ether/EtOAc = 20/1 v/v) afforded the desired product as yellow oil (35.1 mg, 53%). ¹H NMR (400 MHz, CDCl₃): δ = 2.40 (s, 3H), 2.41 (s, 3H), 7.35-7.39 (m, 1H), 7.44-7.49 (m, 3H), 7.59 (d, J = 8.0 Hz, 1H), 7.63-7.66 (m, 2H), 7.83 (d, J = 7.6 Hz, 1H), 8.09 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 11.7, 15.0, 125.0, 125.2, 126.8, 127.4, 127.7, 128.3, 128.9, 129.4, 134.6, 140.8, 142.1, 149.6, 163.4 ppm. HRMS (ESI⁺): calcd for C₁₇H₁₆NS [M+H]⁺ 266.1003, found 266.0999.

8-(3-Methoxyphenyl)-1,3,7-trimethyl-1*H*-purine-2,6(3*H*,7*H*)-dione (3q)

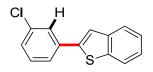

Following the general procedure, $[Cp*RhCl_2]_2$ (7.8 mg, 5.0 mol %) and AgSbF₆ (17.2 mg, 20 mol %) was added, and the reaction mixture was heated at 160 °C for 48 h. Purification via silica gel column chromatography (petroleum ether/EtOAc = 3/1 v/v) afforded the desired product as a yellow solid (41.9 mg, 56%). M.p.: 136-138 °C. ¹H NMR (400 MHz, CDCl₃): δ = 3.44 (s, 3H), 3.63 (s, 3H), 3.88 (s, 3H), 4.06 (s, 3H), 7.05 (d, *J* = 8.0 Hz, 1H), 7.22-7.27 (m, 2H), 7.42 (t, *J* = 7.6 Hz, 1H) ppm. ¹³C NMR

(100 MHz, CDCl₃): δ = 28.1, 29.9, 34.0, 55.6, 108.7, 115.0, 116.3, 121.5, 129.7, 130.1, 148.4, 151.9, 152.1, 155.7, 160.0 ppm. HRMS (ESI⁺): calcd for C₁₅H₁₆N₄NaO₃ [M+Na]⁺ 323.1120, found 323.1117.

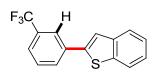
2-iso-Butyl-5-(3-methoxyphenyl)thiazole (3r)


Following the general procedure, $[Cp*RhCl_2]_2$ (7.8 mg, 5.0 mol %) and AgSbF₆ (17.2 mg, 20 mol %) was added, and the reaction mixture was heated at 160 °C for 48 h. Purification via silica gel column chromatography (petroleum ether/EtOAc = 20/1 v/v) afforded the desired product as yellow oil (35.2 mg, 57%). ¹H NMR (400 MHz, CDCl₃): $\delta = 1.04$ (d, J = 6.8 Hz, 6H), 2.13-2.20 (m, 1H), 2.89 (d, J = 6.8 Hz, 2H), 3.87 (s, 3H), 6.87 (d, J = 8.4 Hz, 1H), 7.08 (s, 1H), 7.14 (d, J = 7.6 Hz, 1H), 7.30 (t, J = 8.0 Hz, 1H), 7.84 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 22.4$, 30.0, 42.7, 55.5, 112.4, 113.6, 119.3, 130.2, 133.1, 137.9, 138.5, 160.1, 169.9 ppm. HRMS (ESI⁺): calcd for C₁₄H₁₈NOS [M+H]⁺ 248.1109, found 248.1108.

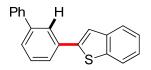
2-(3-Bromophenyl)benzothiophene (4a)


Following the general procedure, $[Cp*RhCl_2]_2$ (7.8 mg, 5.0 mol %) and AgSbF₆ (17.2 mg, 20 mol %) was added, and the reaction mixture was heated at 150 °C for 48 h. Purification via silica gel column chromatography (petroleum ether/EtOAc = 50/1 v/v) afforded the desired product as a white solid (45.5 mg, 63%). M.p.: 86-88 °C ¹H NMR (400 MHz, CDCl₃): δ = 7.27-7.39 (m, 3H), 7.46 (d, *J* = 8.0 Hz, 1H), 7.55 (s, 1H), 7.62 (d, *J* = 7.6 Hz, 1H), 7.77 (d, *J* = 7.2 Hz, 1H), 7.83 (d, *J* = 7.6 Hz, 1H), 7.87 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 120.6, 122.5, 123.2, 124.0, 124.85, 124.89, 125.3, 129.1, 129.5, 130.6, 131.2, 136.5, 140.6, 142.5 ppm. HRMS (ESI⁺):

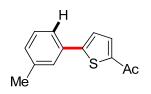
calcd for $C_{14}H_{10}BrS[M+H]^+$ 288.9687, found 288.9684.


3-(Benzothiophen-2-yl)benzonitrile (4b)

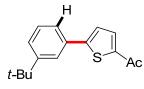
Following the general procedure, $[Cp*RhCl_2]_2$ (7.8 mg, 5.0 mol %) and AgSbF₆ (17.2 mg, 20 mol %) was added, and the reaction mixture was heated at 150 °C for 48 h. Purification via silica gel column chromatography (petroleum ether/EtOAc = 30/1 v/v) afforded the desired product as a yellow solid (32.1 mg, 55%). M.p.: 150-152 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.35-7.42 (m, 2H), 7.52 (t, *J* = 7.8 Hz, 1H), 7.61-7.63 (m, 2H), 7.81 (dd, *J* = 6.4 Hz, 2.4 Hz, 1H), 7.85 (d, *J* = 8.4 Hz, 1H), 7.91 (d, *J* = 8.0 Hz, 1H), 7.99 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 113.4, 118.6, 121.2, 122.5, 124.2, 125.1, 125.3, 129.9, 123.0, 130.7, 131.5, 135.8, 139.8, 140.5, 141.4 ppm. HRMS (ESI⁺): calcd for C₁₅H₉NNaS [M+Na]⁺ 258.0353, found 258.0353.


2-(3-Chlorophenyl)benzothiophene (4c)

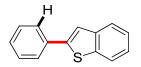
Following the general procedure, $[Cp*RhCl_2]_2$ (7.8 mg, 5.0 mol %) and AgSbF₆ (17.2 mg, 20 mol %) was added, and the reaction mixture was heated at 150 °C for 48 h. Purification via silica gel column chromatography (petroleum ether/EtOAc = 50/1 v/v) afforded the desired product as a white solid (37.1 mg, 61%). M.p.: 116-118 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.22-7.32 (m, 4H), 7.48 (s, 1H), 7.50 (td, *J* = 7.2 Hz, 1.6 Hz, 1H), 7.63-7.64 (m, 1H), 7.70 (d, *J* = 7.2 Hz, 1H), 7.75 (d, *J* = 7.6 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 120.5, 122.5, 123.9, 124.78, 124.85, 124.88, 126.6, 128.3, 130.3, 135.1, 136.3, 139.8, 140.6, 142.6 ppm. HRMS (ESI⁺): calcd for C₁₄H₁₀CIS [M+H]⁺ 245.0192, found 245.0195.


2-(3-(Trifluoromethyl)phenyl)benzothiophene (4d)

Following the general procedure, $[Cp*RhCl_2]_2$ (7.8 mg, 5.0 mol %) and AgSbF₆ (17.2 mg, 20 mol %) was added, and the reaction mixture was heated at 150 °C for 48 h. Purification via silica gel column chromatography (petroleum ether/EtOAc = 100/1 v/v) afforded the desired product as a white solid (47.5 mg, 68%). M.p.: 102-104 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.25-7.32 (m, 2H), 7.44-7.52 (m, 2H), 7.53 (s, 1H), 7.71 (d, *J* = 8.4 Hz, 1H), 7.76 (t, *J* = 7.6 Hz, 2H), 7.87 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 120.8, 122.5, 122.8, 123.2, 123.3, 124.0, 124.86, 124.89, 124.94, 125.0, 125.5, 129.6, 129.8, 131.4, 131.8, 135.3, 139.8, 140.6, 142.5 ppm. HRMS (ESI⁺): calcd for C₁₅H₁₀F₃S [M+H]⁺ 279.0455, found 279.0451.

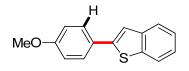

2-([1,1'-Biphenyl]-3-yl)benzothiophene (4e)

Following the general procedure, $[Cp*RhCl_2]_2$ (7.8 mg, 5.0 mol %) and AgSbF₆ (17.2 mg, 20 mol %) was added, and the reaction mixture was heated at 150 °C for 48 h. Purification via silica gel column chromatography (petroleum ether/EtOAc = 100/1 v/v) afforded the desired product as a white solid (37.5 mg, 52%). M.p.: 116-118 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.30-7.41 (m, 3H), 7.46-7.51 (m, 3H), 7.55 (d, *J* = 7.6 Hz, 1H), 7.61 (s, 1H), 7.64 (d, *J* = 7.2 Hz, 2H), 7.69 (d, *J* = 7.6 Hz, 1H), 7.78 (d, *J* = 7.2 Hz, 1H), 7.83(d, *J* = 7.6 Hz, 1H), 7.92 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 119.9, 122.4, 123.8, 124.6, 124.7, 125.6, 127.3, 127.4, 127.8, 129.0, 129.5, 135.0, 139.7, 140.8, 140.9, 142.2, 144.3 ppm. HRMS (ESI⁺): calcd for C₂₀H₁₅S [M+H]⁺ 287.0894, found 287.0895.

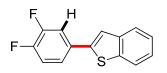

1-(5-(m-Tolyl)thiophen-2-yl)ethanone (4f)

Following the general procedure, $[Cp*RhCl_2]_2$ (7.8 mg, 5.0 mol %) and AgSbF₆ (17.2 mg, 20 mol %) was added, and the reaction mixture was heated at 150 °C for 48 h. Purification via silica gel column chromatography (petroleum ether/EtOAc = 30/1 v/v) afforded the desired product as a yellow solid (29.6 mg, 55%). M.p.: 90-92 °C. ¹H NMR (400 MHz, CDCl₃): δ = 2.40 (s, 3H), 2.57 (s, 3H), 7.18 (d, *J* = 7.6 Hz, 1H), 7.29-7.33 (m, 2H), 7.45-7.47 (m, 2H), 7.65 (d, *J* = 4.0 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 21.6, 26.7, 123.6, 123.9, 127.1, 129.2, 130.0, 133.4, 133.6, 139.0, 143.1, 153.2, 190.8 ppm. HRMS (ESI⁺): calcd for C₁₃H₁₂NaOS [M+Na]⁺ 239.0507, found 239.0506.

1-(5-(3-(*tert*-Butyl)phenyl)thiophen-2-yl)ethanone (4g)

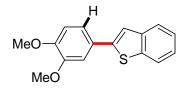

Following the general procedure, $[Cp*RhCl_2]_2$ (7.8 mg, 5.0 mol %) and AgSbF₆ (17.2 mg, 20 mol %) was added, and the reaction mixture was heated at 150 °C for 48 h. Purification via silica gel column chromatography (petroleum ether/EtOAc = 30/1 v/v) afforded the desired product as a yellow solid (32.9 mg, 51%). M.p.: 100-102 °C. ¹H NMR (400 MHz, CDCl₃): δ = 1.29 (s, 9H), 2.50 (s, 3H), 7.24-7.26 (m, 1H), 7.28 (d, *J* = 7.6 Hz, 1H), 7.33 (d, *J* = 8.0 Hz, 1H), 7.39 (d, *J* = 7.6 Hz, 1H), 7.59-7.60 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 26.7, 31.4, 34.9, 123.6, 123.7, 123.9, 126.4, 129.0, 133.2, 133.6, 143.0, 152.3, 153.7, 190.8 ppm. HRMS (ESI⁺): calcd for C₁₈H₁₉NaOS [M+Na]⁺ 281.0976, found 281.0978.

2-Phenylbenzothiophene (4h)

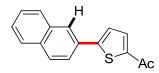

Following the general procedure, $[Cp*RhCl_2]_2$ (7.8 mg, 5.0 mol %) and AgSbF₆ (17.2 mg, 20 mol %) was added, and the reaction mixture was heated at 150 °C for 48 h.

Purification via silica gel column chromatography (petroleum ether/EtOAc = 50/1 v/v) afforded the desired product as a yellow solid (35.8 mg, 68%). M.p.: 166-168 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.29-7.35 (m, 3H), 7.41 (t, *J* = 7.0 Hz, 2H), 7.55 (s, 1H), 7.71 (d, *J* = 7.2 Hz, 2H), 7.76 (d, *J* = 7.6 Hz, 1H), 7.82 (d, *J* = 7.6 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 119.6, 122.4, 123.7, 124.5, 124.7, 126.7, 128.4, 129.1, 134.5, 139.7, 140.9, 144.4 ppm. HRMS (ESI⁺): calcd for C₁₄H₁₀NaS [M+Na]⁺ 233.0401, found 233.0404.

2-(4-Methoxyphenyl)benzothiophene (4i)


Following the general procedure, $[Cp*RhCl_2]_2$ (7.8 mg, 5.0 mol %) and AgSbF₆ (17.2 mg, 20 mol %) was added, and the reaction mixture was heated at 150 °C for 48 h. Purification via silica gel column chromatography (petroleum ether/EtOAc = 50/1 v/v) afforded the desired product as a yellow solid (38.0 mg, 63%). M.p.: 112-114 °C. ¹H NMR (400 MHz, CDCl₃): δ = 3.85 (s, 3H), 6.94 (d, *J* = 8.8 Hz, 2H), 7.25-7.35 (m, 2H), 7.42 (s, 1H), 7.63 (d, *J* = 8.8 Hz, 2H), 7.72 (d, *J* = 8.0 Hz, 1H), 7.79 (d, *J* = 8.0 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 55.5. 114.5, 118.4, 122.3, 123.4, 124.1, 124.6, 127.2, 127.9, 139.3, 141.0, 144.3, 160.0 ppm. HRMS (ESI⁺): calcd for C₁₅H₁₃OS [M+H]⁺ 241.0687, found 241.0681.

2-(3,4-Difluorophenyl)benzothiophene (4j)

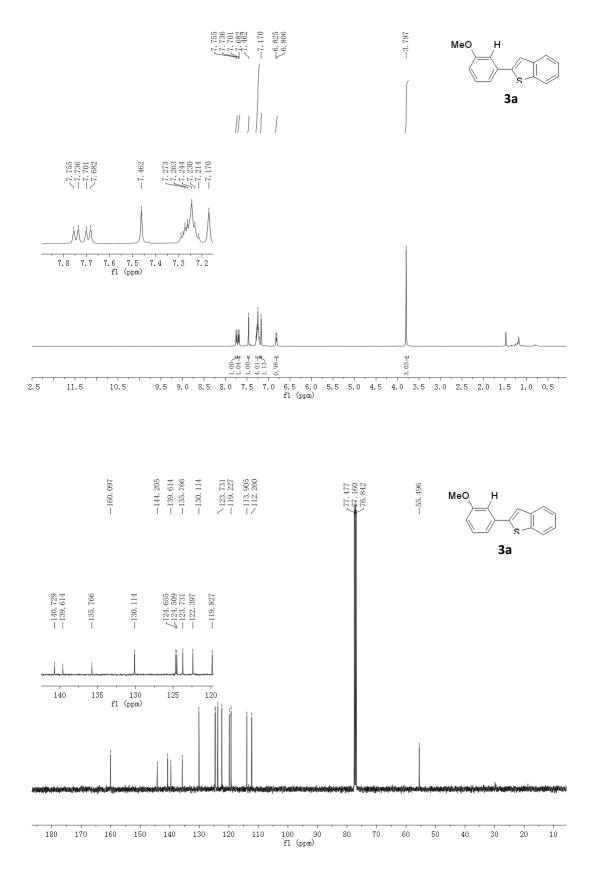

Following the general procedure, $[Cp*RhCl_2]_2$ (7.8 mg, 5.0 mol %) and AgSbF₆ (17.2 mg, 20 mol %) was added, and the reaction mixture was heated at 150 °C for 48 h. Purification via silica gel column chromatography (petroleum ether/EtOAc = 100/1 v/v) afforded the desired product as a white solid (44.2 mg, 72%). M.p.: 136-138 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.18-7.23 (m, 1H), 7.32-7.43(m, 3H), 7.48-7.53 (m, 2H), 7.77 (d, *J* = 7.6 Hz, 1H), 7.82 (d, *J* = 7.6 Hz, 1H) ppm. ¹³C NMR (100 MHz,

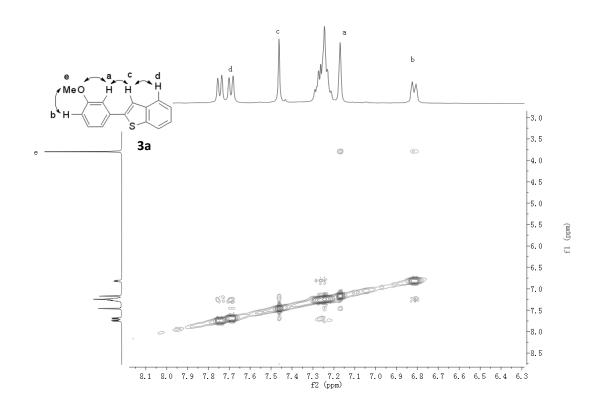
CDCl₃): δ = 115.5, 115.7, 117.9, 118.1, 120.4, 122.4, 122.69, 122.73, 122.79, 123.9, 124.90, 124.92, 131.63, 131.67, 131.69, 131.74, 139.7, 140.6, 141.9 ppm. HRMS (ESI⁺): calcd for C₁₄H₈F₂NaS [M+Na]⁺ 269.0212, found 269.0213.

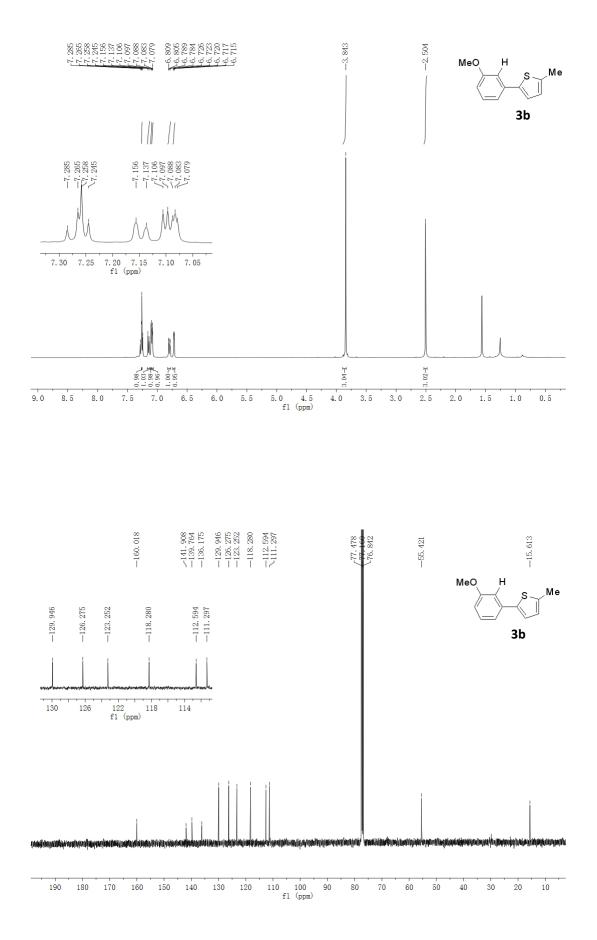
2-(3,4-Dimethoxyphenyl)benzothiophene (4k)

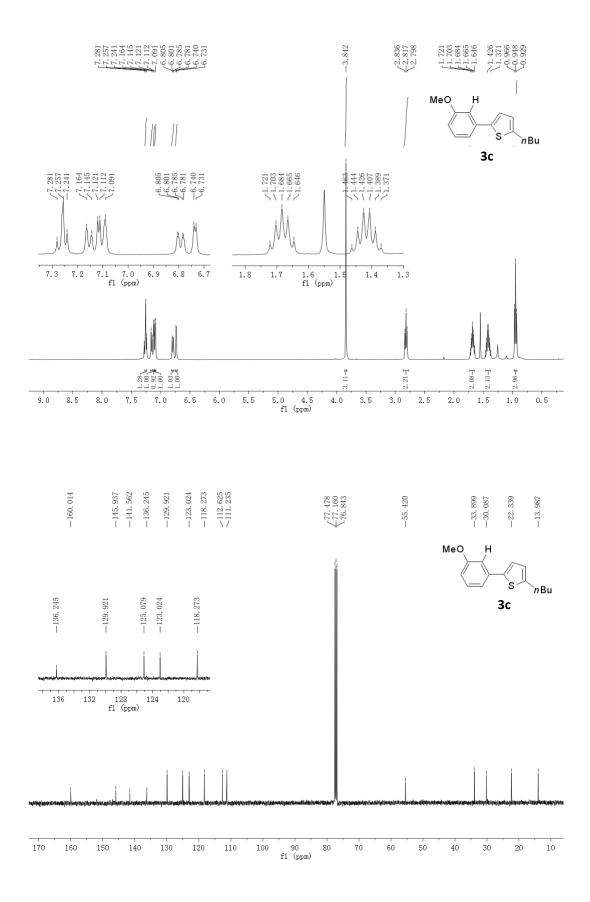
Following the general procedure, $[Cp*RhCl_2]_2$ (7.8 mg, 5.0 mol %) and AgSbF₆ (17.2 mg, 20 mol %) was added, and the reaction mixture was heated at 150 °C for 48 h. Purification via silica gel column chromatography (petroleum ether/EtOAc = 30/1 v/v) afforded the desired product as a yellow solid (47.9 mg, 71%). M.p.: 132-134 °C. ¹H NMR (400 MHz, CDCl₃): δ = 3.93 (s, 3H), 3.98 (s, 3H), 6.91 (d, *J* = 8.0 Hz, 1H), 7.21 (d, *J* = 2.0 Hz, 1H), 7.27-7.36 (m, 3H), 7.44 (s, 1H), 7.74 (d, *J* = 7.6 Hz, 1H), 7.80 (d, *J* = 7.6 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 56.1, 109.8, 111.6, 118.6, 119.4, 122.3, 123.4, 124.2, 124.6, 127.5, 139.3, 140.9, 144.4, 149.3, 149.5 ppm. HRMS (ESI⁺): calcd for C₁₆H₁₅O₂S [M+H]⁺ 271.0793, found 271.0793.

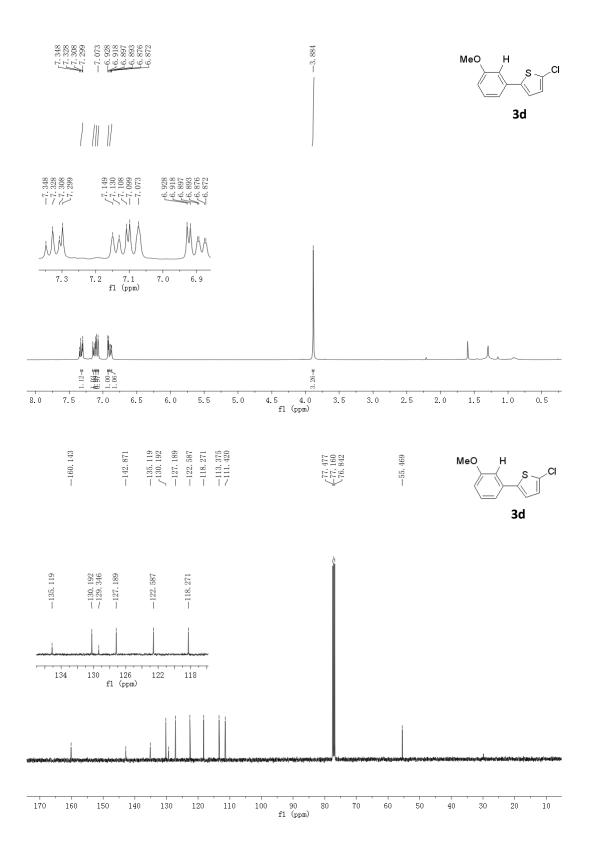
1-(5-(Naphthalen-2-yl)thiophen-2-yl)ethanone (4l)

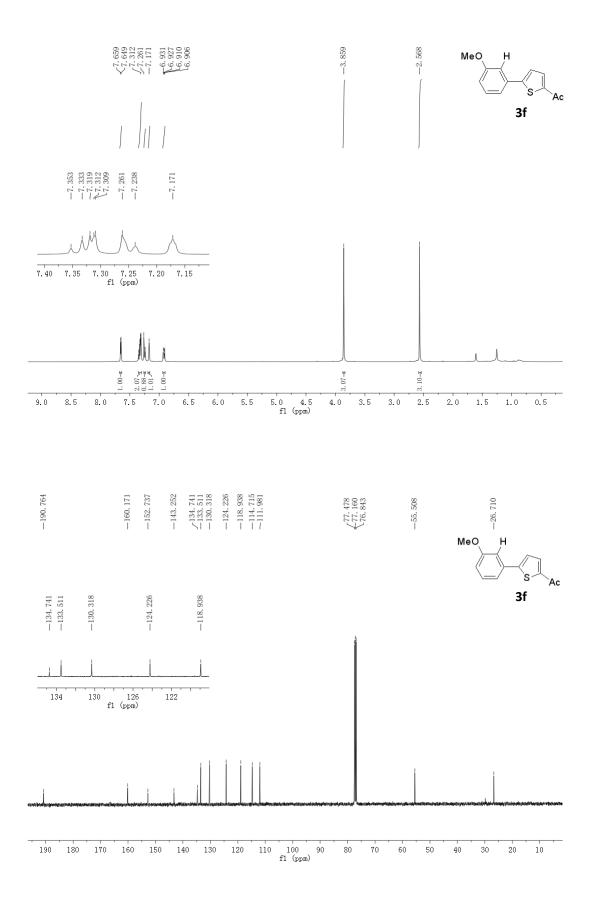

Following the general procedure, $[Cp*RhCl_2]_2$ (7.8 mg, 5.0 mol %) and AgSbF₆ (17.2 mg, 20 mol %) was added, and the reaction mixture was heated at 150 °C for 48 h. Purification via silica gel column chromatography (petroleum ether/EtOAc = 30/1 v/v) afforded the desired product as a yellow solid (38.8 mg, 62%). M.p.: 146-148 °C. ¹H NMR (400 MHz, CDCl₃): δ = 2.60 (s, 3H), 7.45 (d, *J* = 4.0 Hz, 1H), 7.49-7.55 (m, 2H), 7.70 (d, *J* = 3.6 Hz, 1H), 7.75 (dd, *J* = 7.6 Hz, 1.2 Hz, 1H), 7.83-7.90 (m, 3H), 8.14 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 26.8, 124.2, 124.3, 125.5, 127.0, 127.1, 127.9, 128.5, 129.1, 130.8, 133.6, 133.7, 143.4, 149.8, 153.0, 190.7 ppm.

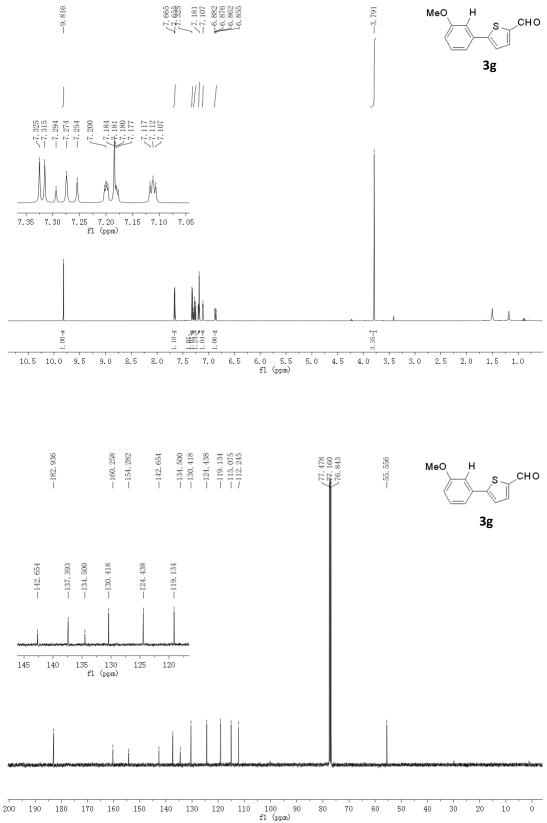

HRMS (ESI⁺): calcd for $C_{16}H_{12}NaOS [M+Na]^+ 275.0507$, found 275.0508.

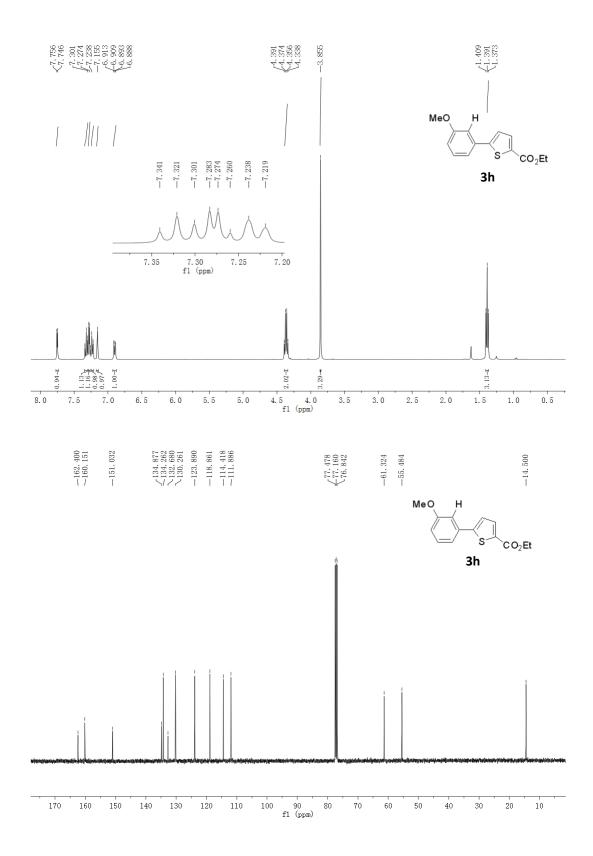

IX. References

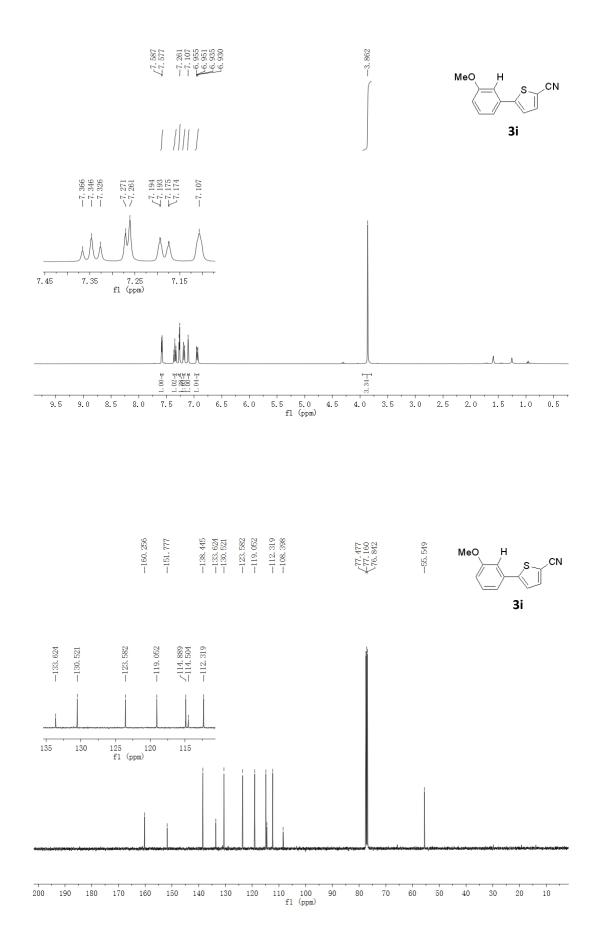

- (1) (a) Kang, J. W.; Moseley, K.; Maitlis, P. M. J. Am. Chem. Soc. 1969, 91, 5970. (b)
 Fujita, K.; Takahashi, Y.; Owaki, M.; Yamamoto, K.; Yamaguchi, R. Org. Lett. 2004, 6, 2785.
- (2) Choy, P. Y.; Lau, C. P.; Kwong, F. Y. J. Org. Chem. 2011, 76, 80.
- (3) Yang, Y.; Cheng, K.; Zhang, Y. Org. Lett. 2009, 11, 5606.
- (4) Ackermann, L.; Lygin, A. V.; Hofmann, N. Angew. Chem., Int. Ed. 2011, 50, 6379.
- (5) Kuhl, N.; Hopkinson, M. N.; Glorius, F. Angew. Chem., Int. Ed. 2012, 51, 8230.
- (6) Truong, T.; Daugulis, O. J. Am. Chem. Soc. 2011, 133, 4243.

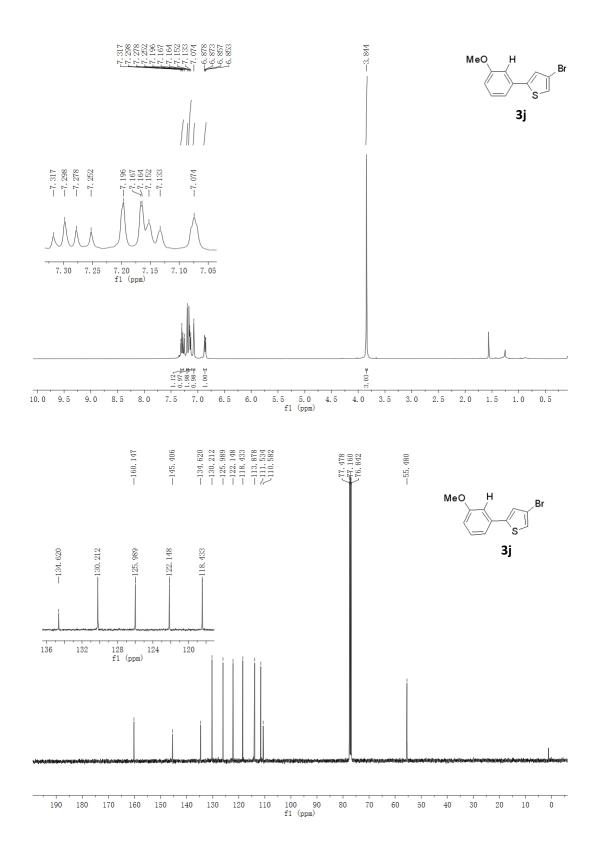

X. Copies of ¹H, ¹³C and ¹H-¹H NOESY NMR Spectra

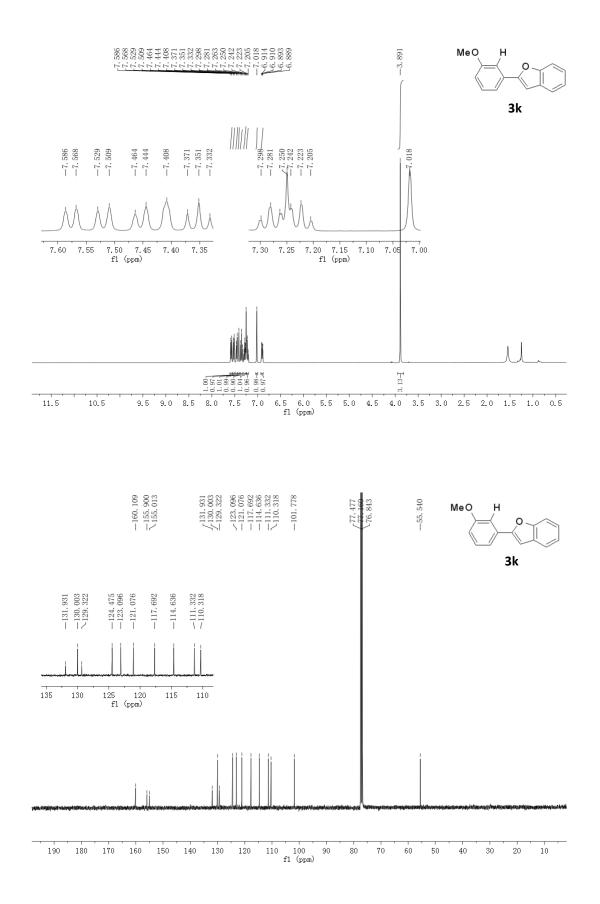


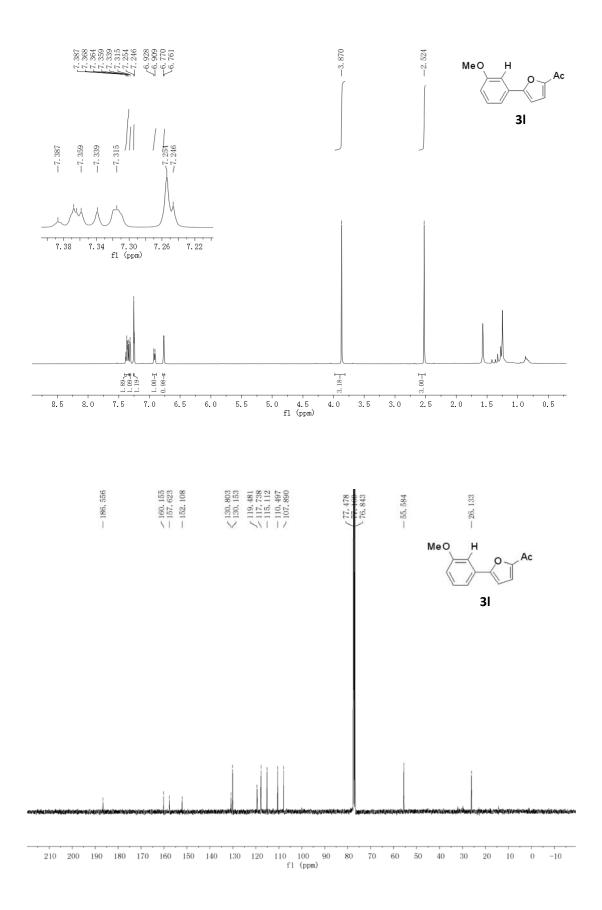


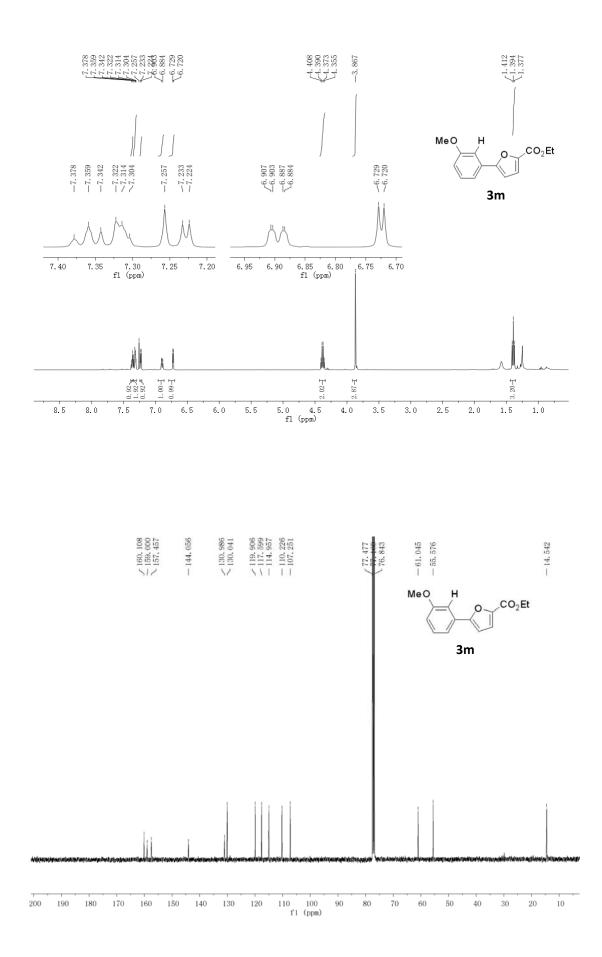


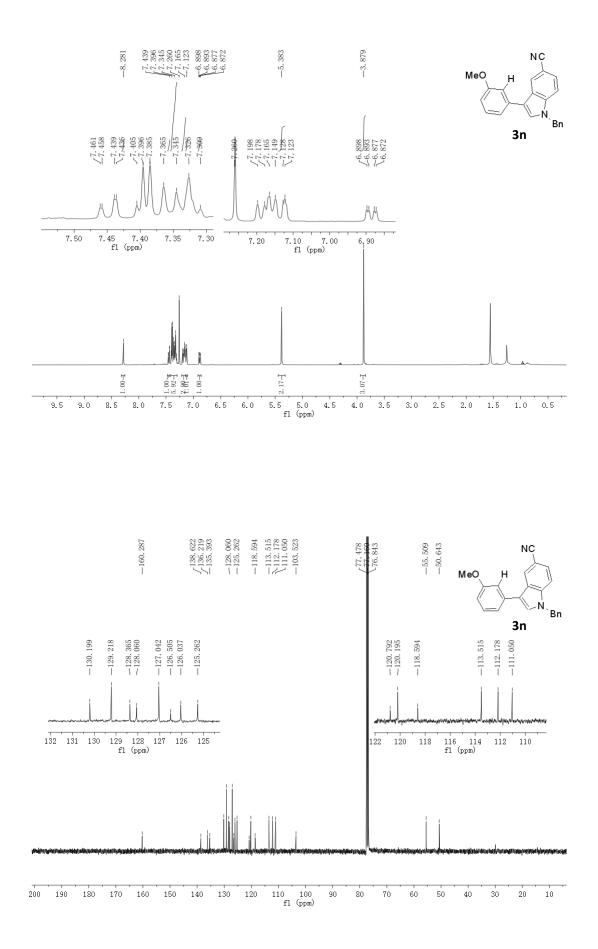


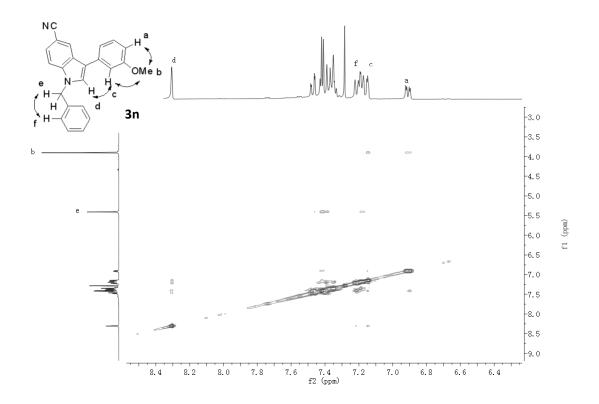


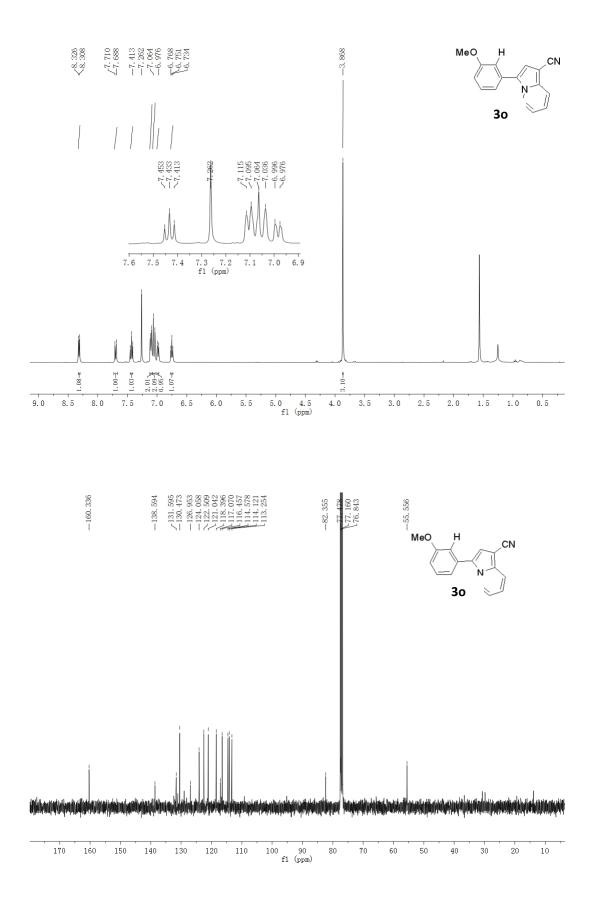


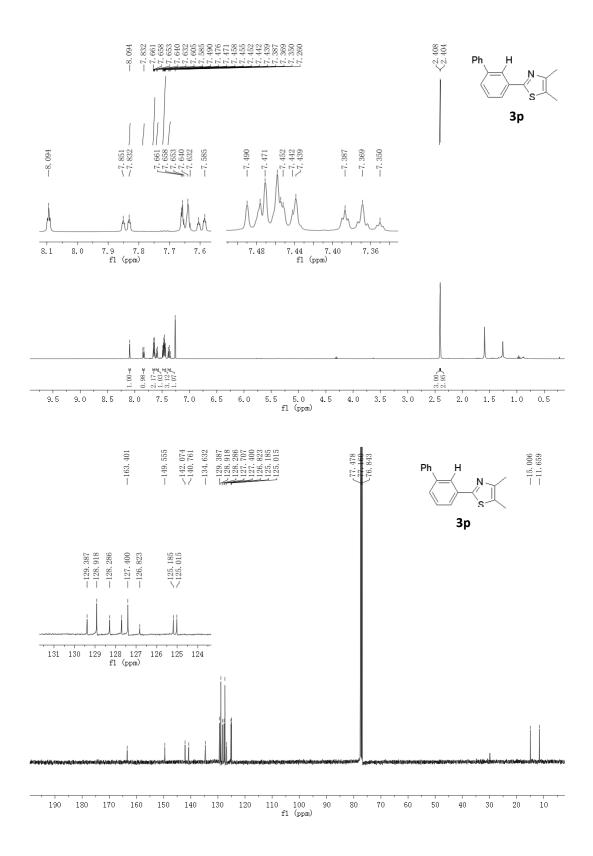


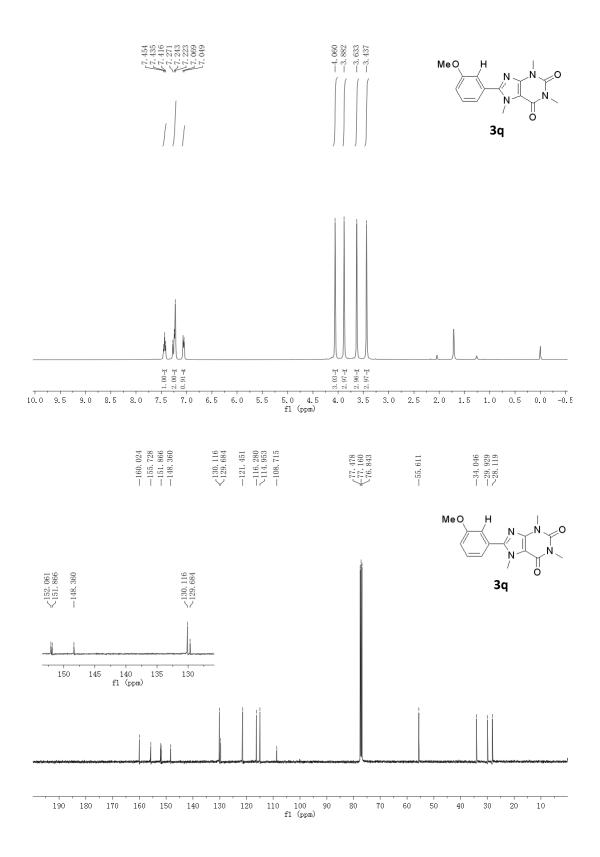


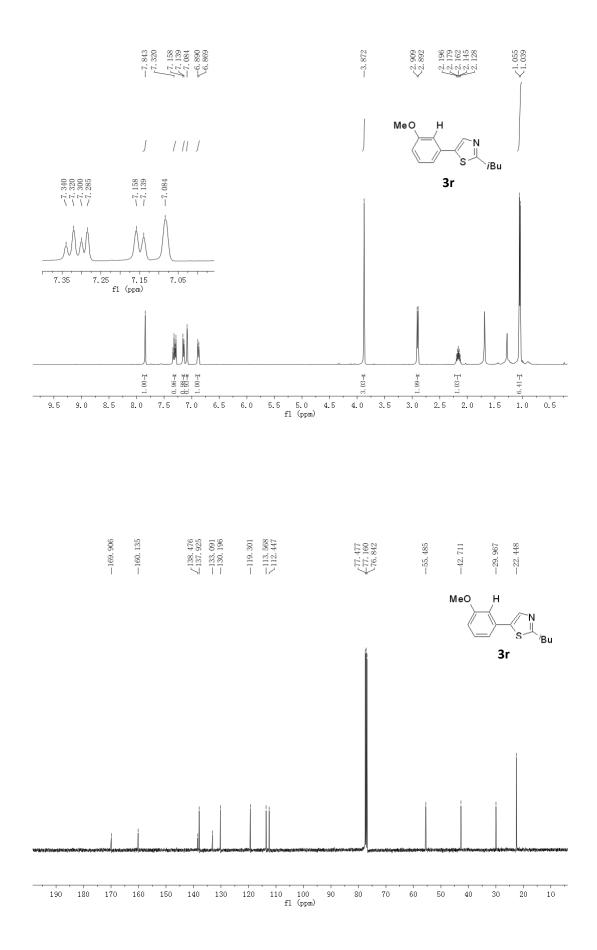


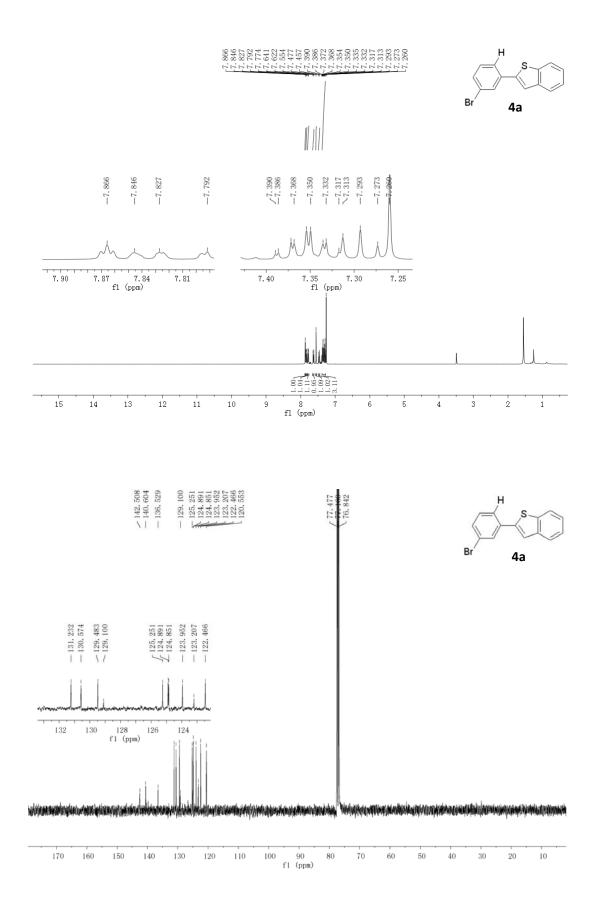

S37

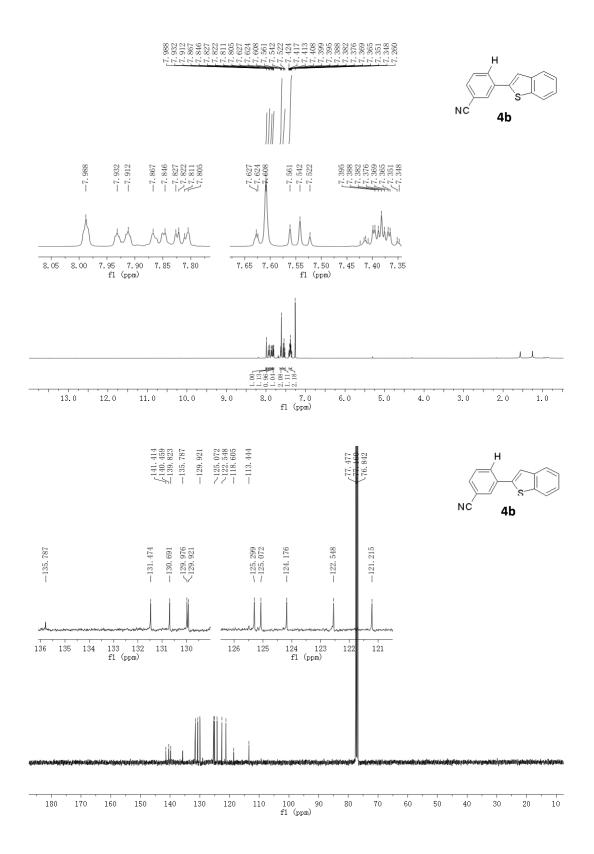


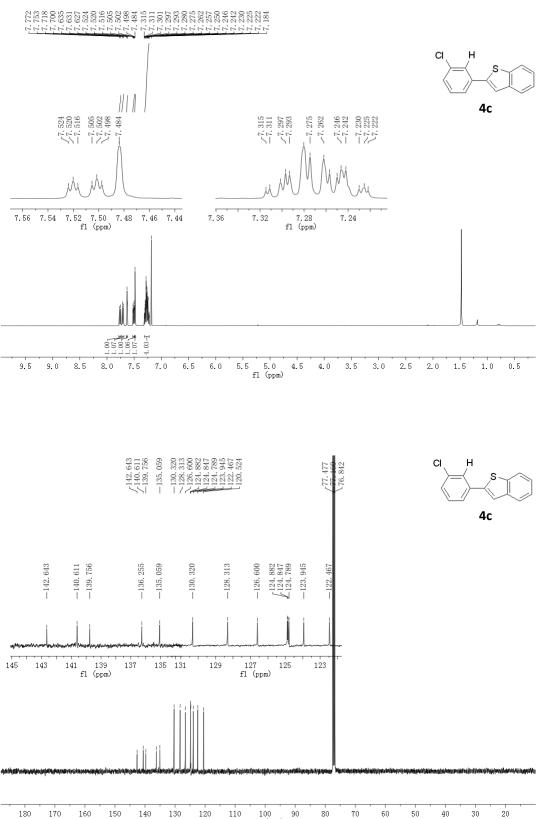


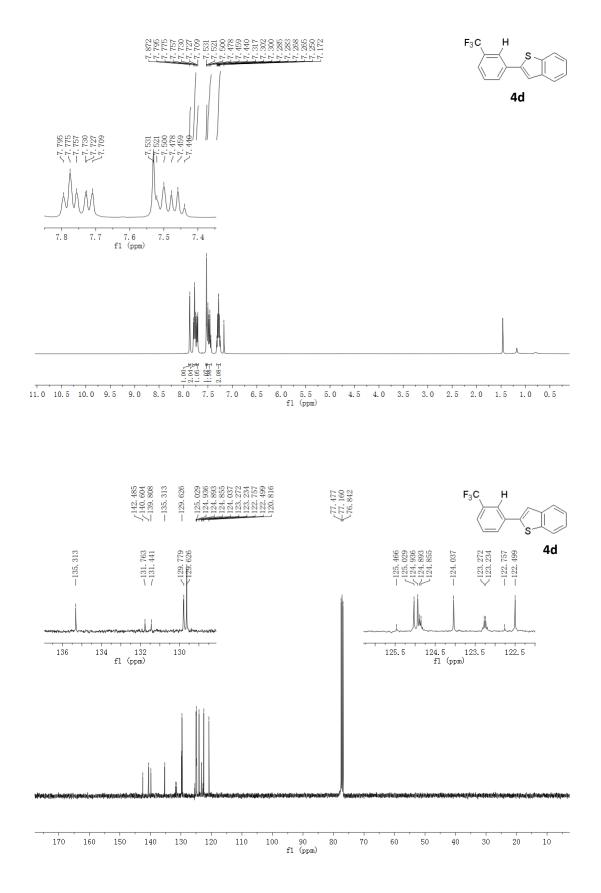


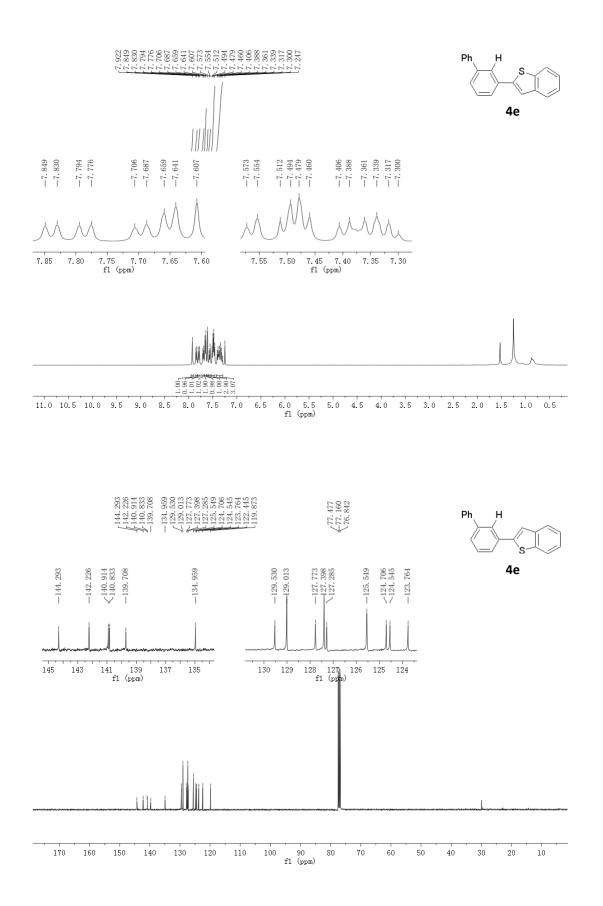


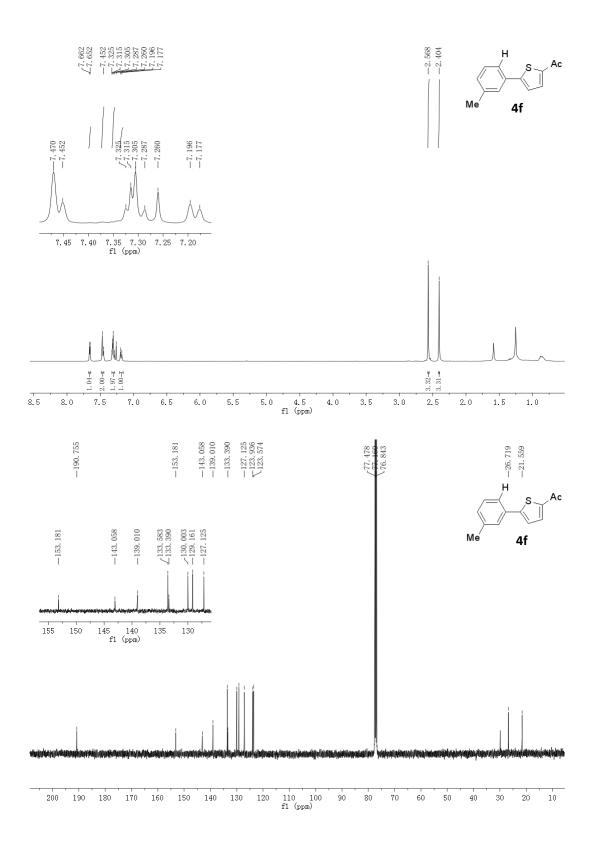


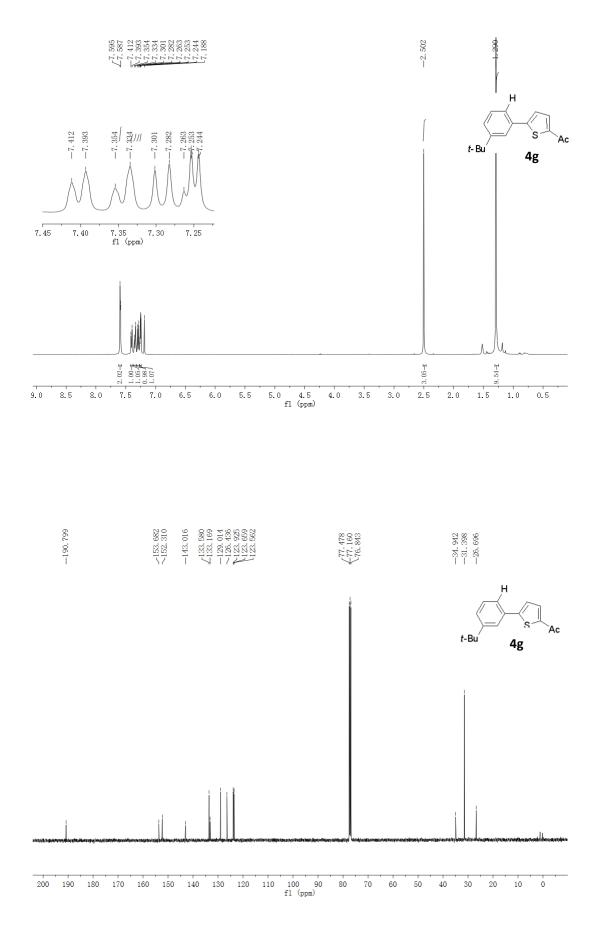


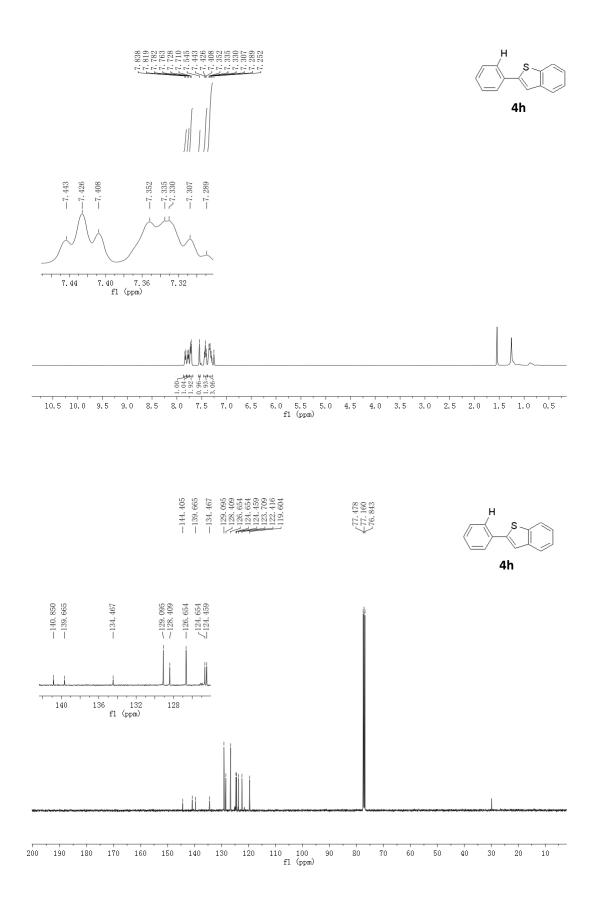


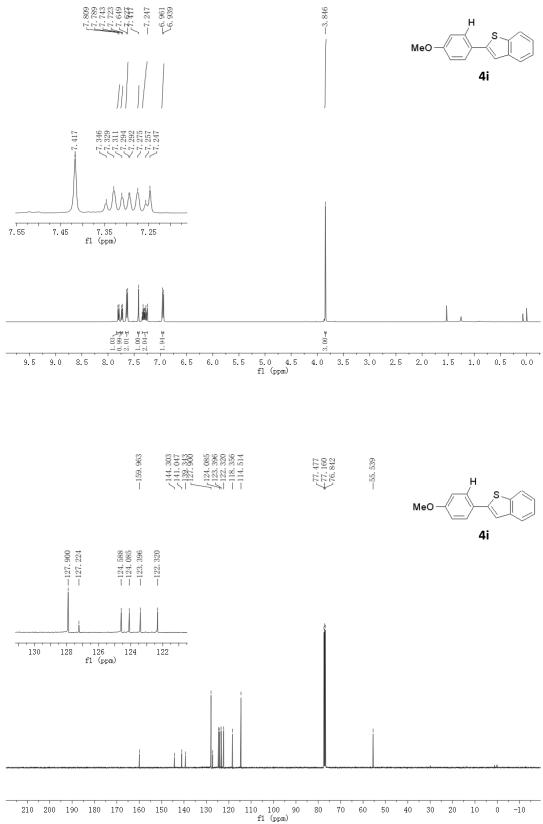

S47

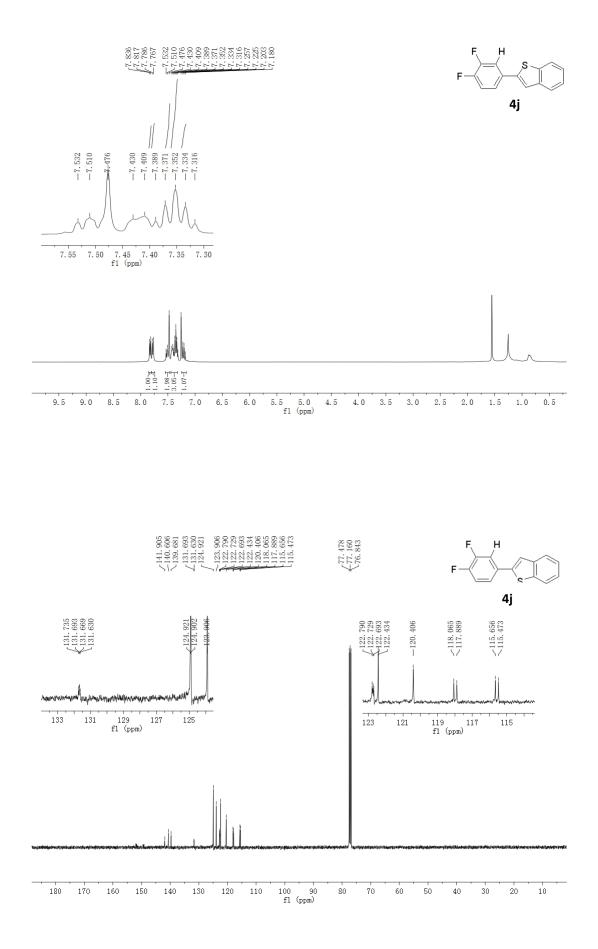


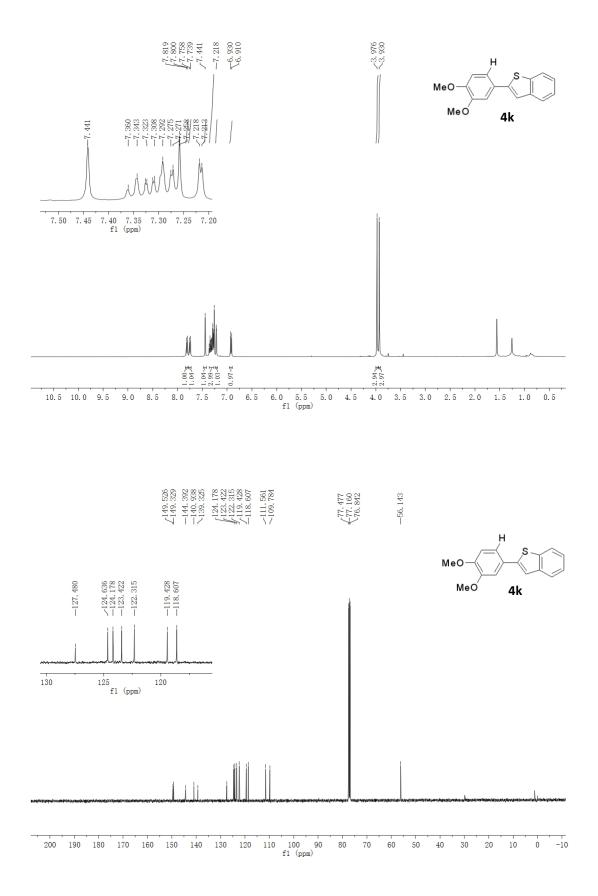

S48

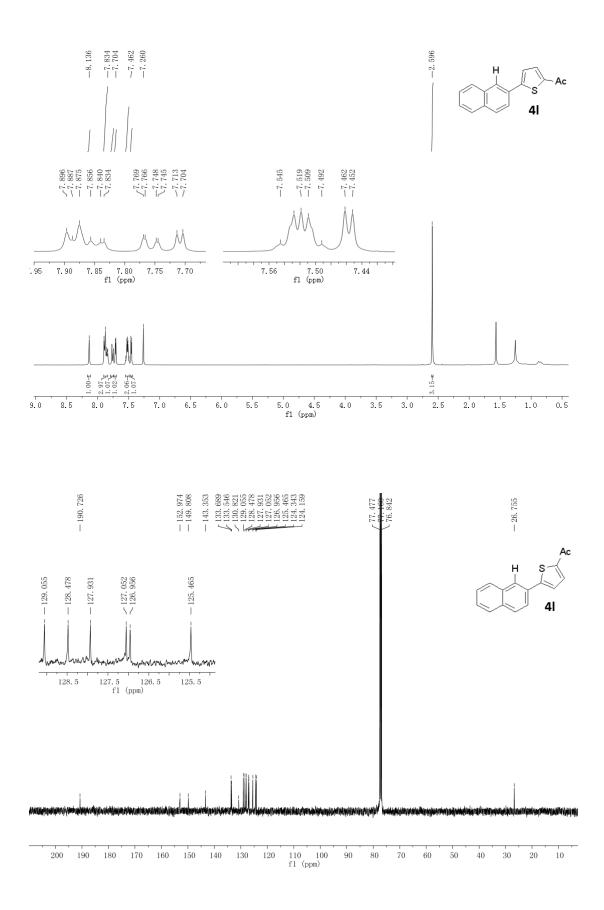



100 f1 (ppm)









S54

