Supporting information for: Chemistry of supported palladium nanoparticles during methane oxidation

Johan Nilsson,^{*,†,‡} Per-Anders Carlsson,^{†,‡} Sheedeh Fouladvand,^{†,‡} Natalia M. Martin,^{†,‡} Johan Gustafson,[¶] Mark A. Newton,[§] Edvin Lundgren,[¶] Henrik Grönbeck.^{||,‡} and Magnus Skoglundh^{†,‡}

Applied Chemistry, Department of Chemistry and Chemical Engineering, Chalmers

University of Technology, SE-412 96 Göteborg, Sweden, Competence Centre for Catalysis

(KCK), Chalmers University of Technology, SE-412 96 Göteborg, Sweden, Division of

Synchrotron Radiation Research, Lund University, Box 118, SE-221 00 Lund, Sweden,

ESRF, 71 Rue des Martyrs, 38000 Grenoble, France, and Department of Applied Physics, Chalmers University of Technology, SE-41296 Goteborg, Sweden

E-mail: johan.nilsson@chalmers.se

 $^{^{*}\}mathrm{To}$ whom correspondence should be addressed

[†]Applied Chemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Göteborg, Sweden

 $^{^{\}ddagger}\mathrm{Competence}$ Centre for Catalysis (KCK), Chalmers University of Technology, SE-412 96 Göteborg, Sweden

 $^{^{\}P}$ Division of Synchrotron Radiation Research, Lund University, Box 118, SE-221 00 Lund, Sweden $^{\S}\text{ESRF},$ 71 Rue des Martyrs, 38000 Grenoble, France

Department of Applied Physics, Chalmers University of Technology, SE-41296 Goteborg, Sweden

EXAFS analysis details

The normalized XAFS spectra for Pd/Al_2O_3 from the same data as used in the EXAFS analysis are shown in Figures S1 and S2. For comparison normalized XAFS spectra from Pd/CeO_2 at 350 °C are shown in Figure S3. In the EXAFS fitting procedure the energy shift ΔE_0 , amplitude reduction factor S_0^2 , path distance R, and mean-square relative displacement σ^2 , were used as free-floating parameters. Where multiple scatterings paths were used ΔE_0 and S_0^2 were constrained to the same value for all paths. The best-fit results and \mathcal{R} factor for each fit are given in table S1.

	$\rm Pd/Al_2O_3~350^{\circ}C$		$\rm Pd/Al_2O_3~300^\circ C$	
	Pd-Pd (rich period)	Pd-O (lean period)	Pd-Pd	Pd-O
ΔE_0	-6(2)	2(2)	-4(3)	
S_{0}^{2}	0.7(2)	0.56(9)	0.6(1)	
R	2.70(1)	2.02(1)	2.71(2)	2.00(2)
σ^2	0.017(2)	0.001(1)	0.009(2)	0.007(3)
${\cal R}$ factor	0.032	0.0032	0.015	

Table S1: Best-fit parameters and \mathcal{R} factors for EXAFS fits

Figure S1: Normalized XAFS spectra from Pd/Al_2O_3 at 350 °C produced by averaging 40 ED-XAS scans. (top) Spectrum recorded at the end of a rich period (1182–1190 s), and (bottom) spectrum recorded at the end of a lean period (882–890 s).

Figure S2: Normalized XAFS spectrum from $\rm Pd/Al_2O_3$ at 300 °C produced by averaging 40 ED-XAS scans at the end of a lean period (882–890 s).

Figure S3: Normalized XAFS spectra from Pd/CeO_2 at 350 °C produced by averaging 8 ED-XAS scans. (top) Spectrum recorded at the end of a rich period (1182–1190 s), and (bottom) spectrum recorded at the end of a lean period (882–890 s).