Catalvtic Transformation of Levulinic Acid
to 2-Methyltetrahydrofuran Using
Ruthenium—N-triphos Complexes

Supporting Information

Andreas Phanopoulos, Andrew J. P. White, Nicholas J. Long, * Philip W. Miller*
Department of Chemistry, Imperial College London, South Kensington, London, SW7 2AZ, UK.

*email: n.long@imperial.ac.uk (NJL), philip.miller@imperial.ac.uk (PWM)

Gas chromatography traces of representative catalytic runs
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Figure S1. Gas chromatogram of final reaction mixture after hydrogenation of levulinic acid using
Triphos™/[Ru(acac)s] to generate the catalyst in situ. The stated areas were corrected using K values
determined by calibration experiments with pure substance mixtures.
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Figure S2. Gas chromatogram of final reaction mixture after hydrogenation of levulinic acid using
[RuH,(CO){CH;C(CH,PPh,);-ik’ P}] (3) as pre-catalyst. The stated areas were corrected using Ky
values determined by calibration experiments with pure substance mixtures.
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Figure S3. Gas chromatogram of final reaction mixture after hydrogenation of levulinic acid using N-
triphos™/[Ru(acac);] to generate the catalyst in situ. The stated areas were corrected using Ky values
determined by calibration experiments with pure substance mixtures.
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Figure S4. Gas chromatogram of final reaction mixture after hydrogenation of levulinic acid using
[RuH,(CO){N(CH,PPh,);-k’P}] (4) as pre-catalyst. The stated areas were corrected using Ky values
determined by calibration experiments with pure substance mixtures.
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Figure S5. Gas chromatogram of final reaction mixture after hydrogenation of levulinic acid using
[RuH,(PPh,) {N(CH,PPh,);-k’P}] (5) as pre-catalyst. The stated areas were corrected using Ky values
determined by calibration experiments with pure substance mixtures.
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Figure S6. Gas chromatogram of final reaction mixture after hydrogenation of levulinic acid usiﬂg“
[RuH,(PPh;) {N(CH,PCyp,)s-k’P}] (6) as pre-catalyst. The stated areas were corrected using Ky values
determined by calibration experiments with pure substance mixtures.
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Figure S7. Gas chromatogram of final reaction mixture after hydrogenation of levulinic acid usin;
Triphos™/[Ru(acac);] and NH,PF; to generate the catalyst in situ. The stated areas were corrected
using Kr values determined by calibration experiments with pure substance mixtures.
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Figure S8. Gas chromatogram of final reaction mixture after hydrogenation of levulinic acid usiﬁg
[RuH,(CO){CH;C(CH,PPh,);-k’P}] (3) and NH,PF, as pre-catalyst. The stated areas were corrected
using Kr values determined by calibration experiments with pure substance mixtures.
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Figure S9. Gas chromatogram of final reaction mixture after hydrogenation of levulinic acid using N-
triphos™/[Ru(acac)s] and NH,PFj to generate the catalyst in situ. The stated areas were corrected using
K values determined by calibration experiments with pure substance mixtures.
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Figure S10. Gas chromatogram of final reaction mixture after hydrogenation of levulinic acid usig
[RuH,(CO){N(CH,PPh,);-k’P}] (4) and NH,PF; as pre-catalyst. The stated areas were corrected using
K values determined by calibration experiments with pure substance mixtures.
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Figure S11. Gas chromatogram of final reaction mixture after hydrogenation of levulinic acid using
[RuH,(PPh;) {N(CH,PPh,);-k’P}] (5) and NH,PF, as pre-catalyst. The stated areas were corrected
using Kr values determined by calibration experiments with pure substance mixtures.

[min.]

W 3.27 min. 8.5V

— AP370_25hrs_29_01_2015 19_17_16_024 - Detector 1

Peak Substance Retention Time Area

1 2-MTHF 1.297 653.438
2 WL 3.060 1208.052
] 3 1,4-PDO - -
§ 4 Dodecane 6.423 4644.606

130 1

:.
L

=306 2
A

Figure S12. Gas chromatogram of final reaction mixture after hydrogenation of levulinic acid using N-
triphos™/[Ru(acac)s] and HN(Tf), to generate the catalyst in situ. The. The stated areas were corrected

using Kr values determined by calibration experiments with pure substance mixtures.
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Figure S13. Gas chromatogram of final reaction mixture after hydrogenation of levulinic acid using
[RuH,(PPh,) {N(CH,PPh,);-k’P}] (5) and HN(T), to generate the catalyst in situ. The stated areas
were corrected using Kr values determined by calibration experiments with pure substance mixtures.

Mercury poisoning experiment
Table S1. Conversion of levulinic acid and yields of products after mercury poisoning of catalytic
system and control reaction without mercury poisoning.”

Entry Catalyst Time [h] Conversion Yield [%]
[%] YVL 1,4-PDO 2-MTHF
1° N-triphos™/[Ru(acac);] 2 42 41 0 0
2° N-triphos™/[Ru(acac)s] 8 77 76 0 0
3 N-triphos™/[Ru(acac)s] 2 42 41 0 0
4 N-triphos™/[Ru(acac);] 8 73 70 0 0

*Conditions: 10 mmol LA, 20 mL THF, 0.5 mol % [Ru(acac)s], 1.0 mol % N-triphos™, 150 °C, 8 h.
bDepressurized and elemental mercury added to reaction solution after 2 h and stirred at room
temperature for 2 h before separation and re-subjecting to catalytic conditions (see Experimental for
complete details).

Additional catalytic data
Table S2. Additional catalytic data varying amount of acidic additive, pressure and solvent.”

Entry Catalyst Additive Pressure Yield [%]
(mol %) YVL 1,4-PDO 2-MTHF
1 4 NH4PF; (5 mol %) 65 95 <1 0
2 4 NH4PFs (1 mol %) 65 98 <1 1
3 4 NH4PFs (10 mol %) 65 79 8 1
4 4 NH4PFs (5 mol %) 95 84 1 <l
5° 4 NH4PF; (5 mol %) 65 68 <1 0

*Conditions: 10 mmol LA, 20 mL THF, 0.5 mol % 4, 150 °C, 25 h. "Dioxane solvent. Full conversion
was achieved in all cases.



3’IP{IH} NMR spectra of complexes 8 and 10
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Figure S14. Impure *'P{'H} NMR spectrum of [RuH(CO)(NCMe){CH;C(CH,PPh,);-’P} ][PF4] (8)
formed from the NMR-scale reaction of [RuH,(CO) {CH3C(CH2PPh2)3-K3P}] (3) with NH,4PFs.
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Figure S15. Impure *'P{'"H} NMR spectrum of [Ru(CO){CH;C(CH,PPh,);}-
’P{CH;C(0)(CH,),C(0)0O-k’0}][PF] (10) formed from the reaction of
[RuH(CO)(NCMe) {CH;C(CH,PPh,)s-k*P}][PF] (8) with levulinic acid.
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Figure S16. Impure *'P{'"H} NMR spectrum of [RuH(CO)(NH;){N(CH,PPh,);-k*P}][PF4] (13)
formed from the reaction of [RuH,(CO) {N(CH,PPh,);-k’P}] (4) with NH,PF, in THF.

"H and *'P{'"H} NMR spectra of complexes 14-16
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Figure S17. "H NMR spectrum of [Ru(NCMe); {N(CH,PPh,);-k*P}][PF4], (14).
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Figure S18. °'P{IH} NMR spectrum of [Ru(NCMe); {N(CH,PPh,);-’ P} |[PFq], (14).
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Figure S19. '"H NMR spectrum of [Ru,(pi-Cl); {N(CH,PPh,);-*P},][Cl] (15).
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Figure $20. *'P{'H} NMR spectrum of [Ru,(p-Cl); {N(CH,PPh,)s-*P},][CI] (15).
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Figure S21. 1H NMR spectrum of [Ru,(u-Cl); {N(CH,PPh,);-i’P},][BPh4] (16).
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Figure $22.°'P{'H} NMR spectrum of [Ru,(p-Cl); {N(CH,PPh,);-k*P},][BPh,] (16).

X-Ray crystallography

X-ray crystal structure of 14: The crystal structure of 14 was found to contain two
independent cations (14-A and 14-B) in the asymmetric unit (see Figures 5 and S3
respectively). The C(20A)-based phenyl ring and the P(20)-based hexafluorophosphate anion
were both found to be disordered, and in each case two orientations were identified, of ca.
73:27 and 78:22% occupancy respectively. For each pair of orientations the geometries were
optimised, the thermal parameters of adjacent atoms were restrained to be similar, and only
the non-hydrogen atoms of the major occupancy orientations were refined anisotropically
(those of the minor occupancy orientations were refined isotropically).

The included solvent was found to be highly disordered, and the best approach to
handling this diffuse electron density was found to be the SQUEEZE routine of PLATON.*!
This suggested a total of 197 electrons per unit cell, equivalent to 49.3 electrons per complex.
The crystal was grown from a mixture of diethyl ether (C4H,00, 42 electrons), acetonitrile
(C,H3N, 22 electrons), methanol (CH40, 18 electrons), dichloromethane (CH,Cl,, 42
electrons) and toluene (C;Hg, 50 electrons), and before the use of SQUEEZE the solvent most
resembled acetonitrile. 2.25 acetonitrile molecules corresponds to 49.5 electrons, so this was
used as the solvent present. As a result, the atom list for the asymmetric is low by 2 x
2.25(C,H;3N) = CyHy;3 5Ny 5 (and that for the unit cell low by CigH,;Ng) compared to what is
actually presumed to be present.

Crystal data for 14: [C4sHysN4P;Ru](PF6),-2.25MeCN, M = 1218.14, triclinic, P-1
(no. 2), a=12.9272(4), b =20.8705(6), c = 21.4381(6) A, a.= 76.703(3), B = 88.780(2), y =
82.119(2)°, V'=15575.4(3) A’, Z= 4 (two independent molecules), D, = 1.451 g cm >, p(Mo-
Ka) =0.505 mm ', 7= 173 K, colourless tabular needles, Agilent Xcalibur 3E diffractometer;
22027 independent measured reflections (R;, = 0.0264), F* refinement,"! R,(obs) = 0.0541,
wRy(all) = 0.1633, 16208 independent observed absorption-corrected reflections [|F,| >
46(|Fy|), 20max = 57°], 1244 parameters. CCDC 1038458.

X-ray crystal structure of 16: The C(130)-based included dichloromethane solvent
molecule in the structure of 16 was found to be disordered. Two orientations were identified



of ca. 83 and 17% occupancy, their geometries were optimised, the thermal parameters of
adjacent atoms were restrained to be similar, and only the non-hydrogen atoms of the major
occupancy orientation were refined anisotropically (those of the minor occupancy orientation
were refined isotropically).

C}’yStCll datafor 16: [C78H72C13N2P6RUZ](C24H20B)'2CH2C12, M= 202074,
orthorhombic, Phca (no. 61), a = 25.3078(6), b = 26.2242(10), c = 28.1953(7) A, V =
18712.6(10) A*, Z=8, D, =1.435 gcm ", w(Mo-Ka) = 0.675 mm ', T= 173 K, yellow
tablets, Oxford Diffraction Xcalibur 3 diffractometer; 24856 independent measured
reflections (Ri, = 0.0310), F* refinement, Ri(obs) = 0.0435, wR,(all) = 0.1080, 17333
independent observed absorption-corrected reflections [|F,| > 46(|F,|), 20max = 61°], 1113
parameters. CCDC 1038459.

Figure S23. The structure of one (14-B) of the two independent cations present in the crystal of 14
(50% probability ellipsoids).

Preliminary density functional theory calculations to demonstrate nitrogen—
metal interaction

Density Functional Theory (DFT) studies to obtain further insight into the interaction between
the nitrogen and metal center upon coordination of N-triphos’" (2) are currently underway.
DFT optimization and frequency analysis calculations were carried out at the B3LYP level of
theory for [RuH,(CO){CH;C(CH,PPh,);-k’P}] (3) and [RuH,(CO){N(CH,PH,);-k’P}] (4)
with 6-31g* basis set for all atoms except for ruthenium, for which the Stuttgart-Dresden
pseudopotential was used (MWBG60). The structures were energy minimized until all the
optimization criteria were reached in Gaussian(09, and frequency analysis confirmed a true
energy minimum structure was obtained from the absence of imaginary frequencies.

Initial results show a N—Ru interaction does exist in 4, as evident from the contour
map of the HOMO (Figure S24A), which shows favourable overlap of nitrogen and
ruthenium based orbitals, that appear to originate from atomic orbitals of p and d,» parentage,
respectively. On the other hand, no such evidence is observed for a similar C—Ru interaction
in 3. The calculated contour map of the HOMO of complex 3 (Figure S23B) appears to be
purely metal-based and of dy, parentage. Further calculations are currently underway to
quantify and expand on this interaction.



Figure S24. Calculated contour map of HOMOs of 4 (A) and 3 (B) at B3LYP/6-31g*/MWB60 level of
theory.
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