Supporting Information for

Rational Synthesis and Characterization of Dimolybdenum(II)Compounds Bearing Fc-containing Ligands towards Modulationof Electronic Coupling
Xu-Min Cai, ${ }^{\dagger}$ Korbinian Riener, ${ }^{\dagger}$ Eberhardt Herdtweck,
Alexander Pöthig and Fritz E. Kühn*
Content:

1. Molecular Structures, Crystal Data and Refinement S2-S3
2. NMR Data S4-S9
3. UV-Vis Data S9
4. CV and DPV Data S10
5. IR Data S11
6. TG-MS Data S12-S14
7. DFT Data S14-S19
8. References S19

01. Molecular Structures, Crystal Data and Refinement

Figure S1. Molecular structure of compound 2a.

The crystal structure could be refined up to a stage, where the structural proof is unambiguous. However, the limited quality of the crystal did not allow for a satisfying refinement (even after disordered solvent molecules had been treated with the PLATON/SQUEEZE procedure) for publication in the CCDC. We nevertheless provide the data of the crystal as well as preliminary refinement for compound $\mathbf{2 a}$.

Crystal data

$\mathrm{C}_{37} H_{33} \mathrm{BF}_{4} \mathrm{Mo}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}_{2}$	$F(000)=1760$
$M_{r}=878.28$	$D_{\mathrm{x}}=1.509 \mathrm{Mg} \mathrm{m}$
$a=14.1182(8) \AA$	Mo Ka radiation, $\lambda=0.71073 \AA$
$b=15.5748(9) \AA$	Ce11 parameters from 9794 reflections
$c=17.8932(11) \AA$	$\mu=0.79 \mathrm{~mm}^{-1}$
$\alpha=90^{\circ}$	$T=123(1) \mathrm{K}$
$\beta=100.722(3)^{\circ}$	$0.79 \times 0.55 \times 0.43 \mathrm{~mm}$
$\gamma=90^{\circ}$	space group: $P 2_{1} / n \quad($ No. 14$)$
$V=3865.8(4) \AA^{3}$	
$Z=4$	

Data collection

Bruker Kappa-ApexII diffractometer	$R_{\text {int }}=0.025$
Radiation source: fine-focus sealed tube	$\theta_{\max }=25.4^{\circ}, \theta_{\min }=1.7^{\circ}$
graphite	$h=-16 \quad 16$
	$k=-18 \quad 18$
71871 measured reflections	$1=-21 \quad 21$
7106 independent reflections	
6567 reflections with $I>2 \sigma(I)$	

Refinement

Refinement on F^{2}	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H atoms treated by a mixture of independent and constrained refinement
$R\left[F^{*}>2 \sigma\left(F^{2}\right)\right]=0.069$	$\begin{aligned} & W=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.1197 P)^{2}+\right. \\ & 55.3453 P] \\ & \text { where } P=\left(F_{o}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \end{aligned}$
$w R\left(F^{3}\right)=0.223$	$(\Delta / \sigma)_{\text {max }}=0.001$
$S=1.08$	$\Delta \rho_{\max }=2.53 \mathrm{e}^{\AA^{-3}}$
7106 reflections	$\Delta \rho_{\text {min }}=-4.08 \mathrm{e}^{\AA^{-3}}$
452 parameters	Extinction correction: none
0 restraints	
0 constraints	

02. NMR Data

Figure $\mathbf{S 2} .{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 a}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Figure S3. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 a}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Figure S4. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 b}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Figure S5. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 b}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Figure S6. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 c}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Figure S7. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 c}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Figure S8. Excerpt from COSY spectrum of 2a in $\mathrm{CD}_{3} \mathrm{CN}$.

Figure S9. Excerpt from HSQC spectrum of 2a in $\mathrm{CD}_{3} \mathbf{C N}$.

Figure S10. Excerpt from HMBC spectrum of $\mathbf{2 a}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Table S1. Selected NMR signals for comparison in ppm.

Compd.	${ }^{1} \mathrm{H}^{\mathrm{i}}\left(\mathrm{H}_{\mathrm{a}} ; \mathrm{H}_{\mathrm{b}} ; \mathrm{H}_{\mathrm{c}}\right)$	Bridge- ${ }^{1} \mathrm{H}^{\mathrm{ii}}$	${ }^{31} \mathrm{P}$
trans-1	$4.79 ; 5.20 ; 4.46$		
DPPA		4.31	43.20
2a	$4.65 ; 4.78 ; 3.75$	6.33	78.45
DPPM	$4.88 ; 5.26 ; 4.17$	2.92	-23.14
2b	4.34	18.69	
DPPE	$4.72 ; 4.85 ; 3.68$	2.06	-13.81
2c		2.86	20.72

[^0]

Figure S11. Labelled fragment for interpretation of NMR spectra.

03. UV-Vis Data

Figure S12. Full absorption spectra of compounds 1, 2a-2c in $\mathrm{CH}_{3} \mathrm{CN}$.

Figure S13. Color comparison of four compounds Fc-COOH, 1, $\left[\mathrm{Mo}_{2}(\mathrm{MeCN})_{10}\right]\left[\mathrm{BF}_{4}\right]_{4}$ and $\mathbf{2 a}$ in $\mathrm{CH}_{3} \mathrm{CN}$ from left to right.

04. CV and DPV Data

Figure S14. Cyclic voltammograms of compounds $\mathbf{1}$ and $\mathbf{2 a - 2 c}$. Results recorded in a 0.10 M degassed $\mathrm{CH}_{3} \mathrm{CN}$ solution of $\left[\mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{BF}_{4}\right]$ at a scan rate of $0.2 \mathrm{~V} / \mathrm{s}$.

Figure S15. Differential pulse voltammogram of mixture cis- and trans-1. Results recorded in a 0.10 M degassed $\mathrm{CH}_{3} \mathrm{CN}$ solution of $\left(n-\mathrm{Bu}_{4}\right) \mathrm{NBF}_{4}$ at a scan rate of $0.2 \mathrm{~V} / \mathrm{s}$.

05. IR Data

Collected in Table S2 is the IR data of compounds $\mathbf{1}$ and $\mathbf{2 a} \mathbf{- 2 c}$ which is compared with relevant literature values. The lack of strong v_{CN} absorption bands in products $\mathbf{2 a} \mathbf{a} \mathbf{- 2} \mathbf{c}$ as compared to $\mathbf{1}$ - is caused by almost full decoordination of equatorial MeCN ligands due to the crowded diphosphine substitution. No detailed descriptions have been found in literature to discuss the IR spectra difference after diphosphine coordination. Nevertheless, the bridging nature can be derived from the frequency difference (Δv) between $v_{\text {asym }}\left(\mathrm{COO}^{-}\right)$and $v_{\text {sym }}\left(\mathrm{COO}^{-}\right)$bands of around $100 \mathrm{~cm}^{-1} .{ }^{1}$ The v_{NH} absorption in compound 2a at $3237 \mathrm{~cm}^{-1}$ is slightly blue-shifted compared to $3225 \mathrm{~cm}^{-1}$ in the free ligand DPPA. All $v_{B F}$ absorption bands are within the common range, just about $30 \mathrm{~cm}^{-}$ ${ }^{1}$ blue-shifted as compared to $\mathbf{1}$.

Table S2. Comparison of IR data.

Compound	$v_{\mathrm{COO}}\left(\mathrm{cm}^{-1}\right)$	$\nu_{\mathrm{BF}}\left(\mathrm{cm}^{-1}\right)$	Ref.
$\mathbf{1}$	1499,1394	1063,1024	2
trans- $\left[\mathrm{Mo}_{2}\left(\mu-\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{2} \mathrm{Cl}_{2}(\mu-\mathrm{dppma})_{2}\right]$	1482,1350		3
trans $-\left[\mathrm{Mo}_{2}\left(\mu-\mathrm{CH}_{3} \mathrm{CONH}\right)(\mathrm{dppm})_{2}\right.$ $\left.\left(\mathrm{NCCH}_{3}\right)_{2}\right]\left[\mathrm{BF}_{4}\right]_{3}$	1486,1368	1084,1062	4
2a	1491,1390	1098	this paper
2b	1484,1398	1093,1078	this paper
2c	1487,1390	1080,1072	this paper

06. TG-MS Data

The masses observed via thermogravimetric analysis for compound 2a with 11 (B), 17 $\left(\mathrm{NH}_{3}\right), 19(\mathrm{~F}), 22\left(\mathrm{~B}_{2}\right), 28(\mathrm{CO}), 31(\mathrm{P}), 38\left(\mathrm{~F}_{2}\right), 41\left(\mathrm{CH}_{3} \mathrm{CN}\right), 44\left(\mathrm{CO}_{2}\right), 65\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)$ and $78\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ show full decomposition of the molecule (acetonitrile originates from residual axially coordinated ligands), indicating that the residue is mainly of metallic nature (molybdenum and iron). A similar decomposition can be observed for both compounds $\mathbf{2} \mathbf{b}$ and $\mathbf{2 c}$. The residual mass of around 17% in compound $\mathbf{2 a}$ (Figure S16) is consistent with the calculated value for the metallic moieties of 18.7%. However, both the residual masses of 35% and 24% in compounds $\mathbf{2 b}$ and $\mathbf{2 c}$ are higher than calculated with 18.8% and 18.2% for the metallic moieties, respectively (Figures S17 and S18). Compared to precursor 1, TG-MS analysis of 2a shows the mass losses at relatively high temperature ranges of $300-340$ and $440-520^{\circ} \mathrm{C}$ (the mass losses of $\mathbf{1}$ between $100-250$ and $\left.400-500{ }^{\circ} \mathrm{C}\right) .{ }^{2}$ Similar mass loss trends are observed in both compounds 2b and 2c. More specifically, TG-MS of 2a shows that the remaining axially-coordinated acetonitrile ligands at $310-360$ and $400-600^{\circ} \mathrm{C}$, which are around $150{ }^{\circ} \mathrm{C}$ higher than for those in 1 (150-250 and 400-500 $\left.{ }^{\circ} \mathrm{C}\right)$. The same trend can be seen in the CO_{2} peak maxima of the MS curve at around 330,489 and $665^{\circ} \mathrm{C}$, which are again higher than for those in $\mathbf{1}\left(218,438\right.$ and $\left.640^{\circ} \mathrm{C}\right)$. Based on the obtained data, diphoshpine substitution results in increased temperature stability, which can be seen in all examined compounds $\mathbf{2 b}$ and $\mathbf{2 c}$. Both $\mathbf{2 b}$ and 2c lose acetonitrile ligands at temperatures of $380-420 / 500-540{ }^{\circ} \mathrm{C}$ and $300-400 / 460-520{ }^{\circ} \mathrm{C}$, respectively. The release of CO_{2} in $\mathbf{2 b}$ and $\mathbf{2 c}$ proceeds in steps and starts at $380 / 512$ and $360 / 500{ }^{\circ} \mathrm{C}$,
respectively, proving a higher temperature stability of the carboxylate ligand compared to 1 , where CO_{2} is already released in a small amount at around $218^{\circ} \mathrm{C}$. So in general, phosphine coordination leads to higher complex stability.

Figure S16. TG (solid) and MS curves (round dot for acetonitrile, dash for CO_{2}) of compound 2a.

Figure S17. TG (solid) and MS curves (round dot for acetonitrile, dash for CO_{2}) of compound $\mathbf{2 b}$.

Figure S18. TG (solid) and MS curves (round dot for acetonitrile, dash for CO_{2}) of compound $\mathbf{2 c}$.

07. DFT Data

All Cartesian atomic coordinates for each calculated molecule can be found in the separate plain-text xyz-file.

Optimized Geometries and Energies

Figure S19. Computed structures of precursor $\mathbf{1}$ (ground state, charge: +2 , multiplicity: singlet): Compound $\mathbf{1}$ (left), Fc units head-to-head as 1_IN (middle) and opposite to each other as 1_OUT (right).

Table S3. Ground state energies of three possible species of precursor $\mathbf{1}$ in solution.

Compound	HF [Hartree]	$\Delta \mathrm{HF}$ $[\mathrm{kcal} / \mathrm{mol}]$	$\mathrm{G}[$ Harrtree $]$	$\Delta \mathrm{G}$ $[\mathrm{kcal} / \mathrm{mol}]$
$\mathbf{1}$	-4344.513586	0.000	-4344.06296	0.000
1_IN	-4344.51173	1.165	-4344.05888	2.560
1_OUT	-4344.510995	1.626	-4344.058614	2.727

Compound 2b_H_CIS

Compound 2b_Me_CIS

Compound 2b_Ph_CIS

Compound 2b_H_TRANS

Compound 2b_Me_TRANS

Compound 2b

Figure S20. Cis- and trans-paired structures with R groups from H to methyl to phenyl (ground state, charge: +2 , multiplicity: singlet; $\mathbf{2 b}$ refers to compound in the manuscript, would otherwise be named compound 2_Ph_TRANS).

Table S4. Ground state energies for all diphosphine-coordinated complexes with R groups from H to methyl to phenyl.

Compound	HF [Hartree]	$\Delta \mathrm{HF}_{\text {cis-trans }}$ $[\mathrm{kcal} / \mathrm{mol}]$	G [Hartree]	$\Delta \mathrm{G}_{\text {cis-trans }}$ $[\mathrm{kcal} / \mathrm{mol}]$
2b_H_CIS	-5262.2624866	-0.253	-5261.8482	1.116
2b_H_TRANS	-5262.2620830		-5261.8500	
2b_Me_CIS	-5576.7520599	10.166	-5576.116162	14.602
2b_Me_TRANS	-5576.7682604		-5576.139431	
2b_Ph_CIS	-7110.0434058	20.519	-7109.016652	23.400
2b	-7110.0761043		-7109.053943	

VS.

a

b

Figure S21. a) Cis- and trans-structures via diphosphine coordination. b) $\Delta \mathrm{G}_{\text {cis-trans }}$ diagram for diphosphine-coordinated complexes with R groups from H to methyl to phenyl.

MO Energies

Table S5. Molecular orbital energies for compounds $\mathbf{1}$ and 2a-c.
in eV Compound $\mathbf{1}$ Compound 2a Compound 2b Compound 2c

LUMO+5	$-5,96$	$-5,47$	$-5,50$	$-5,36$
LUMO+4	$-6,04$	$-5,66$	$-5,66$	$-5,50$
LUMO+3	$-6,12$	$-6,01$	$-5,85$	$-5,63$
LUMO+2	$-6,86$	$-6,10$	$-5,88$	$-5,90$
LUMO+1	$-6,97$	$-6,15$	$-6,01$	$-6,10$
LUMO	$-8,08$	$-7,21$	$-7,18$	$-7,05$
HOMO	$-8,93$	$-8,65$	$-8,73$	$-8,65$
HOMO-1	$-8,98$	$-8,65$	$-8,76$	$-8,65$
HOMO-2	$-9,14$	$-8,65$	$-8,76$	$-8,65$
HOMO-3	$-9,17$	$-8,71$	$-8,79$	$-8,71$
HOMO-4	$-9,33$	$-9,06$	$-9,14$	$-9,06$
HOMO-5	$-9,55$	$-9,06$	$-9,17$	$-9,09$

TD-DFT Data

HOMO corresponds to MO\#174 in compound $\mathbf{1}$, to MO\#332 in compounds $\mathbf{2 a} / \mathbf{b}$ and to MO\#340 in compound $2 \mathbf{2 c}$.

Table S6. Predicted excited states with respective oscillation strengths, transitions and contributions for

	$\lambda[\mathrm{nm}]$	O. S.	E [eV]	from MO\#	to MO\#	Contribution
$\begin{aligned} & \text { ت } \\ & \text { 右 } \\ & \text { B } \\ & 0 \end{aligned}$	409.5	0.0126	3.028	171	181	66\%
				173	184	12\%
	492.4	0.0269	2.518	171	180	50\%
				171	184	17\%
				171	195	20\%
				172	192	15\%
	502.1	0.0351	2.469	170	181	17\%
				173	181	51\%
				173	184	21\%
				173	186	17\%
NOOOU	484.4	0.0431	2.560	329	342	21\%
				329	344	23\%
				329	363	16\%
				330	340	28\%
				332	340	37\%
				332	361	11\%
	584.6	0.0118		326	333	69\%
$\begin{aligned} & \text { ते } \\ & \text { D} \\ & \text { D} \\ & \text { त. } \\ & 0 \end{aligned}$	485.8	0.0461	2.552	327	342	12\%
				329	344	15\%
				330	338	19\%
				330	356	10\%
				331	357	13\%
				332	338	39\%
				332	359	16\%
	577.4	0.0124		326	333	69\%
UZ0000	483.4	0.0390	2.565	335	350	12\%
				336	346	11\%
				337	350	26\%
				337	368	14\%
				339	365	11\%
				340	346	39\%
				340	367	13\%
	588.2	0.0171	2.108	334	341	67\%
				340	342	13\%

Additional MO Plots

Compound 2b: HOMO (ground state, charge: +2 , multiplicity: singlet)

Compound 2c: HOMO (ground state, charge: +2 , multiplicity: singlet)

08. References

(1) Socrates, G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts; Wiley, 2004, 133-134.
(2) Cai, X.-M.; Höhne, D.; Köberl, M.; Cokoja, M.; Pöthig, A.; Herdtweck, E.; Haslinger, S.; Herrmann, W. A.; Kühn, F. E. Organometallics 2013, 32, 60046011.
(3) Cotton, F. A.; Kühn, F. E.; Yokochi, A. Inorg. Chim. Acta 1996, 252, 251-256.
(4) Cotton, F. A.; Daniels, L. M.; Haefner, S. C.; Kühn, F. E. Inorg. Chim. Acta 1999, 287, 159-166.

[^0]: ${ }^{\text {i }}$ Proton signals on ferrocene rings. ${ }^{\text {ii }}$ Proton signals on the bridged DPPX ligands.

