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This Supporting Information provides details about the statistical data analysis methods and 

results that were not incorporated into the main body of the paper. 

 

ADDITIONAL STATISTICAL DATA ANALYSIS METHOD DETAILS 

Sample Counts and Detection Frequencies 

We used count functions in Excel to summarize the number of samples at 100-meter 

increments from 0 to 10,000 meters (10 km) from the nearest oil/gas well, coding non-detect 

measurements using a binary “censor indicator” of 0 for detected measurements and 1 for 

non-detect measurements. Non-detect measurements were defined as a reported result less 

than the MRL, which was either <0.005 mg/L (for 9.9% of the dissolved methane samples) 

or <0.026 mg/L (for 90.1% of the dissolve methane samples). We then used this field to 

compute the detection frequency within the 100-meter increments by dividing the number of 

detected measurements by the total number of samples (Equation S1). 

Detection	Frequency = 	 �������	��	��������	������ 	!��"�	#$%
������	��	������ & × 100 ,   (S1) 

We calculated the 95% confidence interval for the detection frequency using a normal 

approximation for the confidence interval of a population proportion according to Equation S2 

(Baron, 2007). 
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We also calculated the proportion of samples above threshold concentrations of 1, 5, and 10 

mg/L dissolved methane using Equation S3. The upper value of 10 mg/L was selected because it 

was the lower bound used by Jackson et al. (2013) to show the “action level for hazard 

mitigation” in their work. We used the additional threshold values of 1 and 5 mg/L dissolved 

methane to assess threshold levels between the MRL and 10 mg/L. We calculated the 95% 

confidence interval for the proportion of samples exceeding 1, 5, and 10 mg/L dissolved methane 

using a normal approximation for the confidence interval of a population proportion as shown 

above. 

Proportion	Above	Threshold = 	 �������	��	#�� �����B� 	C4,CE,��	C4F	�G/%
������	��	������ & × 100 , (S3) 

Statistical Tests 

1. Discrete y / Discrete x – Test of Proportions 

The test statistic for a two-sample Z-test comparing proportions of two populations of 

independent sample sizes n and m is (Baron, 2007): 
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 ,          (S4) 

where p1 and p2 are the proportions for the near and far group, respectively, D is defined as p1 – 

p2, n is the number of samples in Group 1, and m is the number of samples in Group 2. 

We implemented the test of proportions in Minitab, which uses Fisher’s exact test to compute the 

p-value (Minitab Statistical Software, 2010) and used four different threshold concentration 

criteria for dissolved methane: 

• Detected >MRL (regardless of whether the MRL was 0.005 or 0.026 mg/L); 

• Measured ≥ 1 mg/L;  

• Measured ≥ 5 mg/L; and 

• Measured ≥ 10 mg/L. 
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We used three different distance grouping in the test of proportions in contrast to Jackson, et al. 

(2013) which used only one distance group (1 km): 

• Group 1 ≤ 500 meters (0.5 km) vs. Group 2 > 500 meters (0.5 km); 

• Group 1 ≤ 1000 meters (1 km) vs. Group 2 > 1000 meters (1 km); and 

• Group 1 ≤ 1500 meters (1.5 km) vs. Group 2 > 1500 meters (1.5 km). 

 

The null (H0) and alternative (HA) hypotheses for the tests of proportions were: 

• H0: pGroup1 – pGroup2 = 0 

• HA: pGroup1 – pGroup2 > 0 

 

A p-value greater than 0.05 (the p-value used in this work to define “significance”) means that 

you cannot reject H0 and therefore believe that there is no difference in dissolved methane 

concentrations between the two groups (i.e., the difference is equal to zero).  

2. Discrete y / Continuous x – Logistic Regression 

We extended the test of proportions described above to a continuous x-variable (distance) using 

logistic regression. The binary logistic regression model is described using the following 

equation (Helsel and Hirsch, 2002; Helsel 2005; Gelman and Hill 2007): 

* = �Q�	3RSORHT6
4O�Q�	3RSORHT6,          (S5) 

where p is the probability of being detected or the probability of being measured above a 

threshold value (e.g., MRL, 1, 5, or 10 mg/L dissolved methane), β0 is the intercept parameter, β1 

is the slope parameter, and x is the natural log of the distance to the nearest oil/gas well. 

We implemented logistic regression in Minitab (Minitab Statistical Software, 2010) and used the 

same four threshold dissolved methane concentration criteria for the logistic regression that were 

used in the tests of proportions: 

• Detected >MRL (regardless of whether the MRL was 0.005 or 0.026 mg/L); 

• Measured ≥ 1 mg/L;  
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• Measured ≥ 5 mg/L; and 

• Measured ≥ 10 mg/L. 

3. Continuous y / Discrete x – Survival Analysis 

We implemented survival analysis in Minitab using the reliability/survival module (Minitab 

Statistical Software, 2010), which uses the Kaplan-Meier (K-M) method to compute percentiles 

by determining how many observations, detects, and non-detects are above, at, and below each 

detected observation. The technique makes no assumptions about the distribution of data (e.g., 

whether they follow a lognormal or other distribution); therefore, the K-M method is non-

parametric (Helsel, 2012). The log-rank and generalized Wilcoxon tests can then be used to 

compare the areas under the K-M-derived empirical cumulative distribution functions (ecdfs) 

and test for significance between groups. Therefore, survival analysis estimates a continuous 

ecdf of y, but uses a discrete grouping of samples based on x (distance from the nearest oil/gas 

well). Survival analysis can accommodate significant numbers of non-detect measurements and 

multiple MRLs, thus it is well-suited for this particular data set. 

We used the same three distance grouping in the survival analysis as in the tests of proportions: 

• Group 1 < 500 meters (0.5 km) vs. Group 2 ≥ 500 meters (0.5 km); 

• Group 1 < 1000 meters (1 km) vs. Group 2 ≥ 1000 meters (1 km); and 

• Group 1 < 1500 meters (1.5 km) vs. Group 2 ≥ 1500 meters (1.5 km). 

 

In all tests, the null (H0) and alternative (HA) hypotheses were: 

• H0: Group 1 = Group 2; and 

• HA: Group 1 ≠ Group 2. 

 

A p-value greater than 0.05 (the p-value used in this work to define “significance”) means that 

you cannot reject H0 and therefore believe that there is no difference in dissolved methane 

concentrations between the two groups. 
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4. Continuous y / Continuous x – Correlation 

Neither Pearson’s r nor Spearman’s rho are appropriate for this data set due to the presence of 

two MRLs. However, for comparison purposes with Jackson et al. (2013), we calculated the 

following correlation coefficients in Minitab using the basic statistics/correlation module 

(Minitab Statistical Software, 2010): 

• Pearson’s r on original units where non-detects were substituted with the MRL (either 

0.005 or 0.026 mg/L); 

• Pearson’s r on log-transformed units where non-detects were substituted with the MRL 

(either 0.005 or 0.026 mg/L); 

• Spearman’s rho on original units where non-detects were substituted with the MRL 

(either 0.005 or 0.026 mg/L);  

• Spearman’s rho on detected measurements only (discarding all non-detect 

measurements); and 

• Spearman’s rho on original units where all measurements ≤0.026 mg/L dissolved 

methane were substituted with 0.026 mg/L. 

 

Alternatively, Kendall’s tau correlation coefficient can be computed for data with multiple 

MRLs (Helsel, 2005). Thus Kendall’s tau is the appropriate statistical measure of correlation for 

this data set. We used the “Ckend” macro in Minitab, written by Helsel (2012), to compute the 

nonparametric Kendall’s tau correlation coefficient. Given the high proportion of non-detect 

measurements in the data set and the multiple MRLs, the Kendall’s tau result is preferred over 

the other correlation coefficients.  
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ADDITIONAL STATISTICAL DATA ANALYSIS RESULTS 

Sample Counts 

Figure S1 shows the ecdfof the number of groundwater samples as a function of distance to the 

nearest oil/gas well from 0 to 10,000 meters (10 km). Sixty-seven percent (7,608 samples); 77% 

(8,691 samples); and 85% (9,625 samples) of the ground-water samples were collected at 

distances less than 500 meters (0.5 km), 1000 meters (1 km), and 1500 meters (1.5 km) of an 

oil/gas well, respectively. 

 

Figure S1. Empirical cumulative distribution function (ecdf) of the number of groundwater 

samples as a function of distance to the nearest oil/gas well. Dashed lines show the percentages 

of samples less than 500, 1000, and 1500 meters. 
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Proportions of Samples Above Threshold Concentrations 

Figure S2 shows the proportion of samples detected above the MRL (Figure S2a), ≥1 mg/L 

(Figure S2b), ≥5 mg/L (Figure S2c), and ≥10 mg/L (Figure S2d) dissolved methane at 100-meter 

increments from 0 to 10,000 meters (10 km) from the nearest oil/gas well. The square symbols 

represent either the detection frequency above the MRL (Figure S2a) or the proportion greater 

than or equal to the concentration threshold (i.e., ≥1 mg/L [Figure S2b]; ≥5 mg/L [Figure S2c]; 

or ≥10 mg/L [Figure S2d]). The vertical errors bars in all four panels represent the 95% 

confidence interval. The wide confidence intervals for samples that were collected beyond ~3500 

meters reflect the smaller number of samples at these distances. 

There were 24.2% detected measurements (2,740 of 11,309 samples) in the entire data record. 

There is no visible increase in the detection frequency closer to oil/gas wells (Figure S2a). There 

was no visible increase in the proportion of samples exceeding 1, 5, or 10 mg/L dissolved 

methane closer to oil/gas wells (Figures S2b, c, and d).  We test our interpretation of visual 

comparisons using our statistical analysis. 
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Figure S2. Proportion of samples detected above the MRL (top left [a]), ≥1 mg/L (top right [b]), ≥5 mg/L (lower left [c]), and ≥10 

mg/L (lower right [d]) dissolved methane at 100-meter increments from 0 to 10,000 meters (10 km) from the nearest oil/gas well. The 

square symbols represent the percent greater than or equal to the threshold and the vertical errors bars represent the 95% confidence. 

The wide confidence intervals for samples that were collected beyond ~3500 meters reflect the smaller numbers of samples at these 

distances.
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Logistic Regression 

Table S1 provides the fitted coefficients and standard errors of the four logistic regression 

models. Figure S3 shows a scatterplot of the binary y-variable versus distance from the nearest 

oil/gas well with the fitted logistic regression curves. There were four different response models: 

• Model 1: 0 for non-detected and 1 for detected above the MRL (either 0.005 or 0.026 

mg/L) [Figure S3a]; 

• Model 2: 0 for <1 mg/L and 1 for ≥1 mg/L dissolved methane (Figure S3b); 

• Model 3: 0 for <5 mg/L and 1 for ≥5 mg/L dissolved methane (Figure S3c); and 

• Model 4: 0 for <10 mg/L and 1 for ≥10 mg/L dissolved methane (Figure S3d). 

 

Equation S5 can be used to solve for p (the proportion) given x (the distance from an oil or gas 

well) using the fitted parameter estimates for β0 and β1 from Table S2. The process is analogous 

to the fitted intercept and slope from linear regression; however, in logistic regression Equation 

S5 ensures that the model is linear for a proportion, which is limited to the bounds between 0 and 

1. For example, at 500, 1000, and 1500 meters (0.5, 1.0, and 1.5 km, respectively) the probability 

of detection above the MRL would be: 

px=500 = exp(-1.097 – 0.0073×100) / [1 + exp(-1.097 – 0.0073×100)]  = 0.24 

px=1000 = exp(-1.097 – 0.0073×1000) / [1 + exp(-1.097 – 0.0073×1000)]  = 0.24 

px=1500 = exp(-1.097 – 0.0073×1500) / [1 + exp(-1.097 – 0.0073×1500)]  = 0.24 

The probabilities of detection of dissolved methane above the MRL do not increase as you get 

closer to the oil/gas well. 

At 500, 1000, and 1500 meters (0.5, 1.0, and 1.5 km, respectively) the probability of exceeding 

10 mg/L dissolved methane would be: 

px=500 = exp(-4.678 + 0.1578×100) / [1 + exp(-4.678 + 0.1578×100)]  = 0.02 

px=1000 = exp(-4.678 + 0.1578×1000) / [1 + exp(-4.678 + 0.1578×1000)]  = 0.03 

px=1500 = exp(-4.678 + 0.1578×1500) / [1 + exp(-4.678 + 0.1578×1500)]  = 0.03 
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The probabilities of exceeding 10 mg/L dissolved methane do not increase as you get closer to 

the oil/gas well from these equations. Similar results can be shown for the ≥1 and ≥5 mg/L 

dissolved methane concentration thresholds (calculations not shown). 

Table S1. Fitted parameters of a logistic regression for each of the four models as a function of 

ln(Distance) from the nearest oil/gas well in meters. 

Model Term Coefficient 
Standard 

Error 

Approximate 95% 

Confidence Interval 

Lower Upper 

% Detects 
Β0 (constant) -1.10 0.13 -1.35 -0.85 

Β1 (ln[Distance]) -0.01 0.02 -0.05 0.03 

% ≥1 mg/L 
Β0 (constant) -2.44 0.19 -2.81 -2.07 

Β1 (ln[Distance]) 0.02 0.03 -0.04 0.08 

% ≥5 mg/L 
Β0 (constant) -3.74 0.26 -4.26 -3.22 

Β1 (ln[Distance]) 0.11 0.04 0.03 0.19 

% ≥10 mg/L 
Β0 (constant) -4.68 0.35 -5.37 -3.98 

Β1 (ln[Distance]) 0.16 0.06 0.05 0.27 
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Figure S3.  Results of binary logistic regression for percent detections above the MRL (top left [a]); % ≥1 mg/L (top right [b]); % ≥5 

mg/L (bottom left [c]); and % ≥10 mg/L dissolved methane (bottom right [d]).  
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