Supporting Information

Investigation of the Curvature Induction and Membrane Localization of the Influenza Virus M2 Protein Using Static and Off-Magic-Angle Spinning Solid-State NMR of Oriented Bicelles

Tuo Wang and Mei Hong*

Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139

³¹P anisotropic chemical shift (ppm)

Figure S1. Static ³¹P spectra of DMPC/6-O-PC bicelles. (a) Control sample without M2. (b) M2(22-46)-containing bicelles. (c) M2(21-61)-containing bicelles. M2(21-61) causes an isotropic peak that is absent in the M2(22-46) sample.

Figure S2. 1D ¹³C CP (a) and double-quantum filtered (b) spectra of M2(21-61)-containing DMPC/DHPC bicelles at 253 K under 5 kHz MAS. The ¹³C isotropic chemical shifts of the TM residues correspond to α -helical conformations, indicating that the TM domain adopts the same helical structure in the bicelle as in multilamellar liposomes.

Figure S3. Dephasing of peptide signals by ${}^{13}C-{}^{1}H$ dipolar coupling. A 100 µs dipolar filter removed the L26 C β signal and significantly suppressed the I35 C δ 1 intensity. A mixing period (t_m) of 100 ms restored the peptide ${}^{13}C$ signals by transferring ${}^{1}H$ magnetization from lipids to peptide.