## **Supporting Information**

# Molecular Mechanism of Avibactam Mediated β-Lactamase Inhibition

Dustin T. King<sup>‡,1</sup>, Andrew M. King<sup>‡,2</sup>, Sarah M. Lal<sup>2</sup>, Gerard D. Wright<sup>\*,2</sup>, Natalie C.J. Strynad-ka<sup>\*,1</sup>

<sup>‡</sup>These authors contributed equally

<sup>1</sup>The Department of Biochemistry and Molecular Biology and Center for Blood Research, University of British Columbia. 2350 Health Sciences Mall, Vancouver, British Columbia, V6T 1Z3, Canada

<sup>2</sup>M.G. Department of Biochemistry and Biomedical Sciences and the Department of Chemistry, DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, L8S 4K1, Canada

## TABLE OF CONTENTS

| MethodsS                                                                                              | 32 |
|-------------------------------------------------------------------------------------------------------|----|
| Dynamic light scatteringS                                                                             | 32 |
| LC-MS analysis of avibactam-CTX-M-15 mutantsS                                                         | 2  |
| Protein expression and purification for crystallographic studiesS                                     | 2  |
| TablesS                                                                                               | 3  |
| Table S1. Data collection and refinement statisticsS                                                  | 3  |
| Table S2. Primers used in this study. Underline shows restriction sitesSa                             | 4  |
| Table S3. Kinetic values for the hydrolysis of nitrocefin by CTX-M-15 mutantsS                        | 5  |
| FiguresS                                                                                              | 6  |
| Figure S1. Carbamyl-avibactam bound CTX-M-15 active site detailsS                                     | 6  |
| Figure S2. Avibactam electron density for carbamylated CTX-M-15, OXA-48 and OXA-10S                   | 57 |
| Figure S3. CTX-M-15 variants are stable in solutionS                                                  | 8  |
| Figure S4. Interactions between avibactam and active site residues in OXA-48 and OXA-10S              | 9  |
| Figure S5. Carboxylation of the SXXK lysine in OXA-48 and OXA-10S10                                   | 0  |
| Figure S6. Comparison of carbamyl-avibactam CTX-M-15, OXA-48 and AmpC co-crystal structuresS          | 11 |
| Figures 7-16. ESI-LC-MS trace overlays of avibactam incubated with $\beta$ -lactamase at pH 7.5S12-S2 | 21 |
| ReferencesS2                                                                                          | 2  |

#### METHODS

#### Dynamic light scattering.

Dynamic light scattering was performed using a Zetasizer NanoS (Malvern Instruments). All measurements were taken using a 12  $\mu$ L quartz cell (ZEN2112) at 25°C. Size distribution of the samples was calculated based on the correlation function provided by the Zetasizer Nano S software.

#### LC-MS analysis of avibactam-CTX-M-15 mutants.

LC-ESI-MS data were obtained by using an Agilent 1100 Series LC system (Agilent Technologies Canada, Inc.) and a QTRAP LC/MS/MS System (Applied Biosystems). The reverse phase HPLC was performed using  $C_{18}$  column (SunFire C18 5 µm, 4.6x50 mm, Waters) with Agilent 1100 LC binary pump at a flow rate of 1 mL/min, under the following conditions: isocratic 5% solvent B (0.05% formic acid in acetonitrile) and 95% solvent A (0.05% formic acid in water) for 1 min, followed by a linear gradient to 97% B over 10 min. CTX-M-15 WT, K73A, N104A, S130A, N132A, E166Q, K234A; and KPC-2 (7 µM) were incubated with 14 µM avibactam in buffer containing 30 mM HEPES pH 7.5, 300 mM NaCl, and 20 % v/v glycerol and analyzed at both 0 h and 24 h.

#### Protein expression and purification for crystallographic studies.

The *P. aeruginosa* OXA-10 protein (UniProt ID: P14489) corresponding to the mature sequence (20-266) was cloned, overexpressed and purified as previously described <sup>1</sup>.

The E. coli CTX-M-15 and Klebsiella pneumoniae OXA-48 expression vectors were constructed as described above. The expression vectors were then transformed into E. coli BL21 DE3 cells. The cells were grown in Lauria Bertani (LB) broth at 37°C until an OD<sub>600</sub> of 0.7 was reached at which point the culture was cooled to room temperature. Protein expression was induced by addition of 1mM isopropyl  $\beta$ -D-1-thiogalactopyranoside (IPTG) and the cultures were grown at 22°C for 12-16 hours. The cells (~20g) were then harvested and resuspended in 50mL lysis buffer (50mM Tris, pH 7.5, 350mM NaCl, and one complete, EDTA-free protease inhibitor tablet from Roche). The cells were lysed by two passes on a French Press at ~12,000 p.s.i., and the lysate was centrifuged (45,000 rpm in a Beckman 70 Ti rotor) for 35 minutes. The supernatant was then filtered using a 0.22  $\mu$ M syringe filter and passed through a 1mL Hi-Trap HP His column, which was pre-equilibrated in lysis buffer. Elution buffer (50 mM Tris, pH 7.5, 350mM NaCl, 1M imidazole) was used to elute the His-tagged proteins from the column with a gradient of imidazole from 0 to 500mM in 50 minutes. Fractions enriched in the protein of interest were pooled and 1U/mL of bovine  $\alpha$ -thrombin (Roche) was added and the samples were incubated overnight at 4°C. Samples were then exchanged via a 10 kDa cut-off Amicon centrifugation concentrator into crystallization buffer (20mM Tris, pH 7.5, 100mM NaCl). Samples were passed over a Superdex 200 column using crystallization buffer, as running buffer and pooled fractions were concentrated to 30 mg/mL for CTX-M-15, 50 mg/mL for OXA-48 and 10mg/mL for OXA-10.

#### **TABLES**

Table S1. Data collection and refinement statistics.

|                                    | CTX-M-15-<br>AVI | OXA-10-AVI         | OXA-48-<br>AVI8.5                       | OXA-48-<br>AVI7.5 | OXA-48-<br>AVI6.5 | OXA-48-<br>Native               |
|------------------------------------|------------------|--------------------|-----------------------------------------|-------------------|-------------------|---------------------------------|
| Data collection                    | AVI              |                    | Av10.5                                  | Av1/.5            | Av10.5            | nauve                           |
| Space group                        | $P2_1$           | $P2_{1}2_{1}2_{1}$ | $P_{3_2}$                               | $P_{3_2}$         | $P_{2_12_12_1}$   | P22 <sub>1</sub> 2 <sub>1</sub> |
| Cell dimensions                    |                  | 1 212121           | 1 32                                    | 1 32              | 1 212121          | 1 22121                         |
| <i>a</i> , <i>b</i> , <i>c</i> (Å) | 62.0, 60.6,      | 48.6, 96.5,        | 142.0, 142.0,                           | 142.8, 142.8,     | 64.1, 108.1,      | 43.4, 102.9,                    |
| u, 0, 0 (1)                        | 71.5             | 125.7              | 52.4                                    | 52.4              | 162.8             | 124.7                           |
| <mark>nnnnnnnnn l</mark>           | 90, 104, 90      | 90, 90, 90         | 90, 90, 120                             | 90, 90, 120       | 90, 90, 90        | 90, 90, 90                      |
|                                    | 90, 104, 90      | 90, 90, 90         | 90, 90, 120                             | 90, 90, 120       | 90, 90, 90        | 90, 90, 90                      |
| Resolution (Å)                     | 34.7-1.6 (1.69-  | 52.66-1.70         | 46.64-2.00                              | 52.42-2.10        | 65.03-2.54        | 41.6-1.70                       |
|                                    | 1.60)            | (1.73-1.70)        | (2.11-2.00)                             | (2.21-2.10)       | (2.65-2.54)       | (1.73-1.70)                     |
| $R_{\rm merge}$                    | 0.052(0.296)     | 0.040(0.290)       | 0.090(0.295)                            | 0.096(0.457)      | 0.065(0.150)      | 0.055(0.424)                    |
| $I / \Box I$                       | 13.7(3.5)        | 24.5(5.2)          | 6.1(2.9)                                | 8.5(2.9)          | 12.7(6.1)         | 12.1(2.3)                       |
| Completeness (%)                   | 96.7(95.2)       | 98.0(99.9)         | 99.2(99.4)                              | 99.8(100.0)       | 91.2(91.4)        | 99.7(99.9)                      |
| Redundancy                         | 3.9(3.9)         | 4.8(4.9)           | 2.5(2.5)                                | 3.4(3.4)          | 4.0(3.8)          | 5.0(4.9)                        |
| reduirduirey                       | 3.9(3.9)         | 4.0(4.9)           |                                         | 5.4(5.4)          | 4.0(0.0)          | 5.0(4.9)                        |
| Refinement                         |                  |                    |                                         |                   |                   |                                 |
| Resolution (Å)                     | 34.7-1.60        | 52.66-1.70         | 46.64-2.00                              | 52.42-2.10        | 65.03-2.54        | 41.6-1.70                       |
| No. reflections                    | 65645(9368)      | 64493(3478)        | 76256(11167)                            | 69650(10200       | 34471(4158)       | 62226(3297)                     |
|                                    | 0 100,00 /       |                    | , , , , , , , , , , , , , , , , , , , , | )                 |                   |                                 |
| Rwork / Rfree                      | 0.165/0.198      | 0.185/0.230        | 0.171%/0.205                            | 0.172/0.205       | 0.184/0.222       | 0.192/0.226                     |
| Avibactam occupancy                | 1.00, 1.00       | 1.00, 1.00         | 0.70, 0.70,                             | 1.00, 1.00,       | 1.00, 1.00,       | N/A, N/A                        |
| chainA, chainB, etc.               |                  |                    | 1.00, 1.00                              | 1.00, 1.00        | 1.00, 1.00        |                                 |
| No. atoms                          |                  |                    |                                         |                   |                   |                                 |
| Protein                            | 3930             | 3957               | 8000                                    | 8043              | 7972              | 3963                            |
| Ligand/ion                         | 34               | 38                 | 68                                      | 68                | 68                | N/A                             |
| Water                              | 549              | 468 💭              | 362                                     | 480               | $203 \bigcirc$    | 372                             |
| B-factors                          |                  |                    |                                         |                   |                   |                                 |
| Protein                            | 17.8             | 22.6               | 40.2                                    | 30.3              | 34.1              | 27.2                            |
| Ligand/ion                         | 17.8             | 17.5               | 36.7                                    | 22.4              | 35.4              | N/A                             |
| Water                              | 27.4             | 28.7               | 37.6                                    | 32.3              | 29.2              | 35.4                            |
| R.m.s. deviations                  |                  |                    |                                         |                   |                   |                                 |
| Bond lengths (Å)                   | 0.012            | 0.012              | 0.014                                   | 0.012             | 0.011             | 0.014                           |
| Bond angles (°)                    | 1.62             | 1.70               | 1.72                                    | 1.68              | 1.49              | 1.53                            |
| Favored/allowed/                   |                  | ,                  |                                         |                   |                   |                                 |
| disallowed (%)+                    | 98.2, 1.4, 0.4   | 97.8, 2.0, 0.2     | 97.6, 2.4, 0.0                          | 97.2, 2.8, 0.0    | 97.9, 2.1, 0.0    | 97.7, 2.3, 0.0                  |

\*All datasets correspond to diffraction data collected from a single crystal. \*Values in parentheses are for highest-resolution shell. \*Avibactam (AVI)

\*phenix.ramalyze; "allowed" is the percentage remaining after "favored" and "outlier" residues are subtracted.

| Primer        | Sequence (5'-3')                                  |  |  |  |
|---------------|---------------------------------------------------|--|--|--|
| CTX-M-15 F    | AATAT <u>CATATG</u> CAAACGGCGGACGTACAGCA          |  |  |  |
| CTX-M-15 R    | TATTA <u>GAATTC</u> TTACCGTCGGTGACGATTTTAGCC      |  |  |  |
| OXA-48 F      | GCTT <u>CATATG</u> GAATGGCAAGAAAACAAAGTTGGAATGCT  |  |  |  |
| OXA-48 R      | CGTA <u>CTCGAG</u> CTAGGGAATAATTTTTTCCTGTTTGAGCAC |  |  |  |
| K73A F        | GCGATGTGCAGCACCAGTGCGGTGATGG                      |  |  |  |
| K73A R        | CGCTACACGTCGTGGTCACGCCACTACC                      |  |  |  |
| N104A F       | CGAGTTGAGATCAAAAAATCTGACCTTGTTGCGTATAATCCGATTGC   |  |  |  |
| N104A R       | GCTCAACTCTAGTTTTTTAGACTGGAACAACGCATATTAGGCTAACG   |  |  |  |
| S130A F       | CGCTACAGTACGCGGATAACGTGGCGATGAATAAGC              |  |  |  |
| S130A R       | GCGATGTCATGCGCCTATTGCACCGCTACTTATTCG              |  |  |  |
| N132A F       | GCTACAGTACAGCGATGCGGTGGCGATGAATAAGC               |  |  |  |
| N132A R       | CGATGTCATGTCGCTACGCCACCGCTACTTATTCG               |  |  |  |
| E166Q F       | GCTGGGAGACGAAACGTTCCGTCTCGACC                     |  |  |  |
| E166Q R       | CGACCCTCTGCTTTGCAAGGCAGAGCTGG                     |  |  |  |
| K234A F       | GGTTGTGGGGGGATGCGACCGGCAGC                        |  |  |  |
| K234A R       | CCAACACCCCCTACGCTGGCCGTCG                         |  |  |  |
| T7 terminator | GCTAGTTATTGCTCAGCGG                               |  |  |  |

Table S2. Primers used in this study. Underline shows restriction sites.

| Parameter                                                | WT                    | K73A                  | N104A                 | S130A                 | N132A                 | E166Q                 | K234A                 |
|----------------------------------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| <i>K</i> <sub>m</sub> (μM)                               | 9.9                   | 13                    | 11                    | 33                    | 6.2                   | 8.3                   | 2.6                   |
| $k_{\rm cat}$ (s <sup>-1</sup> )                         | 57                    | 4.1                   | 85                    | 270                   | 55                    | 0.06                  | 4.0                   |
| $k_{ m cat}/K_{ m m}$ (M <sup>-1</sup> S <sup>-1</sup> ) | 5.8 x 10 <sup>6</sup> | 3.1 x 10 <sup>5</sup> | 8.2 x 10 <sup>6</sup> | 8.2 x 10 <sup>6</sup> | 8.8 x 10 <sup>6</sup> | 7.9 x 10 <sup>3</sup> | 1.6 x 10 <sup>6</sup> |

Table S3. Kinetic values for the hydrolysis of nitrocefin by CTX-M-15 mutants.

#### **FIGURES**

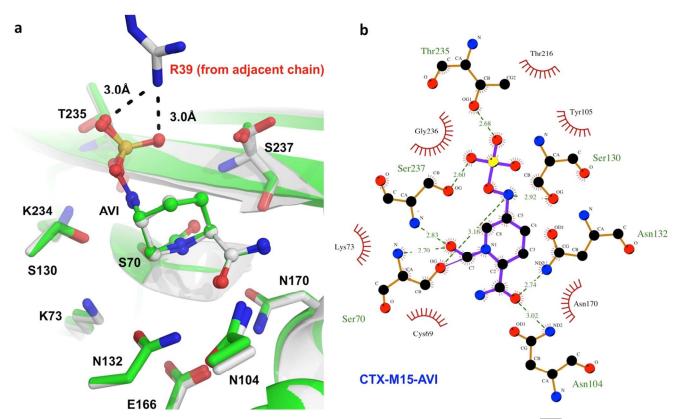



Figure S1. Carbamyl-avibactam bound CTX-M-15 active site details. (a) Active site overlay arbamyl-avibactam CTX-M-15 complete in spacegroups P2<sub>1</sub>2<sub>1</sub>2<sub>1</sub> (PDB ID: 4HBU) <sup>2</sup>, and P2<sub>1</sub> (PDB ID: XXXX). Carbon atoms for the 4HBU and XXXX active site residues and avibactam are displayed in grey and green, with all other non-carbon atoms colored by type (N, blue; O, red; S, yellow). The 4HBU and XXXX (C) K-M-15 protein backbones are displayed as grey and green cartoons. (b) Protein-ligand interactions between CTX-M-15 and avibactam depicted in monomer A using LigPlot<sup>+ 3</sup>. Avibactam and CTX-M-15 are displayed as purple and orange sticks with atoms colored by type. Hydrogen bonding and electrostatic interactions are shown as green dashes. Ligand-protein hydrophobic contacts are shown as curved red combs.

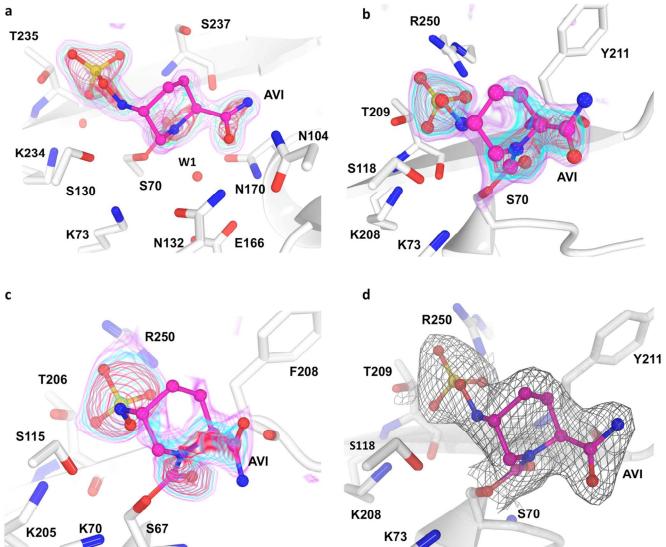



Figure S2. Avibactam electron density for carbamylated CTX-M-15, OXA-48 and OXA-10 crystal structures. In ac, the  $F_0$ - $F_c$  ligand omit maps are contoured at 3.0, 4.0 and 5.0  $\sigma$  and are shown as pink, cyan and red transparent surfaces. (a) Carbamyl-avibactam CTX-M-15 ligand omit  $F_0$ - $F_c$  electron density. The CTX-M-15 cartoon is shown in white with selected active site residues displayed in stick representation and non-carbon atoms are colored by type. (b) and (c), Carbamyl-avibactam OXA-48-AVI7.5 and OXA-10 ligand omit  $F_0$ - $F_c$  electron density. In B and C, the OXA-48-AVI7.5 and OXA-10 protein backbones are shown in white cartoon representation with selected active site residues displayed as white sticks with non-carbon atoms colored by type. In all panels, the carbamylavibactam is represented as pink sticks with atoms colored by type. (d) Carbamyl-avibactam OXA-48-AVI7.5 final refined  $2F_0$ - $F_c$  electron density. The OXA-48-AVI7.5 protein and bound avibactam are displayed as in b. The  $2F_0$ - $F_c$  electron density map is contoured at 1.0 $\sigma$  and is displayed as a grey mesh.

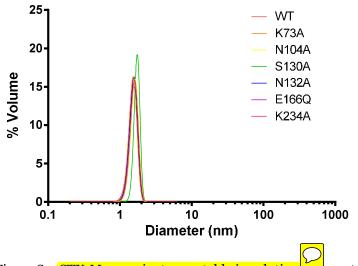
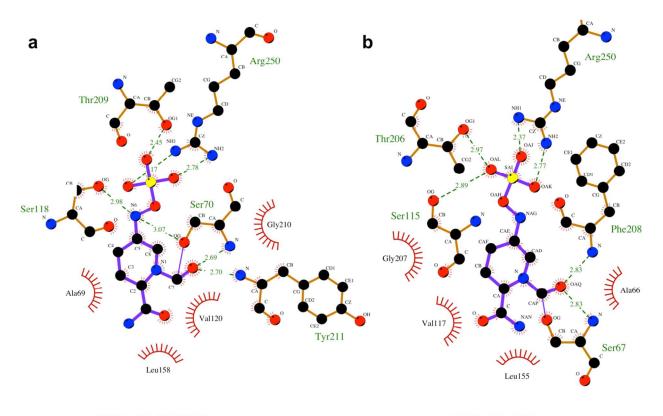




Figure S3. **CTX-M-15 variants are stable in solution**. Characterization of the particle size distribution for CTX-M-15 variants using dynamic light scattering.



OXA-48-AVI-7.5

OXA-10-AVI

Figure S4. Interactions between avibactam and active site residues in OXA-48 and OXA-10. (a) and (b), Chain Aavibactam interactions in OXA-48-AVI-7.5 and OXA-10-AVI crystal complexes designed using LigPlot<sup>+</sup> <sup>3</sup>. In all panels, the carbamyl-avibactam and active site residues are displayed as purple and orange sticks with atoms colored by type. Hydrogen bonding and electrostatic interactions are shown as green dashes. Ligand-protein hydrophobic contacts are displayed as curved red combs.

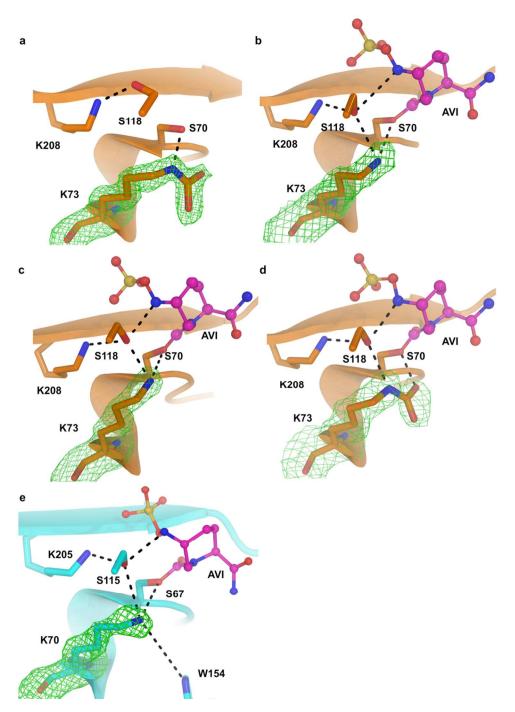



Figure S5. Carboxylation state of the SXXK lysine in OXA-48 and OXA-10. (a) Native OXA-48 (pH 7.5), chain A K73 omit  $F_0$ - $F_c$  electron density. The OXA-48 protein backbone is displayed as an orange cartoon with selected active site residues shown as sticks with all non-carbon atoms colored by type. The  $F_0$ - $F_c$  K73 omit electron density map is contoured at 3.00 and is shown as a green mesh. (b), (c) and (d) OXA-48-AVI6.5 (pH 6.5), OXA-48-AVI7.5 (pH 7.5) and OXA-48-AVI8.5 (pH 8.5), chain A K73 omit  $F_0$ - $F_c$  electron density. The OXA-48 protein backbone, active site residues and  $F_0$ - $F_c$  K73 omit electron density maps are shown as in A. The carbamyl-avibactam is represented as pink sticks with all non-carbon atoms colored by type. (e) OXA-10-AVI (pH 6.5) chain A K70 omit  $F_0$ - $F_c$  electron density map. The OXA-10 protein backbone is displayed in cyan cartoon representation with selected active site residues shown as sticks with all non-carbon atoms colored by type. The  $F_0$ - $F_c$  K70 omit electron density map is represented as in a. The carbamyl-avibactam is represented as in b.

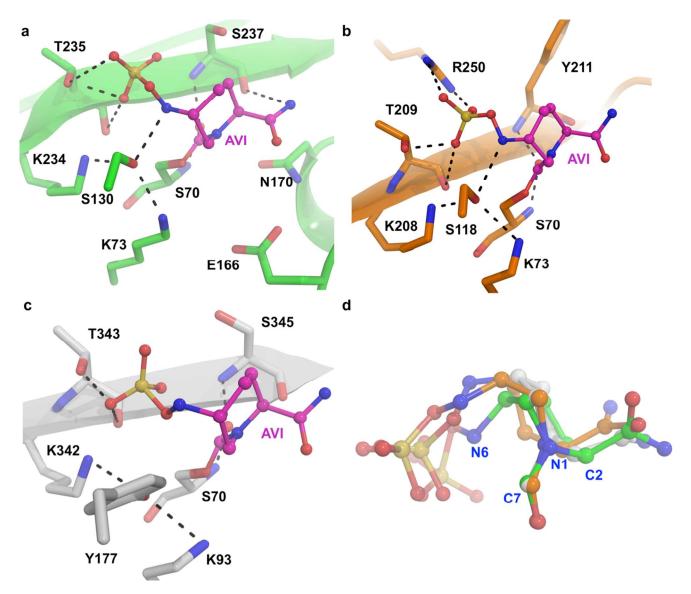
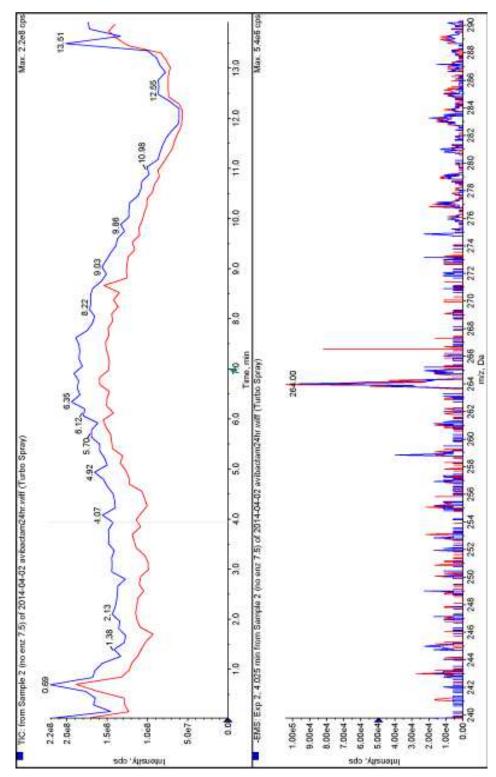
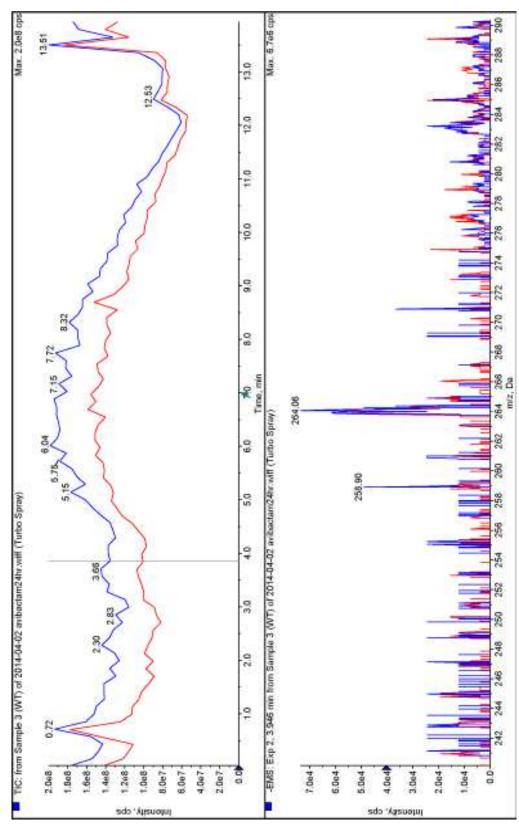
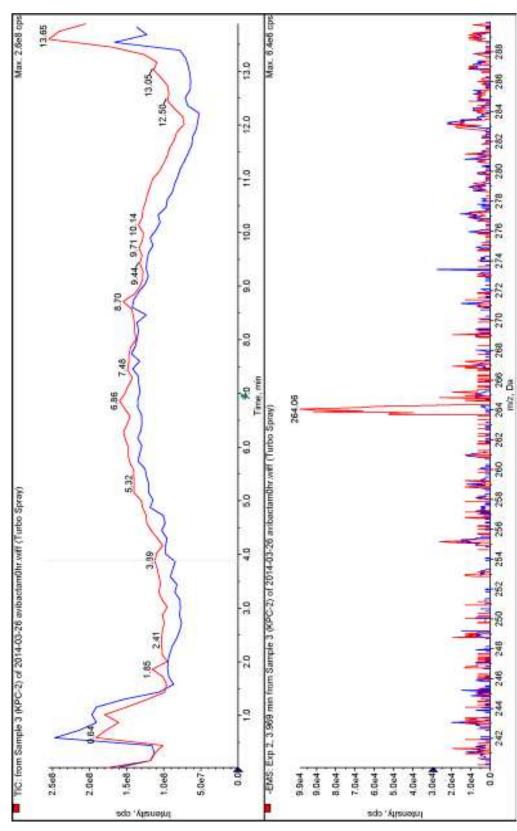
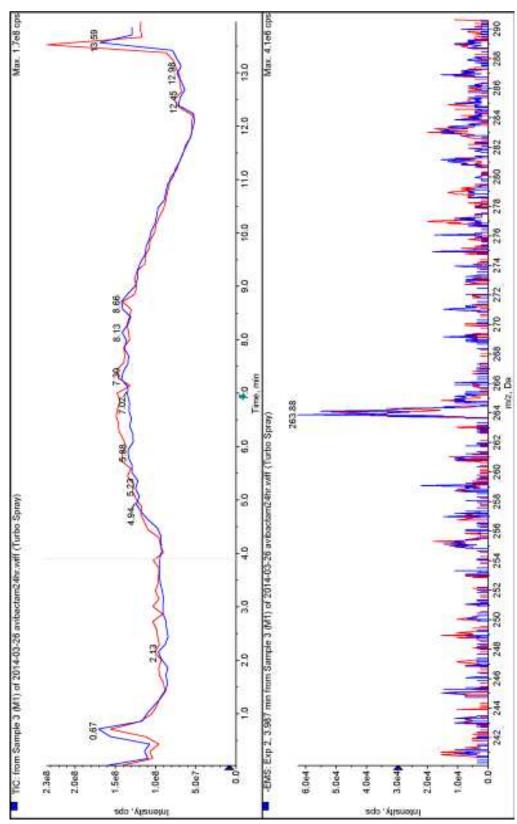




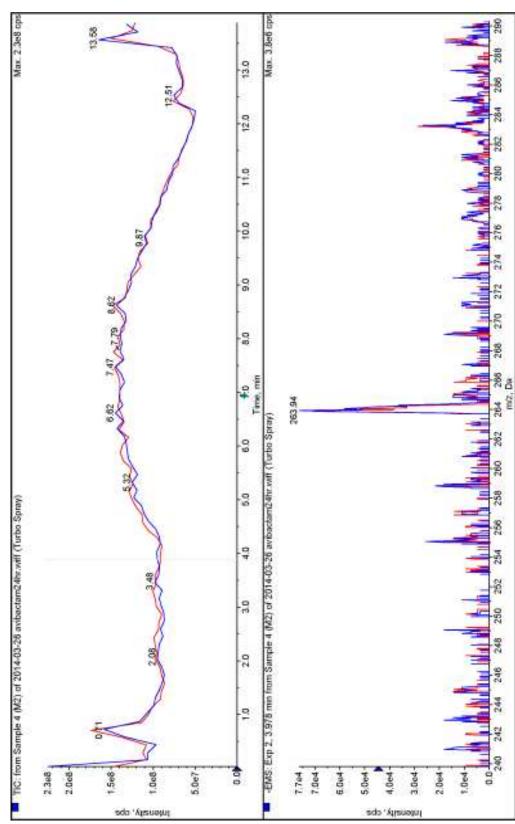

Figure S6. Comparison of carbamyl-avibactam CTX-M-15, OXA-48 and AmpC co-crystal structures. (a) Active site close-up of carbamyl-avibactam CTX-M-15. The carbon atoms of avibactam are pink with non-carbon atoms colored by atom type. The avibactam bound CTX-M-15 protein chain is represented as a green cartoon, with key active site residues shown as sticks with atoms colored by type. (b) and (c) Active site overlay of carbamyl-avibactam OXA-48, and AmpC (PDB ID: 4HEF)<sup>2</sup>. In b and c, the bound avibactam is represented as in a. The OXA-48 and AmpC protein chains are illustrated as orange and grey cartoons, and active site residues are depicted as sticks with non-carbon atoms pred by type. In a-c, hydrogen bonding and electrostatic interactions are shown as black dashes. (d) Overlay Carbamyl-avibactam from the CTX-M-15, OXA-48 and AmpC co-crystal structures (PDB ID's: XXXX, XXXX, 4HEF)<sup>2</sup>. Carbamyl-avibactam from the CTX-M-15, OXA-48 and AmpC structures are displayed as green, orange and white sticks with all non-carbon atoms colored by type. The carbamyl-avibactam CTX-M-15, oxa-48 and AmpC structures are displayed as green, orange and white sticks with all non-carbon atoms colored by type. The carbamyl-avibactam C7 carbon, carbonyl oxygen and N1 atoms were fixed in the exact same positions.


Figures S7-S16. ESI-LC-MS trace overlays of avibactam incubated with  $\beta$ -lactamase as noted at pH 7.5 (Figs S7-S15). Samples were analyzed at 0 hours (red trace) and 2 pure (blue trace). Avibactam remains intact in all samples with the exception of KPC-2 and no enzyme pH 8.5

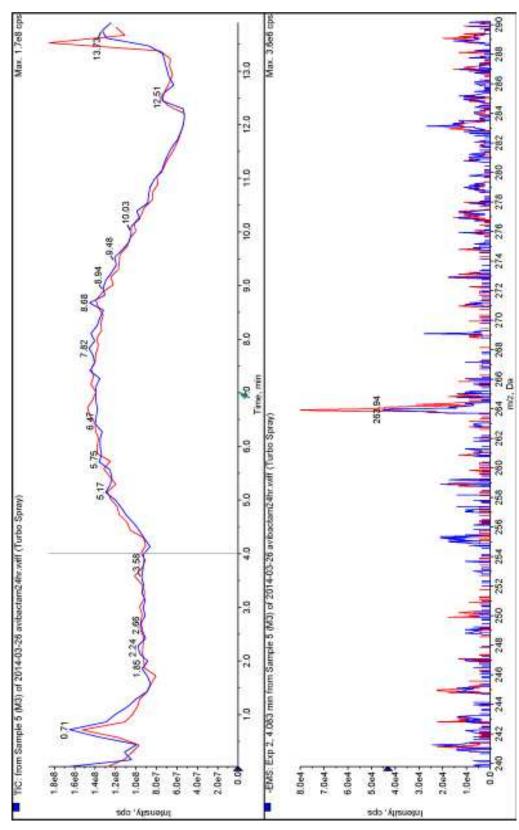
#### No enzyme





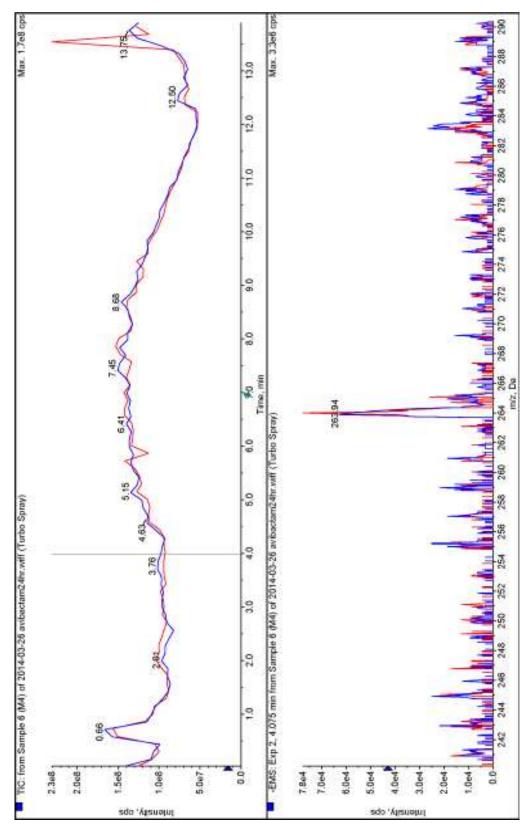


## CTX-M-15



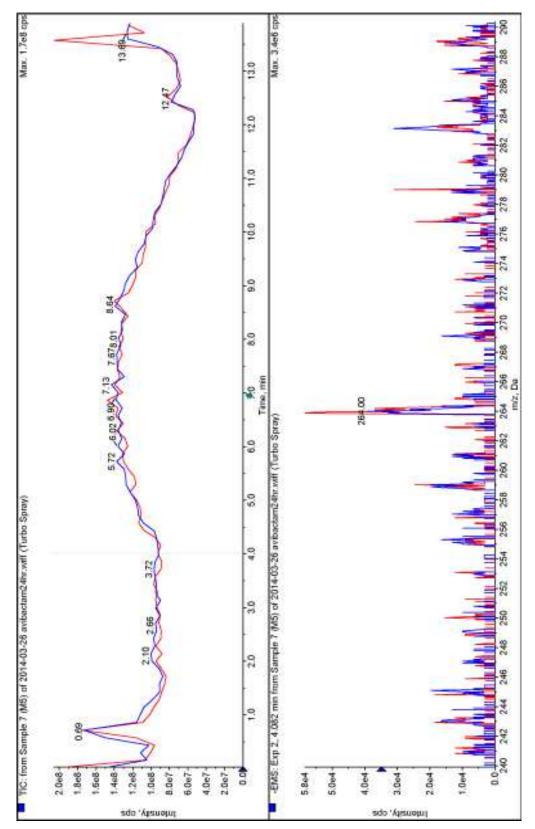

#### KPC-2



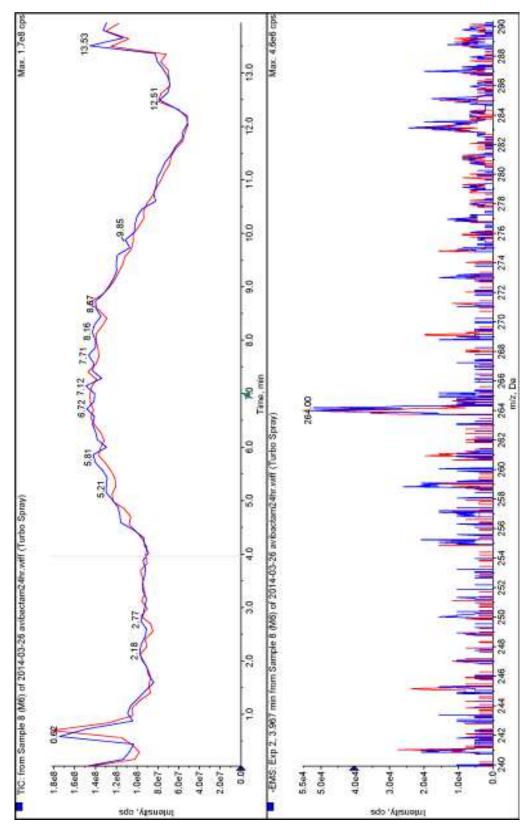
## CTX-M-15 K73A



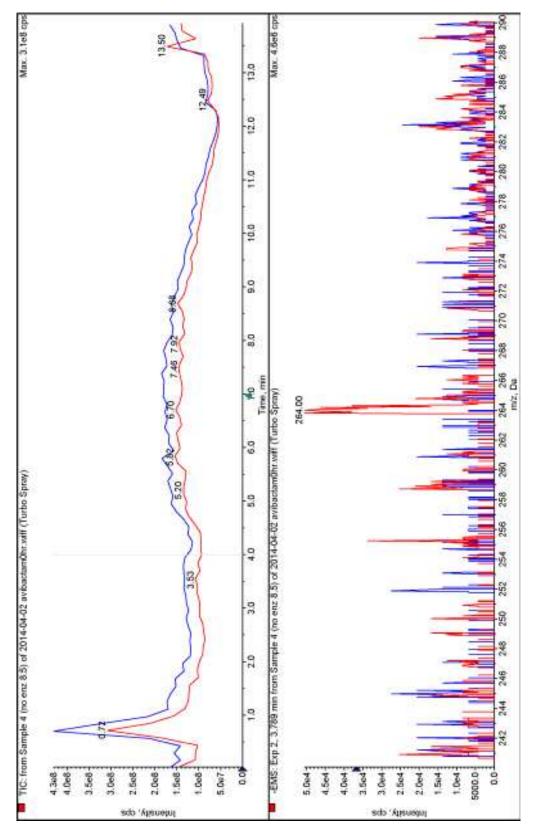

## CTX-M-15 N104A




## CTX-M-15 S130A


### CTX-M-15 N132A




## CTX-M-15 E166Q



### CTX-M-15 K234A



## No enzyme (pH 8.5)



#### REFERENCES

1. Paetzel, M.; Danel, F.; de Castro, L.; Mosimann, S. C.; Page, M. G.; Strynadka, N. C., Crystal structure of the class D beta-lactamase OXA-10. *Nat Struct Biol* **2000**, *7*(10), 918-25.

2. Lahiri, S. D.; Mangani, S.; Durand-Reville, T.; Benvenuti, M.; De Luca, F.; Sanyal, G.; Docquier, J. D., Structural insight into potent broad-spectrum inhibition with reversible recyclization mechanism: avibactam in complex with CTX-M-15 and Pseudomonas aeruginosa AmpC  $\beta$ -lactamases. *Antimicrob Agents Chemother* **2013**, *57* (6), 2496-505.

3. Laskowski, R. A.; Swindells, M. B., LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. *J Chem Inf Model* **2011**, *51* (10), 2778-86.