Biodegradable and pH-Responsive Nanoparticles Designed for Site-Specific Delivery in Agriculture

Megan R. Hill,[†] Elliot J. Mackrell,[†] Carl P. Forsthoefel,[†] Shaun P. Jensen,[‡] Mingsheng Chen,^{†, §} Gloria Moore,[‡] Zhenli L. He,[§] Brent S. Sumerlin*[†]

[†]George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science and Engineering, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida, 32611, United States

[‡] Horticultural Sciences Department, University of Florida, P.O. Box 110690, Gainesville, Florida, 32611, United States

[§]Institute of Food and Agricultural Sciences, University of Florida, 2199 South Rock Road, Fort Pierce, Florida 34945, United States

Email: sumerlin@chem.ufl.edu

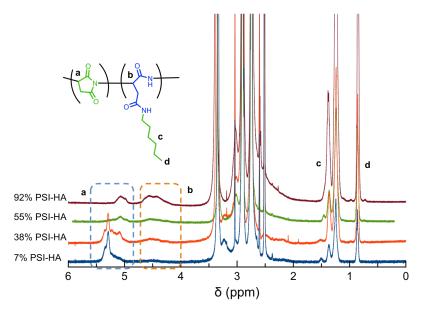
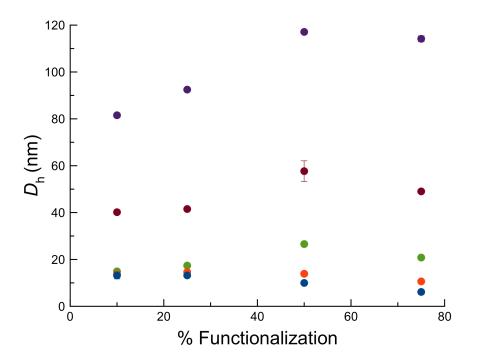
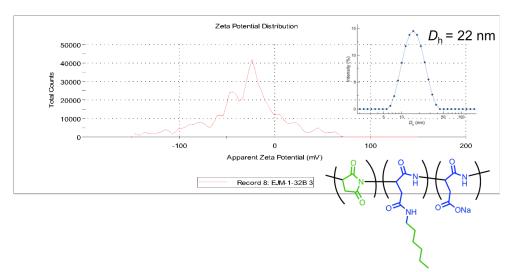
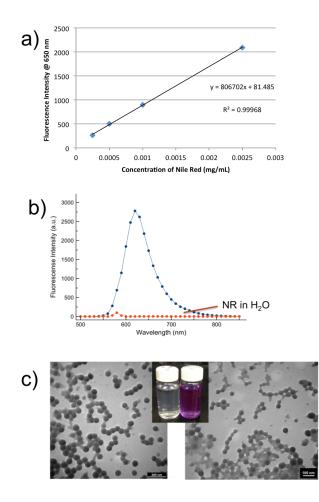
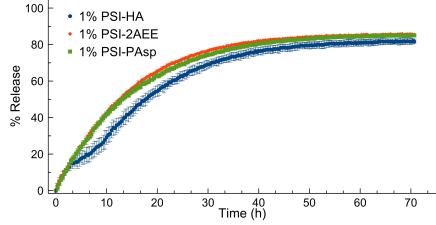



Figure S1. 1H NMR spectra of PSI-HA copolymers with functionalization 7-92%.

Figure S2. Hydrodynamic diameter (D_h (nm) as determined by DLS) of PSInanoparticles versus percent functionalization with HA for nanoparticles precipitated at different concentrations (•100 mg/mL, •50 mg/mL, • 20 mg/mL, •10 mg/mL, and •5 mg/mL).

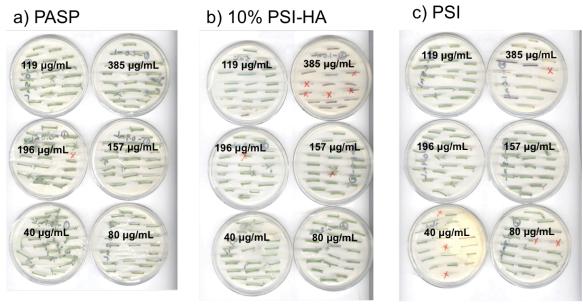

Figure S3. Zeta potential and DLS size distribution for 15% PSI-HA with 1% hydrolysis

Figure S4. (a) Fluorescence calibration of Nile Red in DMF with $\lambda_{\text{excitation}} = 530$ nm and $\lambda_{\text{emission}} = 650$ nm, (b) Fluorescence intensity of loaded 1% PSI-HA nanoparticles compared to Nile red in water and, (c) TEM images of 50% PSI-HA nanoparticles before Nile red loading (left, clear), and after loading (right, pink).

Figure S5. Release of Nile Red with varying functionalizing moieties (1% functionalization PSI-HA, PSI-2AEE, and PSI-PAsp)

Figure S6. Plant tissue toxicity study of various polymer concentrations after 21 days of (a) PASP, (b) 10% PSI-HA, and (c) PSI