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We demonstrate the main idea behind Hockney’s algorithm [1, 2] for solving Poisson’s equation for functions with
local support. For clarity we present the algorithm in one dimension, and its generalization to a three-dimensional
calculation is straightforward. Here we solve

−u′′(x) = f(x) (1)

on a one dimensional interval [0, 1] with periodic boundary condition. We assume that f has zero mean value, the
support of f is localized on a small interval of the computational domain, and we are only interested in the solution u
on the support of f . The domain is discretized via the equally spaced set of points x[j] = j/(N + 1) for j = 0, . . . , N
and that f is only nonzero for 0 ≤ j ≤ M − 1. We also assume that M < N/2, otherwise it would be more efficient
to simply solve the problem on the entire domain.

Solving this discrete version of Poisson’s equation in the entire domain may be achieved via convolving f with a
known kernel. Conceptually, one may view the kernel as the solution to Eq. (1) where the right hand side takes the
value one for j = 0 and zero otherwise. In fact, the Discrete Fourier Transform (DFT) of this kernel, given the chosen
discretization, is known exactly so it need not be computed. Let us denote the kernel in real space as g.

Numerically solving this problem amounts to computing the periodic discrete convolution of f with g. If we let
f [j] = f (xj) we may write the solution on the grid as

u[j] =

N∑
i=0

f [i]g[j − i] (2)

where we assume f and g are periodic such that they are well defined for any subscript. If we needed u[j] for
j = 0, . . . , N we would use the relationship between the DFT and periodic convolution coupled with the computational
efficiency of the FFT to compute u rapidly. However, here we only need to compute u[j] for j = 0, . . . ,M − 1.
Consequently we may write Eq. (2) as

u[j] =

M−1∑
i=0

f [i]g[j − i], (3)

which implies that the only values of g that we need are g[−M + 1], . . . , g[M − 1]. This observation allows us to write
u[j] for j = 0, . . . ,M−1 as the cyclic convolution of two vectors of length 2M. If we let f̃ [j] = f [j] for j = 0, . . . , 2M−1
and, using the periodicity of g,

g̃[j] =

{
g[j], j = 0, . . . ,M − 1

g[N − 2M + 1 + j], j = M, . . . , 2M − 1
(4)

we may write uj as

u[j] =

2M−1∑
i=0

f̃ [i]g̃[j − i]. (5)

For j = 0, . . . ,M−1 this formula yields the exact same values as in Eq. (2) and therefore we may compute the desired
values of u via FFTs of length 2M rather than N. We could have defined f̃ and g̃ to be longer and still achieve the
same result. In our situation we use this to avoid the additional cost of building several different instances of g̃ by
fixing the size of the small convolutions we use. We may also choose M to be dyadic, which is beneficial given the
use of the FFT. In practice, if the problem size N grows, but M remains fixed, then the cost of numerically solving
Poisson’s equation at the points of interest remains constant and independent of N .
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As an example, we solve the one dimensional Poisson’s equation on [0, 1], for f(x) localized in the interval [0, 0.2].
Fig. 1 (a) shows f(x), and Fig. 1 (b) shows the solution using full FFT on [0, 1], and using Hockney’s algorithm on
the double-sized interval [0, 0.4]. We observe that the solution provided by Hockney’s algorithm fully agrees with that
obtained from the full FFT on the interval of interest [0, 0.2], but the two solutions differ in the buffer interval [0.2, 0.4].
The computational cost of Hockney’s algorithm is strictly smaller due to the reduced size of the FFT required.
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FIG. 1: (a) f(x) for Poisson’s equation with support in the interval [0, 0.2]. (b) Solution u(x) obtained from
Hockney’s algorithm compared with the exact solution using FFT on the global domain [0, 1].
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