## Superconductivity in single crystals of $Lu_3T_4Ge_{13-x}$ (T = Co, Rh, Os) and $Y_3T_4Ge_{13-x}$ (T = Ir, Rh, Os) Supporting Information (SI)

Binod K. Rai<sup>†</sup>, Iain W. H. Oswald<sup>‡</sup>, Jiakui K. Wang<sup>†</sup>, Gregory T. McCandless<sup>‡</sup>, Julia Y. Chan<sup>‡</sup> and E. Morosan<sup>\*</sup>† <sup>†</sup>Department of Physics and Astronomy, Rice University, Houston, TX 77005, United States <sup>‡</sup> Department of Chemistry, University of Texas at Dallas, Richardson, Texas 75080, United States

(Dated: March 19, 2015)

\*E-mail address: emorosan@rice.edu Tel: (713)-348-2529

## I. ADP RATIO CALCULATIONS

The equation used to determine each materials' ADP ratio is given by: ADP ratio =  $U_{eq}(2a)/U_{eq}(T)$  where  $U_{eq}(2a)$  is the displacement parameter for the atom located at Wyckoff site 2a, and  $U_{eq}(T)$  is the displacement parameter for the transition metal element located at Wyckoff site 8e. In the case of displacement parameters in literature being reported in  $B_{iso}$  or  $B_{eq}$  rather than  $U_{eq}$ , the following equation was used to relate  $B_{iso/eq}$  to  $U_{eq}$ :  $B_{iso/eq} = 8\pi^2(U_{eq})$ .

## **II. PHYSICAL PROPERTIES MEASUREMENTS**

The specific heat  $C_p(T)$  for  $Lu_3T_4Ge_{13-x}$  (T = Co,Rh, Os) and  $Y_3Os_4Ge_{13-x}$  measured in various applied magnetic fields (Fig. S1) confirms the superconducting ground state these compounds. As the magnetic field increases, the transition is suppressed below 0.4 K for H between 1.4 T and 3.4 T. Linear fits (dashed lines in Fig. S1e) of the normal state specific heat,  $C_p/T$  vs.  $T^2$ , for  $T > T_c$  yield very similar electronic and phonon specific heat coefficients  $\gamma_n \approx 5 - 8 \text{ mJ/molK}^2$  for the four compounds (Table S3). After subtracting the phonon contribution, the resulting H = 0 electronic specific heat scaled by temperature  $C_e/T$  is plotted in Fig. 4. Equal entropy constructs (dashed lines) yield an estimate for the electronic specific heat jump at  $T_c$ ,  $\Delta C_e / \gamma T_c$  close to 1.43 for the two Os compounds (Fig. 4c-d), and smaller (close to 1) for the other two compounds (Fig. 4a-b).

When considering a residual electronic specific heat  $C_{e,0} = \gamma_0 T$  (as introduced in the main text),<sup>1</sup> the superconducting gap  $2\Delta(0)/k_BT_c$  can be estimated from the fit  $C_e = \gamma_0 T + T_c A e^{-\Delta(0)/k_BT}$ . These fits with  $T < 0.4 T_c$ , with an example shown as dashed lines in Fig. 4, yield  $2\Delta(0)/k_BT_c$  values between 2.95 and 3.12 (Table S3). The  $2\Delta(0)/k_BT_c$  values, smaller than the predicted BCS value of 3.53, suggest that these are weakly coupled superconductors. The above superconducting gap energy equation is valid for the fits much lower than  $T_c$ ,  $T \leq 0.4 T_c$ <sup>2</sup> With the limited temperature range available below  $0.4T_c$  in these compounds, it is very difficult to discern, from the  $C_e$  fits alone, whether impurity or multi-band superconducting effects are at play. Such a reduced energy gap  $(2\Delta(0)/k_BT_c = 1.7)$ was also reported for single crystals of  $Y_3Ru_4Ge_{13}$ <sup>3</sup> an isostructural 3-4-13 compound with a similarly small specific heat jump at  $T_c$ . As the resistivity data shows (Fig. 5 main text), one more similarity with the  $Y_3Ru_4Ge_{13}$  is the semiconductor-like resistivity in the normal state, a common trait of the 3-4-13 germanide superconductors, but distinct from the good metal behavior in all other 3-4-13 superconductors.<sup>4,5</sup>

The temperature-dependent Hall coefficient  $R_H$  measured for H = 9 T is shown in Fig. S2 for Lu<sub>3</sub> $T_4$ Ge<sub>13-x</sub> (T =Co, Rh, Os) and Y<sub>3</sub>Os<sub>4</sub>Ge<sub>13-x</sub>. Lu<sub>3</sub>Rh<sub>4</sub>Ge<sub>13</sub> (Fig. S2a) and Y<sub>3</sub>Os<sub>4</sub>Ge<sub>12.65</sub> (Fig. S2d) show both types of

charge carriers, as demonstrated by the sign change of  $R_H$ . In Lu<sub>3</sub>Co<sub>4</sub>Ge<sub>13</sub> (Fig. S2b) and Lu<sub>3</sub>Os<sub>4</sub>Ge<sub>12.53</sub> (Fig. S2c)  $R_H$  is negative, indicating electron-like charge carrier only. The resulting carrier density n at T = 2 K is  $n \approx 10^{19}$  -  $10^{21}$  cm<sup>-3</sup>, suggesting low carrier densities in all four compounds. For the present 3-4-13 compounds, n is about two to three orders of magnitude smaller than that for good metal superconductors, e.g.  $Sr_3Ir_4Sn_{13}$ ,<sup>6</sup> but in-between the values for poor metals and highly doped semiconductors.<sup>7</sup> As the temperature decreases, a continuous loss of charge carriers is observed for all compounds, as the absolute values  $|R_H|$  (not shown) decrease for most of the measured temperature range. The temperature dependence of n is therefore consistent with the resistivity measurements (Fig. 5, main text), since  $\rho(T)$ increases as the temperature decreases for all four compounds. Such behavior is also reported in Y<sub>3</sub>Ru<sub>4</sub>Ge<sub>13</sub>.<sup>3,8</sup>

The superconducting critical field  $H_c$  as a function of temperature is shown in the H-T phase diagrams (Fig. S3). The phase diagram contains  $T_c$  and  $H_c$ values from specific heat (triangles), resistivity (circles) and magnetization (squares) measurements. The upper critical field  $H_{c2}(0)$  is estimated from the  $H_{c2}$  fits to  $H_{c2}(T) = H_{c2}(0)[(1-t^2)/(1+t^2)]$  with  $t = T/T_c$ .<sup>9</sup> The resulting  $H_{c2}(0)$  values are listed in Table S3. The T = 0 Ginzburg-Landau coherence length  $\xi(0)$  can be approximated using the estimated upper critical fields,  $H_{c2}(0)$  $= \phi_0/2\pi \xi_0^2(0)$  where  $\phi_0 = h/2e$  is the flux quantum. The calculated coherence lengths  $\xi_0(0)$  are also listed in Table S3. Similar magnitudes of coherence lengths were reported for the stannide family as well.<sup>9,10,12</sup> The thermodynamic critical field  $H_c(0)$  and  $\kappa(0)$  can be estimated using the expressions  $H_c(0) = 4.23 \gamma_n^{1/2} T_c$  and  $\kappa(0) = \frac{H_{c2}(0)}{\sqrt{2}H_c(0)}$ ,<sup>13,14</sup> and are listed in the Table S3. The  $\kappa(0) \sim 700 >> \frac{1}{\sqrt{2}}$  indicates that these are type II superconductors.

| Compound                                     | $B_{iso/eq}(2a)$ | $B_{iso/eq}(T)$ | $U_{iso/eq}(2a)$ | $U_{iso/eq}(T)$ | ADP ratio |  |  |
|----------------------------------------------|------------------|-----------------|------------------|-----------------|-----------|--|--|
| $\mathrm{Lu}_3\mathrm{Co}_4\mathrm{Ge}_{13}$ | -                | -               | 0.0225           | 0.0050          | 4.5       |  |  |
| $ m Lu_3Rh_4Ge_{13}$                         | -                | -               | 0.0215           | 0.0037          | 5.8       |  |  |
| $Lu_3Os_4Ge_{12.53}$                         | -                | -               | 0.0320           | 0.0048          | 6.7       |  |  |
| $ m Y_3Os_4Ge_{12.65}$                       | -                | -               | 0.0400           | 0.0050          | 8.0       |  |  |
| $Y_3Ir_4Ge_{13}$                             | -                | -               | 0.0117           | 0.0009          | 13.2      |  |  |
| $\mathrm{Y_{3}Rh_{4}Ge_{12.93}}$             | -                | -               | 0.0130           | 0.0008          | 16.2      |  |  |
| $Yb_3Co_4Ge_{13}$                            | 0.65             | 0.69            | 0.0082           | 0.0087          | 0.9       |  |  |
| $Yb_3Co_{4.3}Sn_{12.7}$                      | 1.80             | 1.39            | 0.0228           | 0.0176          | 1.3       |  |  |
| $La_3Co_4Sn_{13}$                            | -                | -               | 0.0184           | 0.0113          | 1.6       |  |  |
| $Ce_3Co_4Sn_{13}$                            | -                | -               | 0.0151           | 0.0085          | 1.8       |  |  |
| $Yb_3Co_4Sn_{13}$                            | -                | -               | 0.0161           | 0.0064          | 2.5       |  |  |
| $Yb_3(Co,Ru)_4Ge_{13}$                       | -                | -               | 0.0137           | 0.0050          | 2.7       |  |  |

TABLE S1: Calculated ADP ratios

TABLE S2: Selected interatomic distances in  $Lu_3T_4Ge_{13-x}$  (T = Co, Rh, Os) and  $Y_3Os_4Ge_{13-x}$ .

|                  | $\mathbf{Lu}_{3}\mathbf{Co}_{4}\mathbf{Ge}_{13}$ | $\mathbf{L}\mathbf{u}_{3}\mathbf{R}\mathbf{h}_{4}\mathbf{G}\mathbf{e}_{13}$ | $\mathbf{Lu}_{3}\mathbf{Os}_{4}\mathbf{Ge}_{12.53}$ | $\mathbf{Y}_3\mathbf{Os}_4\mathbf{Ge}_{12.65}$ |
|------------------|--------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------|
| Ge icosahedron   |                                                  |                                                                             |                                                     |                                                |
| Ge1-Ge2A (x12)   | 2.6615(54)                                       | 2.6411(40)                                                                  | 3.0448(113)                                         | 3.0921(8)                                      |
| Ge1-Ge2B $(x12)$ | 3.1484(31)                                       | 3.2641(24)                                                                  | 3.4823(556)                                         | -                                              |
| R cuboctahedron  |                                                  |                                                                             |                                                     |                                                |
| R-Ge2A (x8)      | 3.2047(45)                                       | 3.2493(37)                                                                  | 3.1097(95)                                          | 3.1337(12)                                     |
| R-Ge2A (x4)      | 3.1100(61)                                       | 3.2634(44)                                                                  | 3.2015(141)                                         | 3.1910(15)                                     |
| R-Ge2B $(x8)$    | 2.9931(27)                                       | 2.9966(21)                                                                  | 3.0740(504)                                         | -                                              |
| R-Ge2B (x4)      | 3.0377(43)                                       | 3.1451(35)                                                                  | 2.9950(771)                                         | -                                              |
| T trigonal prism |                                                  |                                                                             |                                                     |                                                |
| T-Ge2A (x6)      | 2.3721(61)                                       | 2.4544(46)                                                                  | 2.4727(56)                                          | 2.4790(17)                                     |
| T-Ge2B (x6)      | 2.4050(35)                                       | 2.4839(27)                                                                  | 2.4766(322)                                         | -                                              |

TABLE S3: Physical properties parameters of  $Lu_3T_4Ge_{13-x}$  (T = Co, Rh, Os) and  $Y_3Os_4Ge_{12.7}$ 

| R  | T  | $T_c$   | $\gamma_n$                    | β                             | $DOS(E_F)$                                  | $\gamma_{DFT}$                | $\theta_D$ | $\Delta C_e$   | $2\Delta(0)$ | $H_{c2}(0)$ | $\xi(0)$ | $H_c(0)$ | $\kappa(0)$ |
|----|----|---------|-------------------------------|-------------------------------|---------------------------------------------|-------------------------------|------------|----------------|--------------|-------------|----------|----------|-------------|
|    |    | (K)     | $(\mathrm{mJ}mol^{-1}K^{-2})$ | $(\mathrm{mJ}mol^{-1}K^{-4})$ | $(\text{states eV}^{-1} \text{ f.u.}^{-1})$ | $(\mathrm{mJ}mol^{-1}K^{-2})$ | (K)        | $\gamma_n T_c$ | $k_B T_c$    | (T)         | (nm)     | (Oe)     |             |
| Lu | Co | 1.40(3) | 5.35                          | 0.301                         | 6.70                                        | 5.25                          |            |                |              | 2.10(6)     | 15.3     | 13.80    | 718         |
| Lu | Rh | 1.41(3) | 5.19                          | 0.299                         | 6.40                                        | 5.02                          | 505        | 1.07           | 2.95         | 1.98        | 12.9     | 20.23    | 692         |
| Lu | Os | 2.51(1) | 8.55                          | 0.406                         | 7.17                                        | 5.62                          | 537        | 1.48           | 2.96         | 3.20        | 10.1     | 31.04    | 729         |
| Υ  | Os | 2.03(3) | 8.25                          | 0.566                         | 9.38                                        | 7.35                          | 589        | 1.30           | 3.02         | 2.70        | 11.1     | 24.66    | 744         |

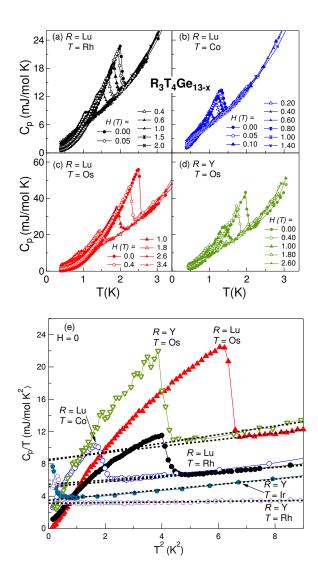



FIG. S1: Temperature-dependent specific heat for (a) R = Lu and T = Rh, (b) R = Lu and T = Co, (c) R = Lu and T = Os, and (d) R = Y and T = Os. (e)  $C_p/T$  vs.  $T^2$  plot with dotted lines representing linear fits just above  $T_c$ .

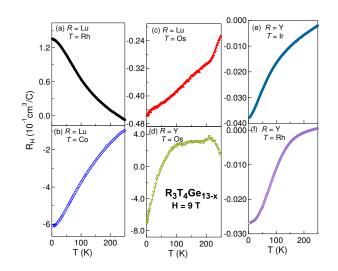



FIG. S2: H = 9 T temperature-dependent (2-300 K) Hall coefficient  $R_H$  for  $R_3T_4\text{Ge}_{13-x}$ , with (a) R = Lu and T = Rh, (b) R = Lu and T = Co, (c) R = Lu and T = Os, (d) R = Y and T = Os, (e) R = Y and T = Ir, and (f) R = Y and T = Rh.

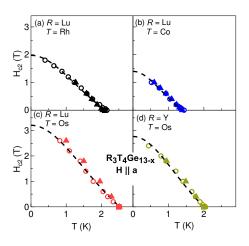



FIG. S3: The H-T phase diagram of  $\text{Lu}_3T_4\text{Ge}_{13-x}$  (T = Co, Rh, Os) and  $\text{Y}_3\text{Os}_4\text{Ge}_{12.53}$ . The dashed line is a fit to  $H_{c2}(T) = H_{c2}(0)[(1-t^2)/(1+t^2)]$  with  $t = T/T_c$ . The points were determined from  $C_p(T)$  (triangles),  $\rho(T)$  (circles), and M(T) (squares).

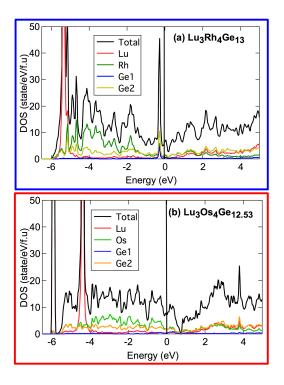



FIG. S4: DOS plots for (a)  $Lu_3Rh_4Ge_{13}$  without spin-orbit coupling (SOC) (b)  $Lu_3Os_4Ge_{12.53}$  with SOC. Total and partial DOS of Lu, T, Ge1 and Ge2 are black, red, green, blue, and orange, respectively. Fermi levels are marked by vertical lines.

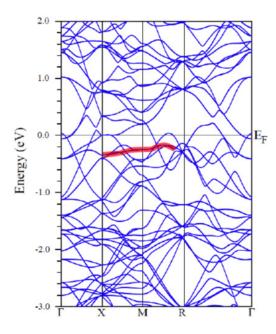



FIG. S5: Band structure plot for  $Lu_3Rh_4Ge_{13}$  with a flat band between -0.4 to -0.2 eV highlighted with a thick red curve.

- <sup>1</sup> Gumeniuk, R.; Nicklas, M.; Akselrud, L.; Schnelle, W.; Schwarz,U.; Tsirlin, A. A.; Leithe-Jasper, A.; Grin, Yu *Phys. Rev. B* **2013**, *87*, 224502.
- <sup>2</sup> Phillips, N. E. Phys. Rev. **1959**, 114, 676.
- <sup>3</sup> Prakash, O.; Thamizhavel, A.; Nigam, A.K.; Ramakrishnan, S. *Physica C* **2013**, 492, 90.
- <sup>4</sup> Ghosh, K.; Ramakrishnan, S.; Chandra, G. Phys. Rev. B 1993, 48, 10435.
- <sup>5</sup> Singh Y.; Ramakrishnan, S. *Phys. Rev. B* **2004**, *69*, 174423.
- <sup>6</sup> Kuo, C. N., Liu, H. F.; Lue, C. S.; Wang, L. M.; Chen, C. C.; Kuo, Y. K. *Phys. Rev. B* **2014**, *89*, 094520.
- <sup>7</sup> Snyder, G. J.; Toberer, E. S. Nat. Matter. **2008**, *7*, 105.
- <sup>8</sup> Kong, H.; Shi, X.; Uher, C.; Morelli, D. T. J. Appl. Phys. 2007, 102, 023702.
- <sup>9</sup> Slebarski, A.; Fijakowski, M.; Maska, M. M.; Mierzejewski,

M.; White, B. D.; Maple, M. B. *Phys. Rev. B* **2014**, *89*, 125111.

- <sup>10</sup> Mudryk, Y.; Grytsiv, A.; Rogl, P.; Dusek, C.; Galatanu, A.; Idl, E.; Michor, H.; Bauer, E.; Godart, C.; Kaczorowski, D.; Romaka, L. Bodak, O. J. Phys.: Condens. Matter 2001, 13, 7391.
- <sup>11</sup> Kittel, C. Introduction to Solid State Physics 7th ed.; John Wiley and sons, New York, 2006.
- <sup>12</sup> Kase, N.; Hayamizu, H.; Akimitsu, J. Phys. Rev. B 2011, 83, 184509.
- <sup>13</sup> Orlando, T. P.; McNiff, E. J. Jr., Foner, S.; Beasley, M. R. *Phys. Rev. B* **1979**, *19*, 4545.
- <sup>14</sup> Tinkham, M. Introduction to Superconductivity 2nd ed.; Dover, New Yourk, 1995.