## Electron Rich Triphenylamine Based Sensors for Picric Acid Detection

Aniket Chowdhury and Partha Sarathi Mukherjee*Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560012, India
Table of Contents

1. IR spectra of the compounds 6-9 (Figure S1) ..... 2
2. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$ NMR of the compounds 4-9 (Figures S2-S15) ..... 3-9
3. Concentration dependent UV-Vis spectra of the compounds (Figures S16-S19) ..... 10-11
4. Concentration dependent fluorescence spectra of $\mathbf{6 , 7}$ and $\mathbf{9}$ ( Figures S20-S21) ..... 11-12
5. Sovent dependent absorption and emission spectra of 6,7 and 9 ( Figures S22-S24) ..... 12-13
6. UV-Vis titration of the compounds $\mathbf{6}, \mathbf{7}$ and $\mathbf{9}$ with Picric acid (Figures S25-S27) ..... 13-15
7. Fluorescence titration of $\mathbf{6}$ and $\mathbf{8}$ with picric acid in solution ( Figures S28-S30) ..... 15-16
8. ${ }^{1} \mathrm{H}$ NMR titration of the compounds 6-8 with picric acid (Figures S31-S33) ..... 16-20
9. Fluorescence titration of 6-9 with picric acid in solid state ( Figures S35-S37) ..... 21-22
10. Time-resolved fluorescence titration of $\mathbf{8 - 9}$ with PA (Figure S38) ..... 22
11. Calculated energy level diagram of 7 with picric acid (Figure S39) ..... 23
12. Spectral overlap between absorption spectra of PA and picrate with emission spectra of $\mathbf{6}$,23
13. Computational result on optimized structures of 9 and 7 (Tables S1-S2) ..... 24-30


Figure S1. IR spectra of the compounds.


Figure $\mathbf{S 2}$. ${ }^{1} \mathrm{H}$ NMR of 4.


Figure S3. ${ }^{13} \mathrm{C}$ NMR of 4 .


Figure S4. ${ }^{1} \mathrm{H}$ NMR of 5 .


ACT-317


Figure S5. ${ }^{13} \mathrm{C}$ NMR of 5 .


Figure S6. ${ }^{1} \mathrm{H}$ NMR of 6 .

$\left.\begin{array}{lllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array}\right)$

Figure S7. ${ }^{13} \mathrm{C}$ NMR of 6 .


Figure S8. ${ }^{31}$ P NMR of 6 .


Figure S9. ${ }^{1} \mathrm{H}$ NMR of 7.



Figure S10. ${ }^{13} \mathrm{C}$ NMR of 7.


Figure S11. ${ }^{1} \mathrm{H}$ NMR of $\mathbf{8}$.


Figure S12. ${ }^{13} \mathrm{C}$ NMR of $\mathbf{8}$.


Figure S13. ${ }^{31} \mathrm{P}$ NMR of 8.


Figure S14. ${ }^{1} \mathrm{H}$ NMR of 9.


Figure S15. ${ }^{13} \mathrm{C}$ NMR of 9 .


Figure S16: Concentration dependent UV-Vis spectra of $\mathbf{8}$ in the range of $10^{-6} \mathrm{M}$ to $2.5 \times 10^{-5}$ M (left) in DMA and the value of extinction coefficient determined form the plot by liner fitting using Beer-Lambert law (right).


Figure S17: Concentration dependent UV-Vis spectra of $\mathbf{6}$ in the range of $10^{-6} \mathrm{M}$ to $1.0 \times 10^{-5}$ M (left) in $\mathrm{CHCl}_{3}$ and the value of extinction coefficient determined form the plot by liner fitting using Beer-Lambert law (right).


Figure S18: Concentration dependent UV-Vis spectra of 9 in the range of $10^{-6} \mathrm{M}$ to $2.5 .0 \times 10^{-5} \mathrm{M}$ (left) in DMA and the value of extinction coefficient determined form the plot by liner fitting using Beer-Lambert law (right).


Figure S19: Concentration dependent UV-Vis spectra of $\mathbf{7}$ in the range of $10^{-6} \mathrm{M}$ to $1.0 \times 10^{-5}$ M (left) in $\mathrm{CHCl}_{3}$ and the value of extinction coefficient determined form the plot by liner fitting using Beer-Lambert law (right).

## Concentration dependent fluorescence spectra of the compounds from $10^{-3}$

M to $\mathbf{1 0}^{-7} \mathrm{M}$.


Figure S20. Normalized concentration dependent fluorescence of the $\mathbf{6}$ in $\mathrm{CHCl}_{3}$ (left). Concentration dependent fluorescence of the $\mathbf{9}$ in DMSO- $d_{6}$ (right).


Figure S21: Concentration dependent fluorescence of the $\mathbf{7}$ in $\mathrm{CHCl}_{3}$.

## Solvent dependent absorption and fluorescence spectra of the compounds:

Solvent dependent fluorescence of the compounds were measured by making a $10^{-5} \mathrm{M}$ solution of the individual compounds in corresponding solvents from initial stock solutions either in chloroform or in DMA.


Figure S22. Solvent dependent absorption (left) and emission (right) behaviour of the $10^{-5} \mathrm{M}$ solution of $\mathbf{6}$. The compound showed 10 nm blue shift in absorption spectra and 40 nm blue shift in the emission spectra polar protic solvent.


Figure S23. Solvent dependent normalized absorption spectra of the $10^{-5} \mathrm{M}$ solution of 9 (left). The compound showed 10 nm blue shift in absorption spectra and 40 nm blue shift in the normalized emission spectra in the polar protic solvent (right).


Figure S24. Solvent dependent normalized absorption (left) and emission spectra of the $10^{-5}$ M solution of $\mathbf{7}$ (right). The compound showed 10 nm blue shift in absorption spectra and 36 nm blue shift in the emission spectra in the polar protic solvent (right).

## Solution state UV-Vis titration study of the compounds with nitroaromatic compounds:

For UV-Vis titration, a 2 mL stock solution $\left(1.0 \times 10^{-5} \mathrm{M}\right)$ of the corresponding compound in chloroform or DMA was placed in a quartz cell of 1 cm width. Quenchers $\left(1.0 \times 10^{-3} \mathrm{M}\right)$ solutions were added gradually in an incremental fashion. Their corresponding absorption spectra were recorded at 298 K . Each titration was repeated at least two times to get
reproducible result. For all measurements, the absorption window was taken from 300 nm to 500 nm to exclude absorption of the solvents.


Figure S25: Solution state UV-Vis titration of $\mathbf{6}$ in $\mathrm{CHCl}_{3}$ with picric acid (left) and corresponding normalized spectra (left). Upon addition of 3 equivalents of PA, a new band was generated at higher wavelength ( 420 nm ) which is the charge transfer band.


Figure S26: Solution state UV-Vis titration of 9 in DMA with picric acid (left) and corresponding normalized spectra (left). Upon addition of 3 equivalents of PA a new band was generated at higher wavelength ( 436 nm ) which is the charge transfer band.


Figure S27: Solution state UV-Vis titration of 7 in $\mathrm{CHCl}_{3}$ with Picric acid (left) and corresponding normalized spectra (left). Upon addition of 3 equivalent of PA a new band was generated at higher wavelength ( 420 nm ) which is the charge transfer band.

## Solution state fluorescence titration

For solution state fluorescence titration, a 2 mL stock solution $\left(1.0 \times 10^{-7} \mathrm{M}\right)$ of the compounds in chloroform or DMA was placed in a quartz cell of 1 cm width and quenchers $\left(1.0 \times 10^{-5} \mathrm{M}\right)$ solutions were added gradually in an incremental fashion. Their corresponding absorption spectra were recorded at 298 K . Each titration was repeated at least two times to get reproducible result. For all measurement, the compounds were excited at their corresponding absorption maxima and their emission was monitored.


Figure S28: Solution state fluorescence titration of $\mathbf{9}$ in DMA (left) and $\mathbf{7}$ in $\mathrm{CHCl}_{3}$ with picric acid (right). Upon addition of 10 equivalents of PA the emission maxima of the $\mathbf{9}$ at 390 nm quenched gradually, whereas for 7 the quenching effect is negligible.


Figure S29: Quenching efficiency plot of solution state fluorescence titration of $\mathbf{8}$ and $\mathbf{6}$ with PA (left); and $\mathbf{9}$ and $\mathbf{7}$ with picric acid (right).


Figure S30. Stern-Volmer plots of solution state fluorescence titrations of $\mathbf{8}$ and $\mathbf{6}$ with PA (left); and $\mathbf{9}$ and $\mathbf{7}$ with picric acid (right).

## NMR titrations of the compounds with picric acid:

In a typical titration $500 \mu \mathrm{~L}(10 \mathrm{mM})$ of compounds were taken in $\mathrm{CDCl}_{3}$ or in DMSO- $\mathrm{d}_{6}$. To that $(10 \mathrm{mM})$ solution of PA in either $\mathrm{CDCl}_{3}$ or $\mathrm{DMSO}-\mathrm{d}_{6}$ were added gradually and corresponding NMR were recorded at room temperature.



Figure S31: NMR titration of $\mathbf{6} \mathrm{CDCl}_{3}$ with PA (above) and the peak assignments of $\mathbf{6}$ (below). No change was observed in the chemical shift of the protons.



Figure S32: NMR titration of $\mathbf{7}$ in $\mathrm{CDCl}_{3}$ (1) and the peak assignment (2). No change was observed in the chemical shift of the protons.



ACT-323


Figure S33: NMR titration of $\mathbf{8}$ in DMSO- $\mathrm{d}_{6}$ (above) and the peak assignments (below).


Figure S34. Picric acid and picrate with $\mathbf{7}$ and $\mathbf{9}$ in $\mathrm{CDCl}_{3}$ and DMSO- $\mathrm{d}_{6}$.

## Solid state fluorescence sensing of nitroaromatics by the compounds

For solid state fluorescence quenching study thin films of the compounds were prepared by depositing 10 mL of saturated solution of the compounds by spin coating on clean quartz plates and subsequently drying the solvent under vacuum for 4 h .


Figure S35: Time dependent solid state fluorescence quenching plot of 9 (left) and $\mathbf{7}$ (right) with NB.


Figure S36. The quenching efficiency pot of the compounds $\mathbf{6}$ and $\mathbf{8}$ (left) and $\mathbf{7}$ and $\mathbf{9}$ (right).



Figure S37: Time dependent solid state fluorescence spectra of 9 (left), 7 (right) upon exposure to PA.

## Time-resolved fluorescence titration of 8,9 with PA



Figure S38. a) Time-resolved fluorescence titration of 9 with PA. b) Time-resolved fluorescence titration of $\mathbf{8}$ with PA

## HOMO-LUMO energy calculation of 7 with Picrate



Figure S39. Calculated energy level diagram of $\mathbf{7}$ and picrate.


Figure S40. Spectral overlap between absorption spectra of PA and picrate with emission spectra of $\mathbf{6 , 7}$ and 9 .

Table S1. Computational result of optimized structure of 9

| Center | Atomic | Atomic | c Coor | inates (Angs | stroms) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Number | Number | Type | X | Y | Z |
| 1 | 6 | 0 | 9.672794 | -2.639434 | 2.582814 |
| 2 | 6 | 0 | 8.491592 | -3.055554 | 1.943421 |
| 3 | 6 | 0 | 7.810436 | -2.191592 | 1.090831 |
| 4 | 6 | 0 | 8.292832 | -0.886533 | 0.863424 |
| 5 | 6 | 0 | 9.474811 | -0.468492 | 1.509755 |
| 6 | 6 | 0 | 10.155546 | -1.338238 | 2.354187 |
| 7 | 7 | 0 | 7.587703 | 0.000002 | -0.000010 |
| 8 | 6 | 0 | 8.292823 | 0.886550 | -0.863432 |
| 9 | 6 | 0 | 6.156417 | -0.000052 | -0.000040 |
| 10 | 6 | 0 | 5.443710 | 0.017868 | -1.213280 |
| 11 | 6 | 0 | 4.052429 | 0.023938 | -1.213934 |
| 12 | 6 | 0 | 3.326209 | -0.000155 | -0.000083 |


| 13 | 6 | 0 | 4.052393 | -0.024205 | 1.213791 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 14 | 6 | 0 | 5.443671 | -0.018032 | 1.213178 |
| 15 | 6 | 0 | 7.810314 | 2.191547 | -1.090978 |
| 16 | 6 | 0 | 8.491473 | 3.055524 | -1.943548 |
| 17 | 6 | 0 | 9.672789 | 2.639489 | -2.582789 |
| 18 | 6 | 0 | 10.155652 | 1.338361 | -2.354023 |
| 19 | 6 | 0 | 9.474918 | 0.468596 | -1.509608 |
| 20 | 6 | 0 | 1.905460 | -0.000188 | -0.000108 |
| 21 | 6 | 0 | -4.052347 | 0.024066 | 1.213738 |
| 22 | 6 | 0 | -5.443628 | 0.017989 | 1.213157 |
| 23 | 6 | 0 | -6.156401 | -0.000017 | -0.000043 |
| 24 | 6 | 0 | -5.443714 | -0.018074 | -1.213298 |
| 25 | 6 | 0 | -4.052438 | -0.024240 | -1.213981 |
| 26 | 7 | 0 | -7.587684 | 0.000027 | 0.000003 |
| 27 | 6 | 0 | -8.292863 | -0.886466 | -0.863439 |
| 28 | 6 | 0 | -8.292771 | 0.886533 | 0.863495 |
| 29 | 6 | 0 | 10.426862 | -3.518467 | 3.488764 |
| 30 | 6 | 0 | 10.426859 | 3.518544 | -3.488713 |
| 31 | 8 | 0 | 11.474343 | 3.219373 | -4.081358 |
| 32 | 8 | 0 | 9.852121 | 4.769088 | -3.640061 |
| 33 | 8 | 0 | 11.474218 | -3.219200 | 4.081585 |
| 34 | 8 | 0 | 9.852220 | -4.769066 | 3.640003 |
| 35 | 6 | 0 | -9.474820 | 0.468534 | 1.509726 |
| 36 | 6 | 0 | -10.155526 | 1.338259 | 2.354204 |
| 37 | 6 | 0 | -9.672680 | 2.639392 | 2.582979 |
| 38 | 6 | 0 | -8.491409 | 3.055472 | 1.943683 |
| 39 | 6 | 0 | -7.810280 | 2.191535 | 1.091050 |
| 40 | 6 | 0 | -9.474848 | -0.468372 | -1.509722 |
| 41 | 6 | 0 | -10.155636 | -1.338074 | -2.354158 |
| 42 | 6 | 0 | -9.672932 | -2.639278 | -2.582834 |
| 43 | 6 | 0 | -8.491724 | -3.055453 | -1.943488 |
| 10 |  |  |  |  |  |


| 44 | 6 | 0 | -7.810515 | -2.191536 | -1.090894 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 45 | 6 | 0 | -10.427052 | -3.518264 | -3.488788 |
| 46 | 8 | 0 | -9.852437 | -4.768867 | -3.640097 |
| 47 | 8 | 0 | -11.474403 | -3.218941 | -4.081590 |
| 48 | 6 | 0 | -10.426717 | 3.518403 | 3.488973 |
| 49 | 8 | 0 | -9.851986 | 4.768947 | 3.640342 |
| 50 | 8 | 0 | -11.474151 | 3.219185 | 4.081684 |
| 51 | 6 | 0 | 0.679113 | -0.000188 | -0.000143 |
| 52 | 6 | 0 | -0.679093 | -0.000162 | -0.000167 |
| 53 | 6 | 0 | -1.905440 | -0.000142 | -0.000204 |
| 54 | 6 | 0 | -3.326189 | -0.000106 | -0.000147 |
| 55 | 1 | 0 | 8.123294 | -4.060072 | 2.109900 |
| 56 | 1 | 0 | 6.908305 | -2.522997 | 0.590716 |
| 57 | 1 | 0 | 9.845682 | 0.537004 | 1.351671 |
| 58 | 1 | 0 | 11.060498 | -1.021738 | 2.860256 |
| 59 | 1 | 0 | 5.985836 | 0.022952 | -2.151914 |
| 60 | 1 | 0 | 3.511774 | 0.033592 | -2.153698 |
| 61 | 1 | 0 | 3.511709 | -0.033909 | 2.153539 |
| 62 | 1 | 0 | 5.985770 | -0.023087 | 2.151828 |
| 63 | 1 | 0 | 6.908097 | 2.522891 | -0.590982 |
| 64 | 1 | 0 | 8.123086 | 4.059993 | -2.110129 |
| 65 | 1 | 0 | 11.060691 | 1.021921 | -2.859975 |
| 66 | 1 | 0 | 9.845882 | -0.536850 | -1.351426 |
| 67 | 1 | 0 | -3.511647 | 0.033779 | 2.153476 |
| 68 | 1 | 0 | -5.985701 | 0.023126 | 2.151821 |
| 69 | 1 | 0 | -5.985858 | -0.023192 | -2.151921 |
| 70 | 1 | 0 | -3.511802 | -0.034011 | -2.153756 |
| 71 | 1 | 0 | 10.399286 | 5.307486 | -4.250396 |
| 72 | 1 | 0 | 10.399353 | -5.307432 | 4.250395 |
| 73 | 1 | 0 | -9.845770 | -0.536916 | 1.351534 |
| 74 | 1 | 0 | -11.060530 | 1.021785 | 2.860196 |
|  |  |  | 0 | 0 |  |


| 75 | 1 | 0 | -8.123037 | 4.059945 | 2.110271 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 76 | 1 | 0 | -6.908098 | 2.522916 | 0.591012 |
| 77 | 1 | 0 | -9.845685 | 0.537131 | -1.351598 |
| 78 | 1 | 0 | -11.060593 | -1.021532 | -2.860192 |
| 79 | 1 | 0 | -8.123463 | -4.059979 | -2.110002 |
| 80 | 1 | 0 | -6.908382 | -2.522984 | -0.590814 |
| 81 | 1 | 0 | -10.399591 | -5.307193 | -4.250507 |
| 82 | 1 | 0 | -10.399118 | 5.307310 | 4.250738 |

Table S2. Computational result of optimized structure of compound 7.

| Center | Atomic | Atomic |  | rdinates (An | gstroms) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Number | Number | Type | X | Y | Z |
| 1 | 7 | 0 | 7.587759 | 0.000055 | -0.000027 |
| 2 | 8 | 0 | 11.524048 | -5.027910 | 0.577360 |
| 3 | 6 | 0 | 9.471687 | 1.413824 | -0.714664 |
| 4 | 1 | 0 | 9.835385 | 0.604291 | $-1.336255$ |
| 5 | 6 | 0 | 8.294609 | 1.236607 | 0.040652 |
| 6 | 8 | 0 | 11.525198 | 5.027175 | -0.576942 |
| 7 | 6 | 0 | 6.157477 | 0.000057 | -0.000003 |
| 8 | 6 | 0 | 9.684319 | -3.686895 | -0.114399 |
| 9 | 6 | 0 | 3.326182 | -0.000028 | 0.000044 |
| 10 | 6 | 0 | 4.052830 | -0.905254 | 0.808748 |
| 11 | 1 | 0 | 3.512409 | -1.600368 | 1.441503 |
| 12 | 6 | 0 | 8.507066 | 3.512077 | 0.862329 |


| 13 | 1 | 0 | 8.152561 | 4.333719 | 1.474279 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 14 | 6 | 0 | 8.294468 | -1.236617 | -0.040774 |
| 15 | 6 | 0 | 5.443927 | 0.900502 | -0.813035 |
| 16 | 1 | 0 | 5.985581 | 1.591543 | -1.448662 |
| 17 | 6 | 0 | 10.377126 | 4.986934 | 0.187497 |
| 18 | 6 | 0 | 9.684846 | 3.686709 | 0.114210 |
| 19 | 6 | 0 | 10.160123 | 2.623084 | -0.673283 |
| 20 | 1 | 0 | 11.060148 | 2.758351 | -1.259780 |
| 21 | 6 | 0 | 0.679096 | -0.000111 | 0.000136 |
| 22 | 6 | 0 | 9.471124 | -1.414251 | 0.715108 |
| 23 | 1 | 0 | 9.834609 | -0.604947 | 1.337125 |
| 24 | 6 | 0 | 7.820346 | 2.302893 | 0.831876 |
| 25 | 1 | 0 | 6.921559 | 2.172928 | 1.422791 |
| 26 | 8 | 0 | 9.998730 | -5.962955 | -0.855535 |
| 27 | 6 | 0 | 4.052743 | 0.905227 | -0.808684 |
| 28 | 1 | 0 | 3.512275 | 1.600313 | -1.441429 |
| 29 | 6 | 0 | 1.905497 | -0.000075 | 0.000089 |
| 30 | 6 | 0 | 5.444004 | -0.900445 | 0.813049 |
| 31 | 1 | 0 | 5.985737 | -1.591448 | 1.448649 |
| 32 | 6 | 0 | 7.820423 | -2.302543 | -0.832568 |
| 33 | 1 | 0 | 6.921935 | -2.172240 | -1.423867 |
| 34 | 6 | 0 | 10.159381 | -2.623604 | 0.673697 |
| 35 | 1 | 0 | 11.059074 | -2.759242 | 1.260616 |
| 36 | 8 | 0 | 9.999191 | 5.962975 | 0.854733 |
| 37 | 6 | 0 | 8.506964 | -3.511846 | -0.863063 |
| 38 | 1 | 0 | 8.152629 | -4.333230 | -1.475456 |
| 39 | 6 | 0 | 10.376447 | -4.987210 | -0.187747 |
| 40 | 6 | 0 | 12.274252 | -6.289320 | 0.560929 |
| 41 | 1 | 0 | 13.129444 | -6.112650 | 1.210470 |
| 42 | 1 | 0 | 12.593366 | -6.525338 | -0.456563 |
| 43 | 1 | 0 | 11.652526 | -7.103470 | 0.939799 |


| 44 | 6 | 0 | 12.275589 | 6.288470 | -0.560511 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 45 | 1 | 0 | 13.130898 | 6.111585 | -1.209840 |
| 46 | 1 | 0 | 12.594529 | 6.524561 | 0.457021 |
| 47 | 1 | 0 | 11.654074 | 7.102675 | -0.939605 |
| 48 | 7 | 0 | -7.587773 | -0.000098 | 0.000074 |
| 49 | 8 | 0 | -11.523854 | 5.029314 | -0.566089 |
| 50 | 6 | 0 | -9.471835 | -1.415376 | 0.711381 |
| 51 | 1 | 0 | -9.835579 | -0.607200 | 1.334708 |
| 52 | 6 | 0 | -8.294652 | -1.236535 | -0.043395 |
| 53 | 8 | 0 | -11.525541 | -5.028293 | 0.565313 |
| 54 | 6 | 0 | -6.157485 | -0.000153 | 0.000111 |
| 55 | 6 | 0 | -9.684145 | 3.686693 | 0.122622 |
| 56 | 6 | 0 | -3.326204 | -0.000158 | 0.000194 |
| 57 | 6 | 0 | -4.052780 | 0.906689 | -0.806758 |
| 58 | 1 | 0 | -3.512302 | 1.603036 | -1.438106 |
| 59 | 6 | 0 | -8.507090 | $-3.510178$ | -0.870117 |
| 60 | 1 | 0 | -8.152539 | -4.330487 | $-1.483825$ |
| 61 | 6 | 0 | -8.294413 | 1.236517 | 0.043539 |
| 62 | 6 | 0 | -5.444011 | -0.902229 | 0.811396 |
| 63 | 1 | 0 | -5.985728 | -1.594510 | 1.445619 |
| 64 | 6 | 0 | -10.377312 | -4.986437 | -0.198806 |
| 65 | 6 | 0 | -9.684983 | -3.686409 | -0.122552 |
| 66 | 6 | 0 | -10.160317 | -2.624510 | 0.667233 |
| 67 | 1 | 0 | -11.060422 | -2.761037 | 1.253316 |
| 68 | 6 | 0 | -0.679116 | -0.000147 | 0.000187 |
| 69 | 6 | 0 | -9.471070 | 1.415887 | $-0.711934$ |
| 70 | 1 | 0 | -9.834607 | 0.607978 | $-1.335732$ |
| 71 | 6 | 0 | -7.820323 | $-2.301095$ | -0.836902 |
| 72 | 1 | 0 | -6.921452 | -2.169873 | $-1.427410$ |
| 73 | 8 | 0 | -9.998408 | 5.961136 | 0.868764 |
| 74 | 6 | 0 | -4.052826 | -0.906985 | 0.807106 |


| 75 | 1 | 0 | -3.512401 | -1.603333 | 1.438499 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 76 | 6 | 0 | -1.905518 | -0.000156 | 0.000214 |
| 77 | 6 | 0 | -5.443955 | 0.901938 | -0.811127 |
| 78 | 1 | 0 | -5.985650 | 1.594219 | -1.445367 |
| 79 | 6 | 0 | -7.820296 | 2.300668 | 0.837678 |
| 80 | 1 | 0 | -6.921802 | 2.169020 | 1.428669 |
| 81 | 6 | 0 | -10.159269 | 2.625179 | -0.667828 |
| 82 | 1 | 0 | -11.058962 | 2.762163 | -1.254435 |
| 83 | 8 | 0 | -9.999293 | -5.961042 | -0.868092 |
| 84 | 6 | 0 | -8.506779 | 3.509931 | 0.870866 |
| 85 | 1 | 0 | -8.152394 | 4.329944 | 1.485065 |
| 86 | 6 | 0 | -10.376214 | 4.986873 | 0.198867 |
| 87 | 6 | 0 | -12.273985 | 6.290728 | -0.546831 |
| 88 | 1 | 0 | -13.129334 | 6.115474 | -1.196548 |
| 89 | 1 | 0 | -12.592846 | 6.524622 | 0.471230 |
| 90 | 1 | 0 | -11.652299 | 7.105639 | -0.924131 |
| 91 | 6 | 0 | -12.275977 | -6.289521 | 0.545966 |
| 92 | 1 | 0 | -13.131504 | -6.113970 | 1.195369 |
| 93 | 1 | 0 | -12.594566 | -6.523457 | -0.472173 |
| 94 | 1 | 0 | -11.654626 | -7.104547 | 0.923564 |

