Supporting Information for

Asymmetric Dearomatization of Naphthols via a Rh-Catalyzed $C(sp^2)$ —H Functionalization/Annulation Reaction

Jun Zheng, Shao-Bo Wang, Chao Zheng, and Shu-Li You*

State Key Laboratory of Organometallic Chemistry

Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences

345 Lingling Lu, Shanghai 200032, China

E-mail: slyou@sioc.ac.cn

Table of Contents

General methods	S2
Experimental details and characterization data	S3-S32
X-Ray crystal structure of 3aa	S33-S34
Copies of NMR spectra and HPLC chromatographs	S35-S172
Copies of HSQC, COSY, 1D-NOESY of 5bb	S173-S175

General Methods. Unless stated otherwise, all reactions were carried out in flame-dried glassware under a dry argon atmosphere. All solvents were purified and dried according to standard methods prior to use.

 1 H and 13 C NMR spectra were recorded on a Varian instrument (400 MHz and 100 MHz, respectively) or an Agilent instrument (400, 600 MHz and 100, 151 MHz, respectively) and internally referenced to tetramethylsilane signal or residual protio solvent signals. 19 F NMR spectra were recorded on a Varian instrument or Agilent instrument (376 MHz) and internally referenced to CFCl₃. Data for 1 H NMR are recorded as follows: chemical shift (δ, ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet or unresolved, br = broad singlet, coupling constant (s) in Hz, integration). Data for 13 C NMR and 19 F NMR are reported in terms of chemical shift (δ, ppm).

Chiral rhodium catalysts $\mathbf{K1}$ - $\mathbf{K4}$ ¹, substituted naphthol derivatives $\mathbf{1e}$ ² and substituted alkynes $\mathbf{2c}$ ³, $\mathbf{2e}$ - $\mathbf{2i}$ ⁴ were prepared according to published procedures.

Synthesis and Characterization of Starting Materials

A flame-dried reaction flask was cooled to room temperature and filled with argon. To the flask were added NaH (1.6 g, 1.8 equiv.) and DMF (150 mL). The resulting reaction mixture was stirred at 0 °C. To the flask was added 1-bromo-2-naphthol (5.0 g, 22.4 mmol) slowly. After the reaction mixture was reacted at this temperature for 30 minutes, chloromethyl methyl ether (1.7 mL, 1.1 equiv.) was slowly added. After stirring overnight at room temperature, the reaction was quenched by water. The mixture was extracted with EtOAc, washed with water and brine, dried over Na₂SO₄, and concentrated under reduced pressure to give a crude product **S1** (5.98 g, 99% yield) for further use. 1 H NMR (400 MHz, CDCl₃) δ 8.23 (dd, J = 8.8, 0.8 Hz, 1H), 7.80-7.74 (m, 2H), 7.55 (ddd, J = 8.4, 7.2, 1.2 Hz, 1H), 7.42-7.38 (M, 2H), 5.34 (s, 2H), 3.56 (s, 3H). Spectral data were in agreement with those reported in the literature. 5

S1, Pd(PPh₃)₄ (3 mol%, 780 mg), Na₂CO₃ (11.2 g), PhB(OH)₂ (4.1 g, 1.5 equiv.) were dissolved in DME/EtOH/H₂O (4/1/1, 60 mL) under argon atmosphere and this reaction mixture was heated to reflux. After stirring for overnight, the reaction mixture was cooled to rt and extracted with EtOAc, washed with brine, dried over Na₂SO₄, concentrated under reduced pressure, and filtered through short column chromatography (n-hexane/EtOAc/CH₂Cl₂ = 10/1/1). The filtrate was concentrated and the residue S2 was used for the next step without further purification.

The crude **S2** (1.32 g, 5.0 mmol) was dissolved in ether (60 mL) under argon atmosphere and cooled to 0 °C. *n*-BuLi (4.2 mL, 2.4 M in *n*-hexane, 2 equiv.) was slowly added and warmed to room temperature. After stirring for 2 h, 1,2-dibromoethane (1.7 mL, 4 equiv.) was slowly added. After stirring for another 1 h,

the reaction was quenched with saturated NH₄Cl aqueous solution. The aqueous layer was extracted with EtOAc and the combined organic layers were washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure to give a crude product for further use. The residue was dissolved in MeOH (20 mL) and conc. HCl (aq.) (35%, 0.2 mL) was added at 50 °C. After stirring for 1 h, the reaction mixture was extracted with EtOAc. The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography (petroleum/CH₂Cl₂ = 10:1) and recrystallized from hexane/DCM to afford **1a** (441.4 mg, 29% yield, from **S2**). **1a**: White solid, m.p. = 113-114 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.08 (s, 1H), 7.73-7.70 (m, 1H), 7.58-7.54 (m, 2H), 7.51-7.47 (m, 1H), 7.42-7.30 (m, 5H), 5.54 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 146.4, 134.4, 132.7, 131.3, 130.8, 129.4, 129.2, 128.4, 127.0, 126.7, 125.0, 124.3, 122.8, 111.9; IR (thin film): $v_{\text{max}}(\text{cm}^{-1})$ = 2987, 2901, 1376, 1066, 749; Anal. calcd for C₁₆H₁₁BrO: C, 64.24; H, 3.71; Found: C, 64.30; H, 3.73.

1b was prepared from **S2** by the same procedure as the synthesis of **1a**, except that hexachloroethane was used instead of 1,2-dibromoethane. **1b**: (0.7 g, 55% yield, from **S2**), colorless solid, m.p. = 117-118 $^{\circ}$ C; 1 H NMR (400 MHz, CDCl₃) δ 7.89 (s, 1H), 7.72-7.70 (m, 1H), 7.57-7.53 (m, 2H), 7.50-7.46 (m, 1H), 7.41-7.38 (m, 3H), 7.35-7.30 (m, 2H), 5.56 (s, 1H); 13 C NMR (100 MHz, CDCl₃) δ 145.8, 134.3, 132.2, 130.8, 129.1, 128.8, 128.3, 127.7, 127.1, 126.6, 125.0, 124.3, 123.1, 121.9; IR (thin film): $v_{max}(cm^{-1}) = 3517$, 3472, 3057, 1504, 1454, 1380, 1150, 776; HRMS (EI) calcd for $C_{16}H_{11}ClO$ [M]⁺: 254.0498; Found: 254.0502.

1c was prepared from S2 by the same procedure as the synthesis of 1a, except that NFSI was used instead of 1,2-dibromoethane. 1c: (0.8 g, 67% yield, from S2), pale yellow solid, m.p. = 79-80 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, J = 8.0 Hz, 1H), 7.60-7.49 (m, 4H), 7.44-7.42 (m, 3H), 7.39-7.30 (m, 2H), 5.243-5.237 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 151.0 (d, J = 244.3 Hz), 140.4 (d, J = 15.4 Hz), 133.7 (d, J = 3.0 Hz), 130.8, 130.1, 129.2, 128.5, 128.3 (d, J = 8.6 Hz), 127.4 (d, J = 5.3 Hz), 125.7 (d, J = 2.6 Hz), 124.9 (d, J = 2.0 Hz), 124.5, 124.2 (d, J = 2.2 Hz), 111.6 (d, J = 17.4 Hz); ¹⁹F NMR (376 Hz, CDCl₃) δ -135.8 (m); IR (thin film): v_{max} (cm⁻¹) = 3674, 3504, 3057, 2987, 2901, 1592, 1509, 1465, 777; HRMS (EI) calcd for C₁₆H₁₁FO [M]⁺: 238.0794; Found: 238.0790.

1d was prepared from **S2** by the same procedure as the synthesis of **1a**, except that iodomethane was used instead of 1,2-dibromoethane. **1d**: (0.81 g, 69% yield, from **S2**), White solid, m.p. = 96-98 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.74-7.72 (m, 1H), 7.63 (s, 1H), 7.59-7.55 (m, 2H), 7.51-7.47 (m, 1H), 7.42 -7.40 (m, 2H), 7.33-7.24 (m, 3H), 5.19 (s, 1H), 2.46 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 149.4, 134.4, 132.0, 131.2, 129.6, 128.9, 128.8, 128.4, 127.2, 126.5, 125.4, 124.4, 123.2, 120.4, 17.0; IR (thin film): $v_{\text{max}}(\text{cm}^{-1}) = 3674$, 3514, 2973, 2901, 1428, 1210, 1126, 748; HRMS (EI) calcd for $C_{17}H_{14}O$ [M]⁺: 234.1045; Found: 234.1039.

1e². Colorless solid, 91% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.81-7.78 (m, 2H), 7.59-7.55 (m, 2H), 7.53-7.36 (m, 4H), 7.36-7.28 (m, 2H), 7.26-7.22 (m, 1H), 5.14 (s, 1H).

S1 (8 mmol, 2.1 g), Pd(PPh₃)₄ (184.8 mg, 0.16 mmol, 2 mol%), Na₂CO₃ (3.4 g, 32 mmol, 4 equiv.), and ArB(OH)₂ (12 mmol, 1.5 equiv.) were dissolved in DME/EtOH/H₂O (5/1/1, 70 mL) under argon atmosphere and this mixture was heated to reflux. After stirring for overnight, the reaction mixture was cooled to rt and extracted with EtOAc, washed with brine, dried over Na₂SO₄, concentrated under reduced pressure, and filtered through short column chromatography (n-hexane/EtOAc/CH₂Cl₂ = 10/1/1)]. The filtrate was concentrated and the residue **S3** was used for next step without further purification.

1f-1i, 1k-1m was prepared from S3 in the same procedure as 1b.

1f: (1.13 g, 53% yield, from **S1**), colorless solid, m.p. = 96-98 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.88 (s, 1H), 7.76-7.66 (m, 1H), 7.44-7.25 (m, 7H), 5.56 (s, 1H), 2.46 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 145.9, 138.2, 132.3, 131.1, 130.6, 129.9, 128.8, 127.6, 127.1, 126.5, 125.0, 124.3, 123.1, 121.9, 21.3; IR (thin film): $v_{max}(cm^{-1})$ = 3519, 3474, 3058, 2918, 2856, 1618, 1584, 1514, 1451, 1376, 749; HRMS (EI) calcd for C₁₇H₁₃ClO [M]⁺: 268.0655; Found: 268.0658.

1g: (1.3 g, 49% yield, from **S1**), colorless solid, m.p. = 170-171 $^{\circ}$ C; 1 H NMR (400 MHz, CDCl₃) δ 7.91 (s, 1H), 7.81-7.75 (m, 2H), 7.75-7.71 (m, 1H), 7.70-7.69 (m, 2H), 7.53-7.44 (m, 5H), 7.41-7.32 (m, 3H), 5.62 (s, 1H); 13 C NMR (100 MHz, CDCl₃) δ 145.9, 141.1, 140.5, 133.3, 132.3, 131.2, 128.9, 128.8, 127.78, 127.77, 127.5, 127.1,

126.7, 125.0, 124.4, 122.8, 121.9; IR (thin film): $v_{max}(cm^{-1}) = 3502$, 3073, 3027, 2987, 1927, 1584, 1502, 763; HRMS (EI) calcd for $C_{22}H_{15}ClO\ [M]^+$: 330.0811; Found: 330.0812.

1h: (1.5 g, 65% yield, from **S1**), white solid, m.p. = 122-123 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.88 (s, 1H), 7.74-7.67 (m, 1H), 7.46-7.39 (m, 1H), 7.34-7.30 (m, 4H), 7.09-7.07 (m, 2H), 5.59 (s, 1H), 3.88 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.5, 146.1, 132.5, 131.9, 128.8, 127.6, 127.1, 126.5, 126.0, 125.0, 124.2, 122.8, 121.9, 114.6, 55.3; IR (thin film): $v_{max}(cm^{-1}) = 3674$, 3503, 3476, 2987, 2901, 2834, 1604, 1511, 1454, 1382, 1036, 752; HRMS (EI) calcd for $C_{17}H_{13}ClO_2$ [M]⁺: 284.0604; Found: 284.0599.

1i: (0.54 g, 25% yield, from **S1**), white solid, m.p. = 116-118 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.90 (s, 1H), 7.75-7.68 (m, 1H), 7.42-7.31 (m, 5H), 7.26-7.22 (m, 2H), 5.58 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 162.6 (d, J = 246.3 Hz), 145.9, 132.5 (d, J = 8.0 Hz), 132.4, 128.8, 127.8, 127.2, 126.8, 126.6, 124.8, 124.4, 122.1, 121.8, 116.0 (d, J = 21.3 Hz); ¹⁹F NMR (376 Hz, CDCl₃) δ -113.5 (m); IR (thin film): $v_{\text{max}}(\text{cm}^{-1}) = 3502$, 2987, 1600, 1509, 1455, 1371, 747.8; HRMS (EI) calcd for C₁₆H₁₀ClFO [M]⁺: 272.0404; Found: 272.0408.

1k: (1.55 g, 72% yield, from **S1**), red oil; ¹H NMR (400 MHz, CDCl₃) δ 7.88 (s, 1H), 7.74-7.67 (m, 1H), 7.48-7.36 (m, 2H), 7.36-7.27 (m, 3H), 7.23-7.15 (m, 2H), 5.56 (s, 1H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 145.8, 138.9, 134.1, 132.2, 131.3, 129.2, 129.1, 128.8, 127.72, 127.71, 127.0, 126.5, 125.0, 124.3, 123.2, 121.9, 21.5; IR (thin film): $v_{\text{max}}(\text{cm}^{-1}) = 3518$, 3055, 3017, 2980, 1727, 1586, 1380, 1194, 747; HRMS (EI) calcd for $C_{17}H_{13}ClO [M]^+$: 268.0655; Found: 268.0652.

11: (1.4 g, 49% yield, from **S1**), white solid, m.p. = 90-91 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.90 (s, 1H), 7.72 (s, 1H), 7.58-7.27 (m, 4H), 7.04-6.94 (m, 3H), 5.62 (s, 1H), 3.82 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 160.1, 145.8, 135.5, 132.1, 130.3, 128.7, 127.9, 127.1, 126.6, 125.0, 124.3, 122.9, 121.9, 116.0, 114.2, 55.3; IR (thin film): $\nu_{\text{max}}(\text{cm}^{-1}) = 3380$, 2987, 2945, 2901, 1585, 1451, 1383, 1081, 751; HRMS (EI) calcd for $C_{17}H_{13}ClO_2$ [M]⁺: 284.0604; Found: 284.0598.

1m: (1.4 g, 49% yield, from **S1**), yellow solid, m.p. = 75-76 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.95 (s, 1H), 7.78-7.72 (m, 2H), 7.70-7.66 (m, 2H), 7.61 (d, J = 7.6 Hz, 1H), 7.40-7.38 (m, 3H), 5.65 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 145.8, 135.8, 134.3, 132.2, 131.2 (q, J = 32.3 Hz), 129.2, 128.8, 128.0, 127.7 (q, J = 3.7 Hz), 127.3, 127.1, 124.8 (q, J = 3.7 Hz), 124.62, 124.56, 124.1 (q, J = 271.0 Hz), 121.8, 121.7; ¹⁹F NMR (376 Hz, CDCl₃) δ -62.5; IR (thin film): v_{max} (cm⁻¹) = 3529, 2987, 2901, 1591, 1504, 1458, 1324, 1070; HRMS (EI) calcd for $C_{17}H_{10}CIF_3O$ [M]⁺: 322.0372; Found: 322.0371.

1n: (0.5 g, 30% yield), white solid, m.p. = 108-109 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 13.6 Hz, 2H), 7.68-7.33 (m, 12H), 5.58 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 145.9, 140.6, 137.1, 134.3, 131.4, 130.8, 129.2, 129.1, 128.9, 128.4, 128.0, 127.4, 127.2, 126.3, 125.6, 124.9, 123.1, 122.4; IR (thin film): $v_{\text{max}}(\text{cm}^{-1})$ = 3510, 2969, 2923, 2901, 1590, 1487, 1434, 1257, 752; HRMS (EI) calcd for C₂₂H₁₅ClO [M]⁺: 330.0811; Found: 330.0809.

10: (0.48 g, 27% yield), colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.77 (s, 1H), 7.55-7.51 (m, 2H), 7.48-7.45 (m, 2H), 7.38-7.36 (m, 2H), 7.29 (d, J = 8.8 Hz, 1H), 7.15 (d, J = 8.4 Hz, 1H), 5.30 (s, 1H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 145.2, 134.5, 133.9, 130.7, 130.4, 129.02, 128.98, 128.9, 128.2, 127.0, 126.0, 124.8, 123.0, 121.9, 21.3; IR (thin film): $v_{max}(cm^{-1}) = 3523$, 2920, 1590, 1492, 1454, 1259, 1151, 700; HRMS (EI) calcd for $C_{17}H_{13}ClO[M]^+$: 268.0655; Found: 268.0654.

1p: (0.22 g, 38% yield), red solid, m.p. = 150-152 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.05 (s, 1H), 8.20 (s, 1H), 8.04 (s, 1H), 7.78 (d, J = 8.8 Hz, 1H), 7.69-7.44 (m, 4H), 7.42-7.33 (m, 2H), 6.03 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 191.7, 148.7, 135.4, 133.4, 132.6, 130.6, 129.4, 129.3, 128.7, 127.8, 126.0, 123.7, 123.6, 123.3; IR (thin film): $v_{\text{max}}(\text{cm}^{-1}) = 3349$, 3059, 2851, 1684, 1606, 1458, 1144, 693; HRMS (EI) calcd for $C_{17}H_{11}\text{ClO}_2 [\text{M}]^+$: 282.0448; Found: 282.0452.

1b-*d*₅: (0.66 g, 51% yield, from **S1**), pale brown solid, m.p. = 114-115 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.87 (s, 1H), 7.74-7.65 (m, 1H), 7.42-7.36 (m, 1H), 7.36-7.27 (m, 2H), 5.55 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 145.8, 134.1, 132.2, 130.3 (t, J = 24.1 Hz), 128.8, 128.6 (t, J = 24.5 Hz), 127.7, 127.1, 126.6, 124.9, 124.3, 123.1, 121.9; IR (thin film): $v_{\text{max}}(\text{cm}^{-1})$ = 3517, 3470, 3057, 2987, 2901, 1585, 1502, 1199, 752; HRMS (EI) calcd for $C_{16}H_6D_5ClO$ [M]⁺: 259.0812; Found: 259.0817.

A solution of S1 (2.7 g, 2.1 mmol) in THF (25 mL) under Ar was treated dropwise at -78 °C with *n*-butyllithium (8.0 mL, 2.5 M in hexane, 20 mmol). The reaction was stirred at -78 °C for 45 min, and then triisopropylborate (4.7 mL, 20 mmol) was added in one portion. The resulting mixture was stirred at -78 °C for 30 min and then at room temperature for 1 h. 5 mL of 10% HCl (aq.) and ether (50 mL) were added and the aqueous layer was extracted with ether. The combined organic extracts were washed with brine and dried over anhydrous MgSO₄. After concentrating in vacuum, the residue was added to round-bottomed flask, fitted with a condenser. K₂CO₃ (2.5 g, 18 1-bromo-2-iodobenzene (1.68)mmol), 6 mmol), g, bis(triphenylphosphine)palladium(II) chloride (420 mg, 0.6 mmol), DME (30 mL) and H₂O (4 mL) were added, and the resulting mixture was stirred at 80 °C for 9 h. The reaction mixture was allowed to cool to room temperature, DME was evaporated, and water (40.0 mL) and EtOAc (20.0 mL) were added. The layers were separated

and the aqueous layer was extracted. The combined organic extracts were washed with brine and dried over anhydrous Na_2SO_4 . After concentrating in vacuum, the residue was added to a round-bottomed flask. THF (20 mL) was added under Ar to the mixture dropwise at -78 °C with *n*-butyllithium (1.4 mL, 2.5 M in hexane, 3.4 mmol). The reaction was stirred at -78 °C for 2 h, and then deuterium oxide (0.5 mL, 3.5 mmol) was added in one portion. The resulting mixture was stirred at room temperature for 5 h. 5 mL of 10% HCl aqueous solution and ether (50 mL) were added and the aqueous layer was extracted with EtOAc. The combined organic extracts were washed with brine and dried over anhydrous Na_2SO_4 . After concentrating in vacuum, the residue S4 was used directly without purification. 1b- d_1 was prepared from S4 by the same procedure as the synthesis of 1b.

1b-*d*_I: (0.25 g, 12% yield, from **S1**), white solid, m.p. = 116-117 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.91 (s, 1H), 7.77-7.70 (m, 1H), 7.61-7.54 (m, 2H), 7.54-7.47 (m, 1H), 7.44-7.30 (m, 4H), 5.56 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 145.8, 134.2, 132.2, 130.7, 130.4 (t, J = 24.3 Hz), 129.0, 128.9, 128.7, 128.2, 127.7, 127.0, 126.5, 124.9, 124.2, 123.0, 121.9; IR (thin film): $v_{\text{max}}(\text{cm}^{-1}) = 3517$, 3471, 3056, 2987, 2901, 1586, 1502, 1471, 749; HRMS (EI) calcd for C₁₆H₁₀DClO [M]⁺: 255.0561; Found: 255.0556.

To a solution of 2-methoxynaphthalene (4.75 g, 30 mmol) in THF (50 mL) was added n-butyllithium (15 mL, 2.5 M in hexane, 36 mmol) at -78 °C. After the mixture was stirred for 1 h at room temperature, hexachloroethane (8.5 g, 36 mmol) in THF (20 mL) was added to the solution at -78 °C, and the resulting mixture was stirred for 4 h at room temperature. The mixture was poured into a saturated aqueous ammonium chloride solution (10 mL) and was extracted with EtOAc (10 mL \times 3). The combined

organic extracts were washed with brine (20 mL), dried (Na₂SO₄), and concentrated in vacuo. The residue was dissolved in dichloromethane (50 mL). To this mixture was added dropwise a dichloromethane solution of BBr₃ (ca. 0.5 M 90 mL, 45 mmol) at – 78 °C. After the stirring was maintained for 20 h at room temperature, the mixture was added ice at 0 °C. The aqueous layer was extracted with dichloromethane (20 mL × 3). The combined organic layer was washed with brine (30 mL), dried (Na₂SO₄) and concentrated in vacuo. To a solution of this residue in DMF (40 mL) was added NBS (5.6 g, 31.5 mmol). The mixture was stirred at room temperature for 7 h. Water was added, and the mixture was extracted with CH₂Cl₂ (20 mL × 3). The combined organic layer was washed with water (30 mL×3), dried (Na₂SO₄) and concentrated in vacuo. The residue was chromatographed on a silica gel column using CH₂Cl₂/PE 1:10 as eluent. A white solid S5 was obtained (1.71 g, 22% for three steps); m.p. = 68-69 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, J = 8.4 Hz, 1H), 7.77 (s, 1H), 7.62 (d, J = 8.4 Hz, 1H), 7.54-7.50 (m, 1H), 7.39-7.35 (m, 1H), 6.14 (s, 1H); 13 C NMR (100 MHz, CDCl₃) δ 146.6, 131.3, 129.0, 127.98, 127.97, 127.3, 125.7, 125.2, 121.5, 106.8; IR (thin film): $v_{\text{max}}(\text{cm}^{-1}) = 3403$, 3053, 2961, 1620, 1588, 1462, 1497, 739; HRMS (EI) calcd for C₁₀H₆OClBr [M]⁺: 255.9291; Found: 255.9292.

S5 (2 mmol), $Pd(PPh_3)_4$ (10 mol%, 231 mg), Na_2CO_3 (445 mg), $ArB(OH)_2$ (2 equiv.) were dissolved in Toluene/EtOH/H₂O (5/1/1, 14 mL) under argon atmosphere and this reaction mixture was heated to 80 °C. After stirring for 3 h, the reaction mixture was cooled to rt and extracted with EtOAc, washed with brine, dried over Na_2SO_4 , concentrated under reduced pressure, and filtered through short column chromatography (n-hexane/EtOAc = 10/1).

1q: (0.48 g, 24% yield), brown solid, m.p. = 63-64 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.87 (s, 1H), 7.69-7.60 (m, 1H), 7.60-7.49 (m, 2H), 7.41-7.26 (m, 2H), 7.22 (dd, J =

5.2, 3.6 Hz, 1H), 7.12 (dd, J = 3.2, 0.8 Hz, 1H), 5.81 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 147.4, 133.9, 133.0, 129.6, 129.0, 128.5, 128.0, 127.8, 127.0, 126.95, 124.7, 124.5, 121.7, 115.1; IR (thin film): $v_{\text{max}}(\text{cm}^{-1}) = 3455$, 3061, 2923, 2853, 1699, 1587, 1502, 1451, 1191, 727; HRMS (EI) calcd for $C_{14}H_9\text{ClOS}$ [M]⁺: 260.0063; Found: 260.0060.

1j: (0.28 g, 45% yield), white solid, m.p. = 169-170 $^{\circ}$ C; 1 H NMR (400 MHz, CDCl₃) δ 8.23 (d, J = 8.0 Hz, 2H), 7.94 (s, 1H), 7.79-7.72 (m, 1H), 7.51 (d, J = 8.0 Hz, 2H), 7.41-7.35 (m, 3H), 5.63 (s, 1H), 3.98 (s, 3H); 13 C NMR (100 MHz, CDCl₃) δ 166.8, 145.6, 139.9, 131.9, 130.9, 130.0, 129.7, 128.8, 128.0, 127.2, 126.9, 124.7, 124.5, 122.2, 121.9, 52.2; IR (thin film): $\nu_{\text{max}}(\text{cm}^{-1}) = 3391$, 2953, 1702, 1606, 1496, 1401, 765; HRMS (ESI) calcd for $C_{18}H_{14}\text{ClO}_3$ [M + H]⁺: 313.0626; Found: 313.0624.

General Procedure for Enantioselective Dearomatization of Naphthols

To a Schlenk tube were added **K1** (10 µmol, 5.6 mg), (BzO)₂ (10 µmol, 2.4 mg) and toluene (1 mL) successively. After the mixture was stirred at room temperature for 30 min, **1** (0.2 mmol), Cu(OAc)₂ (36.4 mg, 0.2 mmol), K₂CO₃ (55.2 mg, 0.4 mmol), **2** (0.4 mmol) and toluene (1 mL) were added successively. The mixture was stirred at 85 °C under air (open flask). After the reaction was complete (monitored by TLC), the mixture was concentrated under reduced pressure and the residue was purified by column chromatography (ethyl acetate/petroleum ether = 1/40, v/v) to afford desired product **3**.

Yellow solid, m.p. = 163-165 °C, 33.6 mg, 81% yield (0.1 mmol scale). ¹H NMR (400 MHz, CDCl₃) δ 7.99 (s, 1H), 7.39 (d, J = 4.0 Hz, 1H), 7.36-7.27 (m, 2H), 7.26-7.11 (m, 5H), 7.10-7.02 (m, 1H), 7.01-6.89 (m, 3H), 6.81 (d, J = 8.0 Hz, 1H), 2.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 189.9, 147.4, 147.0, 146.2, 144.1, 140.3, 140.0, 134.7, 130.6, 130.3, 129.2, 128.7, 128.2, 128.1, 127.8, 127.2, 127.1, 126.4, 122.5, 121.6, 120.6, 72.8, 12.5; IR (thin film): $v_{\text{max}}(\text{cm}^{-1})$ = 3061, 2921, 1681, 1595, 1337, 1220, 752; HRMS (ESI) calcd for $C_{25}H_{18}BrO$ [M + H]⁺: 413.0536; Found: 413.0537; [Phenomenex Lux 5u Celluloxe-4 PC-4 (0.46 cm x 25 cm), n-hexane/2-propanol = 90/10, v = 1.0 mL·min⁻¹, λ = 254 nm, t (major) = 15.90 min, t (minor) = 12.05 min], 95:5 e.r.; [α]_D²⁰ = -177.3 (c = 0.20, CHCl₃).

Yellow solid, m.p. = 163-165 °C, 61.2 mg, 83% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.72 (s, 1H), 7.38 (d, J = 7.6 Hz, 1H), 7.33-7.23 (m, 2H), 7.22-7.01 (m, 6H), 7.01-6.96 (m, 2H), 6.93 (d, J = 7.6 Hz, 1H), 6.81 (d, J = 7.6 Hz, 1H), 2.33 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 190.1, 147.1, 146.2, 144.0, 143.3, 140.1, 139.8, 134.6, 130.7, 130.4, 129.6, 129.2, 128.6, 128.2, 128.0, 127.8, 127.2, 127.0, 126.4, 121.5, 120.6, 73.0, 12.2; IR (thin film): $v_{max}(cm^{-1}) = 3674$, 2987, 2901, 1668, 1610, 1439, 1406, 1394, 1066; HRMS (ESI) calcd for $C_{25}H_{18}ClO$ [M + H]⁺: 369.1041; Found: 369.1042; [Phenomenex Lux 5u Celluloxe-4 PC-4 (0.46 cm x 25 cm), n-hexane/2-propanol = 90/10, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 12.58 min, t (minor) = 15.55 min], 96:4 e.r.; $[\alpha]_D^{20} = -227.5$ (c = 0.20, CHCl₃).

Yellow solid, m.p. = 158-160 °C, 50.9 mg, 72% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, J = 7.6 Hz, 1H), 7.34-7.28 (m, 2H), 7.2-7.05 (m, 7H), 7.01-6.96 (m, 2H), 6.94 (d, J = 7.2 Hz, 1H), 6.79 (d, J = 7.6 Hz, 1H), 2.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 189.6 (d, J = 17.2 Hz), 153.0 (d, J = 266.4 Hz), 147.2, 146.4, 143.8, 140.3, 138.5 (d, J = 0.9 Hz), 134.6, 129.7 (d, J = 2.7 Hz), 129.3 (d, J = 5.9 Hz), 128.7 (d, J = 6.0 Hz), 128.6, 128.2, 128.1, 127.8, 127.3, 127.1 (d, J = 1.2 Hz), 126.5, 124.9 (d, J = 17.3 Hz), 121.5, 120.6, 73.7 (d, J = 4.0 Hz), 12.2; ¹⁹F NMR (376 Hz, CDCl₃) δ -130.8 (d, J = 11.3 Hz); IR (thin film): $v_{\text{max}}(\text{cm}^{-1}) = 3674$, 2987, 2902, 1673, 1406, 1258, 1066; HRMS (ESI) calcd for $C_{25}H_{18}$ FO [M + H][†]: 353.1336; Found: 353.1346; [Phenomenex Lux 5u Celluloxe-4 PC-4 (0.46 cm x 25 cm), *n*-hexane/2-propanol = 95/5, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 20.58 min, t (minor) = 18.86 min], 86:14 e.r.; $[\alpha]_D^{20} = -87.2$ (c = 0.20, CHCl₃).

White solid, m.p. = 159-160 °C, 34.6 mg, 50% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.39-7.37 (m, 2H), 7.31-7.23 (m, 2H), 7.22-7.08 (m, 4H), 7.05-7.00 (m, 4H), 6.91 (d, J = 7.6 Hz, 1H), 6.77 (d, J = 7.6 Hz, 1H), 2.37 (s, 3H), 1.97 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 197.4, 147.9, 146.4, 144.5, 142.4, 140.2, 139.5, 135.2, 134.1, 130.5, 129.1, 128.67, 128.65, 128.1, 127.6, 127.3, 126.9, 126.7, 126.1, 121.3, 120.4, 71.8, 16.3, 12.3; IR (thin film): $v_{max}(cm^{-1}) = 3674$, 2987, 2901, 1655, 1595, 1075, 1051, 696; HRMS (ESI) calcd for $C_{26}H_{21}O$ [M + H]⁺: 349.1587; Found: 349.1589; [Phenomenex Lux 5u Celluloxe-4 PC-4 (0.46 cm x 25 cm), n-hexane/2-propanol = 90/10, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 9.03 min, t (minor) = 16.64 min], 95:5 e.r.; $[\alpha]_D^{20} = -169.8$ (c = 0.20, CHCl₃).

White solid, 25.2 mg, 38% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, J = 10.0 Hz, 1H), 7.47-6.96 (m, 11H), 6.93 (d, J = 7.2 Hz, 1H), 6.81 (d, J = 7.6 Hz, 1H), 6.32 (d, J = 10.0 Hz, 1H), 2.39 (s, 3H), spectral data were in agreement with those reported in the literature; ⁶ [Phenomenex Lux 5u Celluloxe-4 PC-4 (0.46 cm x 25 cm), n-hexane/2-propanol = 90/10, v = 1.0 mL·min⁻¹, λ = 254 nm, t (major) = 31.83 min, t (minor) = 40.57 min], 89:11 e.r.; $[\alpha]_D^{20}$ = -123.5 (c = 0.20, CHCl₃).

White solid, m.p. = 139-141 $^{\circ}$ C, 67.7 mg, 88% yield. 1 H NMR (400 MHz, CDCl₃) δ 7.68 (s, 1H), 7.44 (d, J = 7.6 Hz, 1H), 7.36-7.12 (m, 7H), 7.08 (t, J = 7.2 Hz, 1H),

6.95-6.91 (m, 3H), 6.82 (d, J = 7.6 Hz, 1H), 2.71 (q, J = 7.6 Hz, 2H), 1.33 (t, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 190.1, 147.7, 146.0, 145.4, 144.2, 143.1, 139.7, 134.8, 130.8, 130.4, 129.9, 129.1, 128.6, 128.2, 128.0, 127.7, 127.4, 127.2, 126.3, 122.0, 120.8, 73.2, 19.6, 13.7; IR (thin film): $v_{\text{max}}(\text{cm}^{-1}) = 2972$, 1668, 1608, 1558, 1274, 752; HRMS (ESI) calcd for $C_{26}H_{20}ClO$ [M + H]⁺: 383.1197; Found: 383.1196; [Phenomenex Lux 5u Amylose-2 PA-2 (0.46 cm x 25 cm), n-hexane/2-propanol = 90/10, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 19.47 min, t (minor) = 26.89 min], 96:4 e.r.; $\lceil \alpha \rceil_D^{20} = -150.9$ (c = 1.00, CHCl₃).

Pale yellow solid, m.p. = 160-162 °C, 58.8 mg, 74% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.76 (s, 1H), 7.57 (d, J = 7.6 Hz, 1H), 7.31-7.26 (m, 2H), 7.25-7.06 (m, 7H), 7.03 (t, J = 7.6 Hz, 1H), 6.90 (d, J = 7.6 Hz, 1H), 6.75 (d, J = 7.6 Hz, 1H), 1.98 (dq, J = 8.4, 5.6 Hz, 1H), 1.02-0.90 (m, 2H), 0.67-0.60 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 189.9, 146.9, 146.0, 145.1, 144.8, 143.1, 140.1, 134.4, 130.7, 130.5, 129.6, 129.2, 129.0, 128.0, 127.9, 127.7, 127.2, 126.9, 126.2, 121.5, 72.7, 8.9, 7.4, 7.2; IR (thin film): $v_{\text{max}}(\text{cm}^{-1})$ = 2999, 1680, 1606, 1493, 1225, 1062, 757; HRMS (ESI) calcd for $C_{27}H_{20}ClO$ [M + H]⁺: 395.1197; Found: 395.1196; [Phenomenex Lux 5u Amylose-2 PA-2 (0.46 cm x 25 cm), n-hexane/2-propanol = 98/2, v = 1.0 mL·min⁻¹, λ = 254 nm, t (minor) = 40.14 min, t (major) = 44.14 min], 97:3 e.r.; [α]_D²⁰ = -126.3 (c = 1.00, CHCl₃).

Yellow solid, m.p. = 126-128 °C, 73.1 mg, 85% yield. 1 H NMR (400 MHz, CDCl₃) δ 7.86 (s, 1H), 7.54-7.48 (m, 2H), 7.47-7.34 (m, 4H), 7.31-7.21 (m, 3H), 7.17 (td, J =

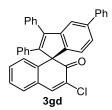
7.6, 1.2 Hz, 1H), 7.07 (td, J = 7.6, 1.2 Hz, 1H), 7.03-6.93 (m, 5H), 6.84-6.78 (m, 2H); 13 C NMR (100 MHz, CDCl₃) δ 189.4, 146.8, 145.3, 144.9, 144.3, 143.3, 140.0, 134.8, 133.9, 130.8, 130.7, 129.45, 129.43, 129.4, 129.0, 128.8, 128.1, 128.0, 127.95, 127.92, 127.2, 126.8, 126.6, 122.1, 121.6, 72.7; IR (thin film): $v_{\text{max}}(\text{cm}^{-1}) = 3065$, 2923, 1675, 1607, 1487, 1226, 751, 688; HRMS (ESI) calcd for $C_{30}H_{23}\text{CINO}$ [M + NH₄]⁺: 448.1463; Found: 448.1460; [Phenomenex Lux 5u Celluloxe-4 PC-4 (0.46 cm x 25 cm), n-hexane/2-propanol = 98/2, v = 1.0 mL·min⁻¹, λ = 254 nm, t (minor) = 15.63 min, t (major) = 17.69 min], 96:4 e.r.; [α]_D²⁰ = -197.5 (c = 0.20, CHCl₃).

Yellow foam, m.p. = 88-89 °C, 57.0 mg, 62% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.84 (s, 1H), 7.41-7.35 (m, 3H), 7.29-7.20 (m, 5H), 7.16-7.12 (m, 1H), 7.05-7.01 (m, 1H), 7.00-6.92 (m, 2H), 6.79 (d, J = 8.4 Hz, 2H), 6.71 (d, J = 8.4 Hz, 2H), 2.40 (s, 3H), 2.13 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 189.6, 146.6, 145.5, 144.2, 143.9, 143.2, 140.3, 137.6, 137.9, 132.0, 131.0, 130.8, 130.7, 129.5, 129.4, 129.3, 129.2, 128.81, 128.77, 128.0, 127.8, 126.8, 126.3, 121.9, 121.5, 72.6, 21.4, 21.0; IR (thin film): $v_{\text{max}}(\text{cm}^{-1})$ = 2987, 2917, 1676, 1608, 1558, 1226, 1020, 751; HRMS (ESI) calcd for $C_{32}H_{27}\text{CINO}$ [M + NH₄]⁺: 476.1776; Found: 476.1774; [Phenomenex Lux 5u Amylose-2 PA-2 (0.46 cm x 25 cm), n-hexane/2-propanol = 90/10, v = 1.0 mL·min⁻¹, λ = 254 nm, t (minor) = 17.15 min, t (major) = 27.73 min], 96:4 e.r.; $[\alpha]_D^{20}$ = -207.0 (c = 0.20, CHCl₃).

Yellow foam, m.p. = 89-90 °C, 84.4 mg, 86% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.85 (s, 1H), 7.44 (d, J = 8.4 Hz, 2H), 7.36 (d, J = 7.6 Hz, 1H), 7.30-7.20 (m, 3H), 7.16-7.12 (m, 1H), 7.07-6.90 (m, 5H), 6.76 (d, J = 8.8 Hz, 2H), 6.53 (d, J = 8.8 Hz, 2H), 3.83 (s, 3H), 3.61 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 189.7, 159.1, 158.4, 146.5, 145.6, 143.4, 143.3, 143.0, 140.4, 130.8, 130.7, 130.6, 130.2, 129.4, 129.3, 128.0, 127.8, 127.1, 126.7, 126.5, 126.1, 121.7, 121.4, 114.3, 113.5, 72.6, 55.2, 54.9; IR (thin film): $v_{\text{max}}(\text{cm}^{-1})$ = 2999, 2930, 2835, 1675, 1607, 1502, 1461, 1245, 1028, 732; HRMS (ESI) calcd for $C_{32}H_{27}\text{CINO}_3$ [M + NH₄]⁺: 508.1674; Found: 508.1672; [Phenomenex Lux 5u Amylose-2 PA-2 (0.46 cm x 25 cm), n-hexane/2-propanol = 80/20, v = 1.0 mL·min⁻¹, λ = 254 nm, t (minor) = 22.16 min, t (major) = 30.93 min], 96:4 e.r.; $\lceil \alpha \rceil_D^{20} = -199.4$ (c = 0.20, CHCl₃).

Yellow foam, m.p. = 108-110 °C, 70.4 mg, 60% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.86 (s, 1H), 7.61-7.54 (m, 2H), 7.40-7.35 (m, 3H), 7.32-7.23 (m, 3H), 7.21-7.05 (m, 4H), 7.00 (d, J = 7.6 Hz, 1H), 6.92-6.86 (m, 1H), 6.68-6.61 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 189.1, 146.7, 144.4, 144.3, 143.7, 143.5, 139.2, 133.2, 132.6, 132.2, 131.4, 131.0, 130.9, 130.6, 130.4, 129.6, 129.4, 128.3, 128.2, 127.1, 126.8, 122.8, 121.9, 121.8, 121.6, 72.7; IR (thin film): $v_{max}(cm^{-1}) = 2987$, 2901, 1675, 1481, 1452, 1068, 752; HRMS (ESI) calcd for $C_{30}H_{21}Br_{2}CINO$ [M + NH₄]⁺: 603.9673; Found: 603.9670; [Phenomenex Lux 5u Amylose-2 PA-2 (0.46 cm x 25 cm), n-hexane/2-propanol = 90/10, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (minor) = 15.93 min, t (major) = 22.97 min], 97:3 e.r.; $[\alpha]_{D}^{20} = -140.2$ (c = 0.20, CHCl₃).

Pale yellow solid, m.p. = 174-176 °C, 60.6 mg, 65% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.85 (s, 1H), 7.49-7.42 (m, 2H), 7.39 (dd, J = 7.6, 1.2 Hz, 1H), 7.31-7.27 (m, 3H), 7.22-7.07 (m, 4H), 7.01 (d, J = 7.6 Hz, 1H), 6.92 (dd, J = 7.6, 0.4 Hz, 1H), 6.79-6.67 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 189.4, 162.4 (d, J = 246.4 Hz), 161.7 (d, J = 247.2 Hz), 146.7, 144.8, 143.8, 143.7, 143.4, 139.5, 131.2, 131.1, 130.8, 130.74, 130.68, 130.66, 130.3 (d, J = 3.5 Hz), 129.9 (d, J = 3.4 Hz), 128.2, 128.1, 126.8, 121.9, 121.8, 116.0 (d, J = 21.3 Hz), 115.2 (d, J = 21.3 Hz), 72.8; ¹⁹F NMR (376 Hz, CDCl₃) δ -113.1 (m), -113.5 (m); IR (thin film): $v_{\text{max}}(\text{cm}^{-1})$ = 2987, 2901, 1675, 1601, 1499, 1451, 1065, 753; HRMS (ESI) calcd for $C_{30}H_{21}\text{CIF}_2\text{NO}$ [M + NH₄]*: 484.1274; Found: 484.1274; [Phenomenex Lux 5u Amylose-2 PA-2 (0.46 cm x 25 cm), n-hexane/2-propanol = 90/10, v = 1.0 mL·min⁻¹, λ = 254 nm, t (minor) = 13.42 min, t (major) = 16.97 min], 96:4 e.r.; $[\alpha]_D^{20}$ = -189.5 (c = 1.00, CHCl₃).


Pale yellow solid, m.p. = 145-147 °C, 61.2 mg, 54% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.89 (s, 1H), 7.73 (d, J = 8.4 Hz, 2H), 7.62 (d, J = 8.0 Hz, 2H), 7.42 (d, J = 7.6 Hz, 1H), 7.35-7.18 (m, 6H), 7.17-7.11 (m, 1H), 7.04 (d, J = 7.6 Hz, 1H), 6.94 (d, J = 8.0 Hz, 1H), 6.90 (d, J = 8.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 188.9, 146.9, 145.5, 144.1, 144.0, 143.5, 138.9, 138.0, 137.2, 131.0, 130.7, 130.3, 129.79, 129.77, 129.5, 129.6, 128.5, 128.4, 127.5, 126.8, 126.1 (q, J = 3.7 Hz), 125.4, 125.2 (q, J = 3.8 Hz), 122.7, 122.5, 122.2, 122.0, 73.0; ¹⁹F NMR (376 Hz, CDCl₃) δ -154.5, -154.8; IR (thin film): $v_{\text{max}}(\text{cm}^{-1})$ = 2970, 2901, 1680, 1613, 1563, 1453, 1318, 1065, 753;

HRMS (ESI) calcd for $C_{32}H_{21}ClF_6NO$ [M + NH₄]⁺: 584.1210; Found: 584.1208; [Phenomenex Lux 5u Amylose-2 PA-2 (0.46 cm x 25 cm), *n*-hexane/2-propanol = 98/2, $v = 1.0 \text{ mL} \cdot \text{min}^{-1}$, $\lambda = 254 \text{ nm}$, t (minor) = 15.16 min, t (major) = 21.53 min], 97:3 e.r.; $[\alpha]_D^{20} = -135.5$ (c = 0.20, CHCl₃).

Yellow oil, 76.6 mg, 98% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.83 (s, 1H), 7.35 (d, J = 7.6 Hz, 1H), 7.30-7.22 (m, 3H), 7.17-7.13 (m, 1H), 7.01-6.95 (m, 1H), 6.83 (d, J = 7.2 Hz, 1H), 6.62 (d, J = 7.6 Hz, 1H), 2.62 (t, J = 7.6 Hz, 2H), 2.29-2.22 (m, 1H), 2.09-1.99 (m, 1H), 1.74-1.58 (m, 2H), 1.54-1.41 (m, 2H), 1.22-1.02 (m, 4H), 0.98 (t, J = 7.2 Hz, 3H), 0.75 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 190.4, 148.0, 146.4, 146.1, 143.0, 142.6, 140.0, 130.9, 130.2, 129.7, 129.1, 127.64, 127.63, 127.2, 125.4, 121.7, 119.7, 72.0, 30.9, 27.0, 25.4, 23.0, 22.8, 14.1, 13.6; IR (thin film): $v_{\text{max}}(\text{cm}^{-1})$ = 2955, 2930, 2859, 1677, 1610, 1559, 1465, 1227, 750; HRMS (ESI) calcd for $C_{26}H_{31}$ ClNO [M + NH₄]⁺: 408.2089; Found: 408.2087; [Phenomenex Lux 5u Amylose-2 PA-2 (0.46 cm x 25 cm), n-hexane/2-propanol = 90/10, v = 1.0 mL· min⁻¹, λ = 254 nm, t (minor) = 9.42 min, t (major) = 10.69 min], 92:8 e.r.; $[\alpha]_D^{20}$ = -116.9 (c = 1.00, CHCl₃).

Yellow foam, m.p. = 86-87 °C, 68.5 mg, 77% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.82 (s, 1H), 7.54-7.47 (m, 2H), 7.45-7.33 (m, 4H), 7.24-7.20 (m, 1H), 7.15-7.12 (m, 1H), 7.08 (s, 1H), 7.01-6.93 (m, 4H), 6.91-6.85 (m, 2H), 6.81-6.79 (m, 2H), 2.27 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 189.5, 145.4, 144.9, 144.5, 144.0, 143.2, 140.2, 138.0, 134.9, 133.9, 130.7, 130.6, 129.4, 129.3, 129.0, 128.9, 128.0, 127.9, 127.8, 127.3, 127.1, 126.7, 122.7, 121.3, 72.3, 21.5; IR (thin film): $v_{max}(cm^{-1}) = 3053$, 3021, 2920, 1676, 1607, 1558, 1343, 1226, 745; HRMS (ESI) calcd for $C_{31}H_{25}CINO$ [M +

NH₄]⁺: 462.1619; Found: 462.1617; [Phenomenex Lux 5u Celluloxe-4 PC-4 (0.46 cm x 25 cm), *n*-hexane/2-propanol = 98/2, $v = 1.0 \text{ mL} \cdot \text{min}^{-1}$, $\lambda = 254 \text{ nm}$, t (minor) = 13.74 min, t (major) = 16.29 min], 92:8 e.r.; $[\alpha]_D^{20} = -159.3$ (c = 0.20, CHCl₃).

Yellow solid, m.p. = 227-229 °C, 87.4 mg, 86% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.87 (s, 1H), 7.55-7.25 (m, 14H), 7.19 (t, J = 7.6 Hz, 1H), 7.09-6.97 (m, 5H), 6.82 (d, J = 6.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 189.4, 145.9, 145.7, 145.0, 144.8, 143.4, 141.6, 141.1, 139.9, 134.7, 133.8, 130.8, 130.7, 129.5, 129.42, 129.40, 129.0, 128.9, 128.6, 128.04, 128.02, 127.98, 127.3, 126.9, 125.8, 121.8, 120.9, 72.5; IR (thin film): $v_{\text{max}}(\text{cm}^{-1}) = 2923$, 1681, 1597, 1557, 1499, 1227, 751; HRMS (ESI) calcd for $C_{36}H_{27}\text{CINO}$ [M + NH₄]⁺: 524.1776; Found: 524.1774; [Phenomenex Lux 5u Celluloxe-4 PC-4 (0.46 cm x 25 cm), *n*-hexane/2-propanol = 90/10, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (minor) = 9.05 min, t (major) = 10.12 min], 92:8 e.r.; $[\alpha]_D^{20} = -181.1$ (c = 0.20, CHCl₃).

Yellow foam, m.p. = 76-78 °C, 75.8 mg, 82% yield. 1 H NMR (400 MHz, CDCl₃) δ 7.81 (s, 1H), 7.51-7.49 (m, 2H), 7.45-7.28 (m, 4H), 7.22 (t, J = 7.2 Hz, 1H), 7.14 (t, J = 7.2 Hz, 1H), 7.00-6.92 (m, 4H), 6.89 (d, J = 8.0 Hz, 1H), 6.83-6.75 (m, 3H), 6.59 (dd, J = 8.0, 2.4 Hz, 1H), 3.68 (s, 3H); 13 C NMR (100 MHz, CDCl₃) δ 189.6, 160.0, 146.8, 145.4, 144.6, 143.2, 140.2, 138.9, 134.7, 133.8, 130.7, 130.5, 129.4, 129.3, 128.9, 128.8, 127.9, 127.8, 127.2, 126.7, 122.2, 111.9, 108.0, 71.9, 55.4; IR (thin film): $v_{\text{max}}(\text{cm}^{-1})$ = 3019, 1675, 1595, 1472, 1223, 746; HRMS (ESI) calcd for $C_{31}H_{25}\text{ClNO}_2$ [M + NH₄] $^{+}$: 478.1568; Found: 478.1567; [Daicel Chiralpak AD-H (0.46 cm x 25 cm), n-hexane/2-propanol = 95/5, v = 1.0 mL·min $^{-1}$, λ = 254 nm, t (major) = 13.54 min, t (minor) = 17.43 min], 90:10 e.r.; [α] $_{D}^{20}$ = -158.2 (c = 0.20, CHCl₃).

Yellow solid, m.p. = 169-170 °C, 64.4 mg, 72% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.83 (s, 1H), 7.52-7.34 (m, 6H), 7.29-7.25 (m, 1H), 7.20-7.16 (m, 1H), 7.06-6.89 (m, 6H), 6.82-6.71 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 189.2, 164.3, 161.9, 147.6 (d, J = 8.8 Hz), 146.4, 144.0 (d, J = 3.0 Hz), 143.4, 142.2 (d, J = 2.5 Hz), 139.5, 134.2, 133.5, 130.9, 130.6, 129.5, 129.4, 129.2, 129.0, 128.2, 128.09, 128.07, 127.5, 126.8, 122.8 (d, J = 9.2 Hz), 113.2 (d, J = 23.4 Hz), 109.3 (d, J = 23.2 Hz), 72.0; ¹⁹F NMR (376 Hz, CDCl₃) δ -113.5 (m); IR (thin film): $v_{\text{max}}(\text{cm}^{-1}) = 2987$, 1672, 1594, 1558, 1487, 1464, 1138, 747; HRMS (ESI) calcd for $C_{30}H_{22}\text{CIFNO}$ [M + NH₄]⁺: 466.1368; Found: 466.1365; [Phenomenex Lux 5u Celluloxe-4 PC-4 (0.46 cm x 25 cm), n-hexane/2-propanol = 90/10, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (minor) = 7.83 min, t (major) = 8.91 min], 94:6 e.r.; $\lceil \alpha \rceil_D^{20} = -154.2$ (c = 0.20, CHCl₃).

Yellow foam, m.p. = 94-95 °C, 70.0 mg, 72% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.94 (s, 1H), 7.86 (s, 1H), 7.81 (d, J = 8.0 Hz, 1H), 7.51-7.39 (m, 6H), 7.29 (t, J = 7.2 Hz, 1H), 7.19 (t, J = 7.2 Hz, 1H), 7.11-6.96 (m, 4H), 6.94 (d, J = 8.0 Hz, 1H), 6.80-6.78 (m, 2H), 3.85 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 188.7, 166.7, 151.4, 145.8, 145.7, 144.2, 143.5, 138.9, 134.1, 133.5, 130.9, 130.6, 130.3, 129.6, 129.4, 129.3, 129.0, 128.96, 128.4, 128.3, 128.2, 128.1, 127.5, 126.8, 122.9, 121.7, 72.6, 52.1; IR (thin film): $v_{max}(cm^{-1}) = 2988$, 2917, 1718, 1676, 1436, 1344, 1286, 699; HRMS (ESI) calcd for $C_{32}H_{25}CINO_3$ [M + NH₄]⁺: 506.1517; Found: 506.1516; [Daicel Chiralpak AD-H (0.46 cm x 25 cm), n-hexane/2-propanol = 90/10, v = 1.0 mL ·min⁻¹, $\lambda = 254$ nm, t (major) = 11.00 min, t (minor) = 16.59 min], 91:9 e.r.; $[\alpha]_D^{20} = -132.3$ (c = 1.00, CHCl₃).

Yellow foam, m.p. = 99-100 °C, 72.3 mg, 81% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.84 (s, 1H), 7.50-7.48 (m, 2H), 7.44-7.33 (m, 4H), 7.24 (t, J = 7.2 Hz, 1H), 7.19-7.11 (m, 2H), 7.04 (d, J = 7.6 Hz, 1H), 7.01-6.91 (m, 4H), 6.80-6.78 (m, 3H), 2.21 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 189.6, 147.1, 144.8, 143.5, 143.3, 142.6, 140.2, 136.6, 135.0, 134.0, 130.8, 130.7, 129.4, 129.35, 129.33, 128.9, 128.82, 128.76, 128.0, 127.9, 127.8, 127.0, 126.9, 122.3, 121.8, 72.5, 21.4; IR (thin film): $v_{max}(cm^{-1}) = 3021$, 2919, 1676, 1608, 1558, 1486, 1227, 823, 743; HRMS (ESI) calcd for $C_{31}H_{25}CINO$ [M + NH₄]⁺: 462.1619; Found: 462.1617; [Phenomenex Lux 5u Amylose-2 PA-2 (0.46 cm x 25 cm), n-hexane/2-propanol = 80/20, v = 1.0 mL·min⁻¹, λ = 254 nm, t (minor) = 9.46 min, t (major) = 19.64 min], 93:7 e.r.; [α]_D²⁰ = -155.2 (c = 0.20, CHCl₃).

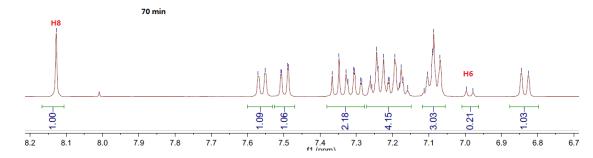
Yellow solid, m.p. = 176-177 °C, 74.1 mg, 80% yield. 1 H NMR (400 MHz, CDCl₃) δ 7.83 (s, 1H), 7.50-7.35 (m, 6H), 7.31-7.10 (m, 3H), 6.99-6.96 (m, 4H), 6.78-6.76 (m, 3H), 6.58 (s, 1H), 3.68 (s, 3H); 13 C NMR (100 MHz, CDCl₃) δ 189.4, 158.8, 148.4, 144.4, 143.3, 142.5, 140.2, 138.1, 135.0, 134.0, 130.8, 130.6, 129.4, 129.3, 128.81, 128.76, 128.0, 127.90, 127.86, 126.94, 126.89, 122.6, 112.6, 108.9, 72.4, 55.5; IR (thin film): $v_{max}(cm^{-1}) = 2934$, 1672, 1593, 1577, 1477, 1029, 701; HRMS (ESI) calcd for $C_{31}H_{25}ClNO_2$ [M + NH₄]*: 478.1568; Found: 478.1566; [Daicel Chiralpak AD-H (0.46 cm x 25 cm), *n*-hexane/2-propanol = 98/2, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 25.29 min, t (minor) = 28.26 min], 96:4 e.r.; $[\alpha]_{D}^{20} = -156.5$ (c = 0.20, CHCl₃).

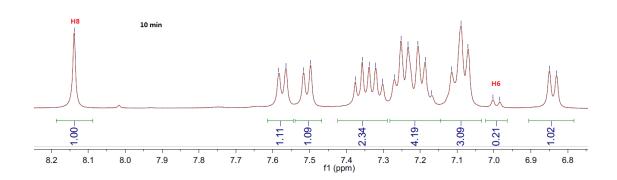
Yellow solid, m.p. = 187-189 °C, 7.1 mg, 8% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.82 (s, 1H), 7.47-7.45 (m, 2H), 7.37-7.30 (m, 4H), 7.23-7.15 (m, 2H), 7.07-7.01 (m, 2H), 6.98-6.89 (m, 3H), 6.76 (d, J = 8.4 Hz, 1H), 6.69-6.68 (m, 2H), 6.63 (d, J = 7.6 Hz, 1H), 3.56 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 189.3, 155.0, 148.7, 144.9, 143.9, 143.2, 140.1, 136.7, 134.2, 132.3, 130.8, 130.7, 129.8, 129.5, 129.3, 129.1, 128.1, 127.9, 127.8, 127.5, 127.1, 127.0, 126.8, 114.6, 111.9, 72.7, 55.5; IR (thin film): $v_{\text{max}}(\text{cm}^{-1}) = 2919$, 2850, 1672, 1592, 1475, 1346, 1263, 1065, 747; HRMS (ESI) calcd for $C_{31}H_{25}\text{CINO}_2$ [M + NH₄]⁺: 478.1568; Found: 478.1566; [Phenomenex Lux 5u Celluloxe-4 PC-4 (0.46 cm x 25 cm), n-hexane/2-propanol = 98/2, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (minor) = 25.67 min, t (major) = 31.16 min], 97:3 e.r.; $[\alpha]_D^{20} = -108.8$ (c = 0.10, CHCl₃).

Pale brown solid, m.p. = 179-180 °C, 32.8 mg, 33% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.87 (s, 1H), 7.53 (d, J = 8.0 Hz, 1H), 7.50-7.36 (m, 7H), 7.34-7.30 (m, 1H), 7.24-7.17 (m, 2H), 7.06-6.98 (m, 3H), 6.92 (d, J = 8.0 Hz, 1H), 6.81-6.75 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 188.7, 149.0, 147.6, 147.3, 143.8, 143.7, 138.5, 134.0, 133.2, 131.0, 130.6, 129.8, 129.5, 129.3, 129.0, 128.6, 128.4, 128.3, 128.2, 128.0, 127.8, 126.9, 125.7 (q, J = 3.8 Hz), 124.1 (q, J = 270.9 Hz), 122.0, 118.6 (q, J = 3.7 Hz), 72.5; ¹⁹F NMR (376 Hz, CDCl₃) δ -61.6; IR (thin film): v_{max} (cm⁻¹) = 2922, 1676, 1611, 1562, 1486, 1319, 1123, 698; HRMS (ESI) calcd for $C_{31}H_{22}$ ClF₃NO [M + NH₄]⁺: 516.1337; Found: 516.1335; [Phenomenex Lux 5u Amylose-2 PA-2 (0.46 cm x 25 cm), n-hexane/2-propanol = 90/10, v = 1.0 mL·min⁻¹, λ = 254 nm, t (minor) = 8.48 min, t (major) = 11.14 min], 93:7 e.r.; [α]_D²⁰ = -109.1 (c = 0.20, CHCl₃).

Yellow solid, m.p. = 205-206 °C, 83.5 mg, 82% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.90 (s, 1H), 7.63-7.47 (m, 5H), 7.47-7.17 (m, 9H), 7.16-6.92 (m, 6H), 6.91-6.79 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 189.4, 146.7, 145.2, 144.9, 144.2, 143.3, 140.8, 139.3, 138.7, 134.7, 133.9, 131.1, 129.8, 129.4, 129.0, 128.9, 128.8, 128.13, 128.06, 128.0, 127.9, 127.8, 127.3, 127.2, 126.8, 126.6, 122.1, 121.6, 72.5; IR (thin film): $v_{max}(cm^{-1}) = 3028$, 1681, 1596, 1553, 1484, 753; HRMS (ESI) calcd for C₃₆H₂₇ClNO [M + NH₄]⁺: 524.1776; Found: 524.1772; [Phenomenex Lux 5u Celluloxe-4 PC-4 (0.46 cm x 25 cm), *n*-hexane/2-propanol = 98/2, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (minor) = 20.57 min, t (major) = 28.33 min], 97:3 e.r.; $[\alpha]_D^{20} = -154.0$ (c = 0.20, CHCl₃).

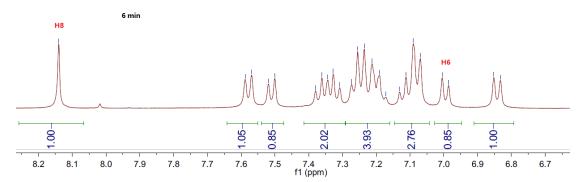
Yellow foam, m.p. = 73-74 °C, 57.7 mg, 65% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.81 (s, 1H), 7.56-7.33 (m, 5H), 7.32-7.15 (m, 3H), 7.12-6.92 (m, 6H), 6.94-6.76 (m, 3H), 2.30 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 189.7, 147.0, 145.2, 144.8, 144.4, 143.5, 137.7, 136.9, 134.9, 133.9, 131.7, 130.6, 130.0, 129.4, 129.3, 129.0, 128.8, 128.0, 127.9, 127.1, 126.7, 126.5, 122.0, 121.5, 72.4, 20.9; IR (thin film): $v_{max}(cm^{-1}) = 2993$, 2849, 1677, 1598, 1558, 1488, 755, 699; HRMS (ESI) calcd for C₃₁H₂₅ClNO [M + NH₄]⁺: 462.1619; Found: 462.1617; [Phenomenex Lux 5u Celluloxe-4 PC-4 (0.46 cm x 25 cm), *n*-hexane/2-propanol = 98/2, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (minor) = 16.28 min, t (major) = 19.86 min], 96:4 e.r.; $[\alpha]_D^{20} = -181.1$ (c = 1.00, CHCl₃).


Yellow foam, m.p. = 94-96 °C, 63.3 mg, 69% yield. ¹H NMR (400 MHz, CDCl₃) δ 9.94 (s, 1H), 7.94-7.90 (m, 2H), 7.66 (dd, J = 8.0, 1.2 Hz, 1H), 7.57-7.36 (m, 5H), 7.34-7.25 (m, 2H), 7.14-6.94 (m, 6H), 6.80-6.79 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 190.6, 188.4, 146.5, 145.8, 145.4, 145.3, 143.7, 141.8, 135.9, 134.4, 133.4, 132.3, 131.4, 130.1, 130.0, 129.3, 128.9, 128.8, 128.5, 128.20, 128.17, 127.7, 127.5, 126.8, 122.4, 121.6, 72.7; IR (thin film): $v_{max}(cm^{-1}) = 2987$, 2924, 1681, 1609, 1488, 1151, 756, 699; HRMS (ESI) calcd for $C_{31}H_{23}CINO_2$ [M + NH₄]⁺: 476.1412; Found: 476.1408; [Daicel Chiralpak AD-H (0.46 cm x 25 cm), n-hexane/2-propanol = 90/10, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 15.57 min, t (minor) = 17.47 min], 95:5 e.r.; $\lceil \alpha \rceil_D^{20} = -157.8$ (c = 1.00, CHCl₃).


Yellow foam, m.p. = 188-189 °C, 9.5 mg, 11% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.60 (s, 1H), 7.45-7.43 (m, 2H), 7.36 (d, J = 5.2 Hz, 1H), 7.33-7.24 (m, 6H), 7.13-7.06 (m, 2H), 7.04-6.99 (m, 3H), 6.73-6.71 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 188.8, 151.6, 148.2, 145.9, 142.8, 139.9, 138.8, 134.6, 134.4, 130.7, 130.5, 129.7, 129.4, 129.1, 129.0, 128.8, 128.4, 128.2, 128.0, 127.98, 127.4, 127.2, 120.1, 70.8; IR (thin film): $v_{max}(cm^{-1}) = 2988$, 2969, 2922, 1678, 1611, 1593, 1227, 696; HRMS (ESI) calcd for $C_{28}H_{18}ClOS$ [M + H]⁺: 437.0761; Found: 437.0754; [Phenomenex Lux 5u Celluloxe-4 PC-4 (0.46 cm x 25 cm), *n*-hexane/2-propanol = 90/10, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (minor) = 11.12 min, t (major) = 14.30 min], 95:5 e.r.; $\lceil \alpha \rceil_D^{20} = -18.1$ (c = 0.20, CHCl₃).

Deuterium-labeling Experiments:

a) Intramolecular kinetic isotope effect experiment.


To a Schlenk tube were added **K1** (10 µmol, 5.6 mg), (BzO)₂ (10 µmol, 2.4 mg) and toluene (1 mL) successively. After the mixture was stirred at room temperature for 30 min, **1b**- d_1 (51.1 mg, 0.2 mmol), Cu(OAc)₂ (36.4 mg, 0.2 mmol), K₂CO₃ (55.2 mg, 0.4 mmol), **2a** (46.5 mg, 0.4 mmol) and toluene (1 mL) were added successively. The mixture was stirred at 85 °C under air (open flask). After 70 min and 10 min respectively, the mixture was concentrated under reduced pressure and the residue was purified by column chromatography (ethyl acetate/petroleum ether = 1/50, v/v) to afford a mixture of **3ba** and **3ba**- d_1 in 63% yield (46.5 mg) and 32% yield (23.9 mg), respectively. The KIE value (approx 3.8) was obtained by integrating the H8 of the spiro **3ba** and the H6 of the spiro **3ba** and **3ba**- d_1 .

b) Intermolecular kinetic isotope effect experiment.

To a Schlenk tube were added **K1** (10 µmol, 5.6 mg), (BzO)₂ (10 µmol, 2.4 mg) and toluene (1 mL) successively. After the mixture was stirred at room temperature for 30 min, **1b** (25.5 mg, 0.1 mmol), **1b**- d_5 (26.0 mg, 0.1 mmol), Cu(OAc)₂ (36.4 mg, 0.2 mmol), K₂CO₃ (55.2 mg, 0.4 mmol), **2a** (46.5 mg, 0.4 mmol) and toluene (1 mL) were added successively. The mixture was stirred at 85 °C under air (open flask). After 6 min, the mixture was concentrated under reduced pressure and the residue was purified by column chromatography (ethyl acetate/petroleum ether = 1/50, v/v) to afford a mixture of **3ba** and **3ba**- d_5 in 21% yield (16.0 mg). The KIE value (approx 5.7) was obtained by integrating the H8 of the spiro **3ba** and the H6 of the spiro **3ba** and **3ba**- d_5 . The ratio between **3ba** and **3ba**- d_5 was also determined to be 6.5 by the analysis of HRMS.

Procedure for the Synthesis of Alcohol 5bd:

To a stirred mixture of lithium aluminum hydride (3.8 mg, 0.1 mmol) in anhydrous diethyl ether (1 mL) at 0 $^{\circ}$ C was added **3bd** (43.1 mg, 0.1 mmol). The mixture was refluxed for 10 min, then cold to 0 °C, and treated successively with water (4 μL), 15% NaOH aqueous solution (8 μL), and water (12 μL). After stirring for 20 min, Na₂SO₄ was added and the slurry was filtered through celite. After concentration under reduced pressure, the residue was purified by column chromatography (ethyl acetate/petroleum ether = 1/15, v/v) to afford **5bd** (41.8 mg, 97% yield). **5bd**, colorless foam, m.p. = 63-64 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.42-7.18 (m, 10H), 7.10-7.05 (m, 2H), 7.02-6.99 (m, 2H), 6.93 (d, J = 7.2 Hz, 1H), 6.77 (d, J = 8.0 Hz, 1H), 6.69 (d, J = 7.6 Hz, 2H), 6.17 (d, J = 1.6 Hz, 1H), 5.18 (d, J = 2.4 Hz, 1H), 1.98 (d, J = 4.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 149.2, 147.0, 145.5, 141.0, 136.1, 134.8, 134.18, 134.15, 134.1, 129.5, 125.4, 128.2, 128.05, 127.99, 127.9, 127.2, 127.1, 126.9, 126.6, 126.55, 126.53, 125.5, 123.0, 121.0, 74.0, 66.4; IR (thin film): $v_{max}(cm^{-1})$ = 3540, 3055, 3024, 2923, 1634, 1597, 1096, 741, 698; HRMS (ESI) calcd for C₃₀H₂₁ClO [M]⁺: 432.1281; Found: 432.1276; [Daicel Chiralpak AD-H (0.46 cm x 25 cm), n-hexane/2-propanol = 90/10, $v = 1.0 \text{ mL} \cdot \text{min}^{-1}$, $\lambda = 254 \text{ nm}$, t (minor) = 17.30 min, t (major) = 21.22 min], 95:5 e.r.; $[\alpha]_D^{20}$ = -46.2 (c = 0.16, CHCl₃).

Assignment of the structure.

The structure was assigned based on the HMBC, COSY, ¹³C NMR experiments, as well as by the observation of noe between the alcohol hydrogen and the benzene hydrogen of the spiro unit.

Procedure for the Synthesis of Compound 5aa:

A flame-dried sealed tube was cooled to room temperature and filled with argon. To this tube were added **3aa** (41.3 mg, 0.1 mmol, 96:4 e.r.), Pd(dppf)Cl₂•DCM (4.1 mg, 0.005 mmol, 5 mol%), PhB(OH)₂ (30.5 mg, 0.25 mmol), and Et₃N (30.4 mg, 0.3 mmol). The tube was evacuated and refilled with argon and placed under an argon atmosphere. To this mixture were added freshly distilled dioxane (1.0 mL) and deionized water (0.1 mL). After the reaction flask was degassed twice, the reaction mixture was stirred at 80 °C. After the reaction was complete (monitored by TLC), the solvents were removed under reduced pressure. Then the residue was purified by silica gel column chromatography (PE/EA = 40/1, v/v) to afford the desired product **5aa** (41.0 mg, 99% yield). **5aa**, light yellow solid, m.p. = 159-160 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.66 (s, 1H), 7.44-7.38 (m, 4H), 7.36-7.26 (m, 4H), 7.26-7.06 (m, 9H), 6.86 (d, J = 7.2 Hz, 1H), 2.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 195.9, 147.0, 146.3, 144.1, 143.0, 140.6, 139.7, 136.8, 135.6, 135.2, 130.6, 130.0, 129.8, 128.9, 128.5, 128.1, 128.07, 127.8, 127.6, 127.0, 126.8, 126.2, 121.4, 120.6, 73.0, 12.4; IR (thin film): $v_{\text{max}}(\text{cm}^{-1}) = 3055$, 3020, 1660, 1597, 1492, 1466, 817, 694; HRMS (ESI) calcd for C₃₁H₂₃O [M+H]⁺: 411.1743; Found: 411.1749; [Phenomenex Lux 5u Celluloxe-4 PC-4 (0.46 cm x 25 cm), n-hexane/2-propanol = 95/5, v = 1.0 mL·min⁻¹, $\lambda = 254 \text{ nm}, \text{ t (major)} = 9.33 \text{ min, t (minor)} = 15.43 \text{ min]}, 96:4 \text{ e.r.}; <math>[\alpha]_D^{20} = -517.8$ $(c = 1.00, CHCl_3).$

References:

- 1. Ye, B.; Cramer, N. J. Am. Chem. Soc. 2013, 135, 636.
- 2. Truong, T.; Daugulis, O. Chem. Sci. 2013, 4, 531.
- 3. Wender, P. A.; Deschamps, N. M.; Williams, T. J. Angew. Chem. Int. Ed. 2004, 43, 3076.
- 4. Mio, M. J.; Kopel, L. C.; Braun, J. B.; Gadzikwa, T. L.; Hull, K. L.; Brisbois, R. G.; Markworth, C. J.; Grieco, P. A. *Org. Lett.* **2002**, *4*, 3199.
- 5. T. Oguma, T. Katsuki, J. Am. Chem. Soc. 2012, 134, 20017.
- 6. Nan, J.; Zuo, Z.; Luo, L.; Bai, L.; Zheng, H.; Yuan, Y.; Liu, J.; Luan, X.; Wang, Y. *J. Am. Chem. Soc.* **2013**, *135*, 17306.

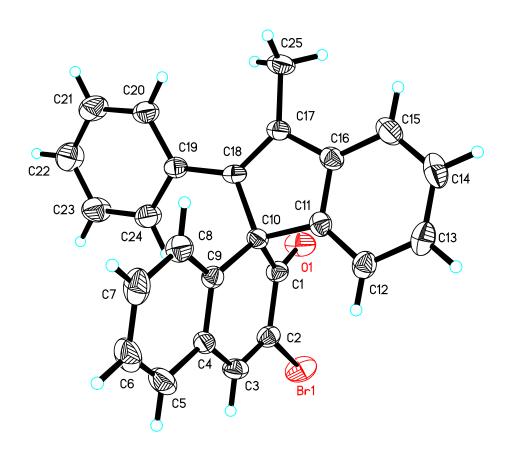


Table 1. Crystal data and structure refinement for cd214620.

Density (calculated)

Identification code	cd214620	
Empirical formula	C25 H17 Br O	
Formula weight	413.29	
Temperature	293(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P 21	
Unit cell dimensions	a = 14.7015(17) Å	a= 90 °.
	b = 8.9613(10) Å	b=
114.880(2) °.		
	c = 15.8849(18) Å	g = 90°.
Volume	1898.5(4) Å ³	
Z	4	

 1.446 Mg/m^3

Absorption coefficient 2.177 mm⁻¹

F(000) 840

Crystal size $0.211 \times 0.134 \times 0.112 \text{ mm}^3$

Theta range for data collection 2.479 to 25.999 °.

Index ranges -16 <= h <= 18, -11 <= k <= 9, -19 <= l <= 18

Reflections collected 11507

Independent reflections 6635 [R(int) = 0.0263]

Completeness to theta = 25.242° 99.8 %

Absorption correction Semi-empirical from equivalents

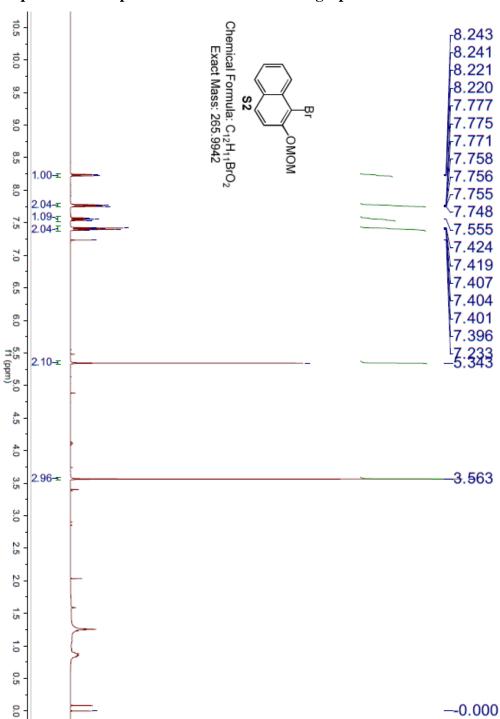
Max. and min. transmission 0.7457 and 0.5664

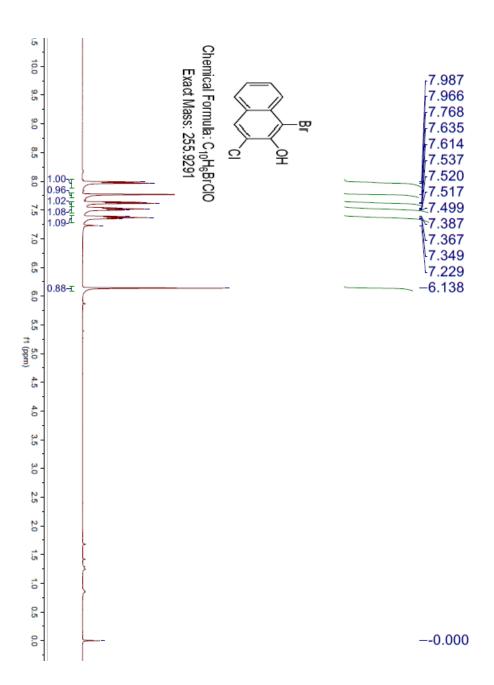
Refinement method Full-matrix least-squares on F²

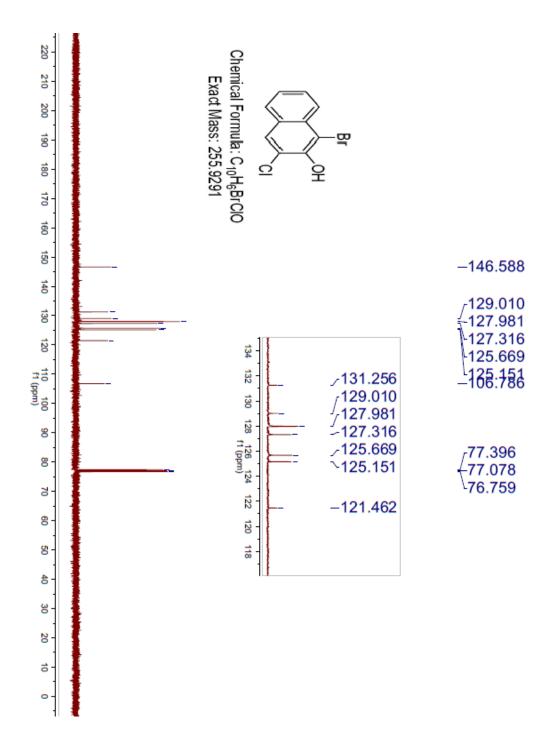
Data / restraints / parameters 6635 / 1 / 489

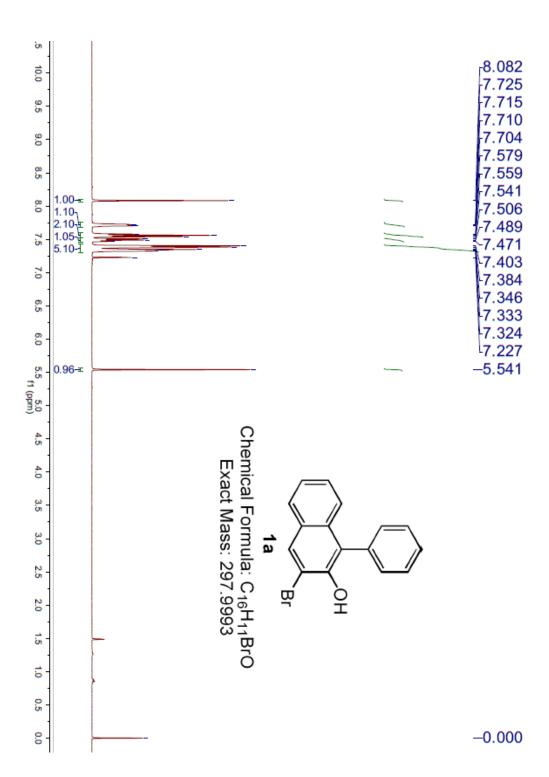
Goodness-of-fit on F^2 1.007

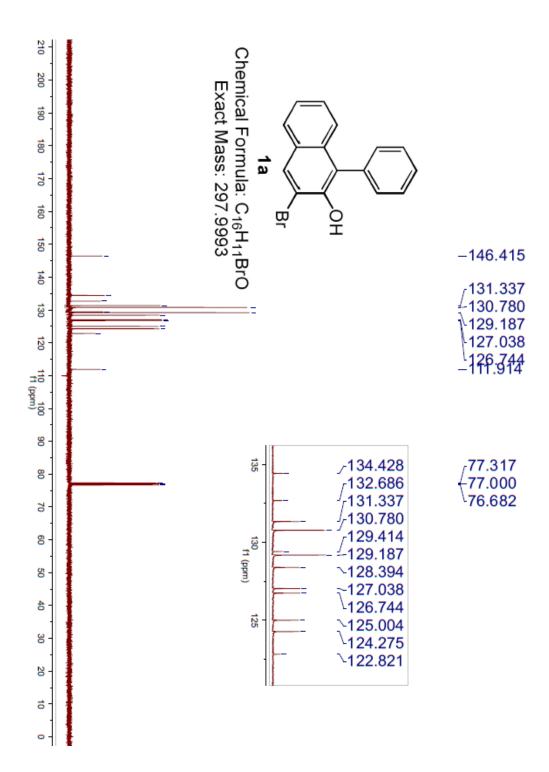
Final R indices [I>2sigma(I)] R1 = 0.0391, wR2 = 0.0945

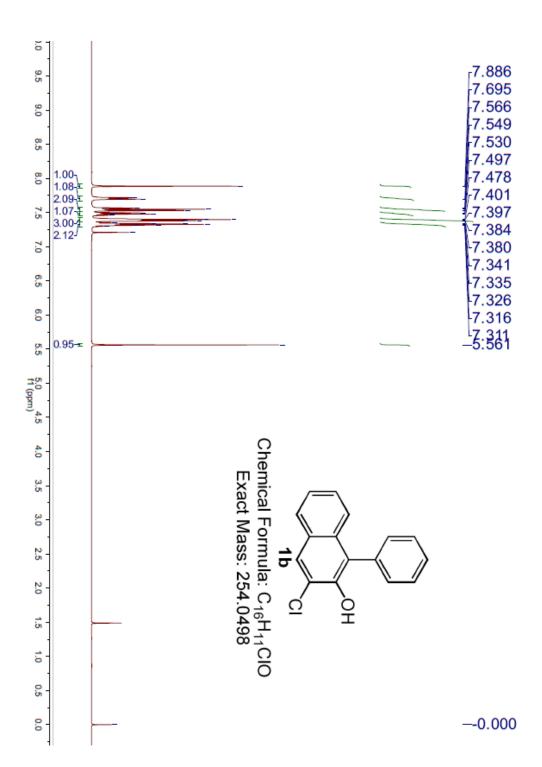

R indices (all data) R1 = 0.0515, wR2 = 0.0995

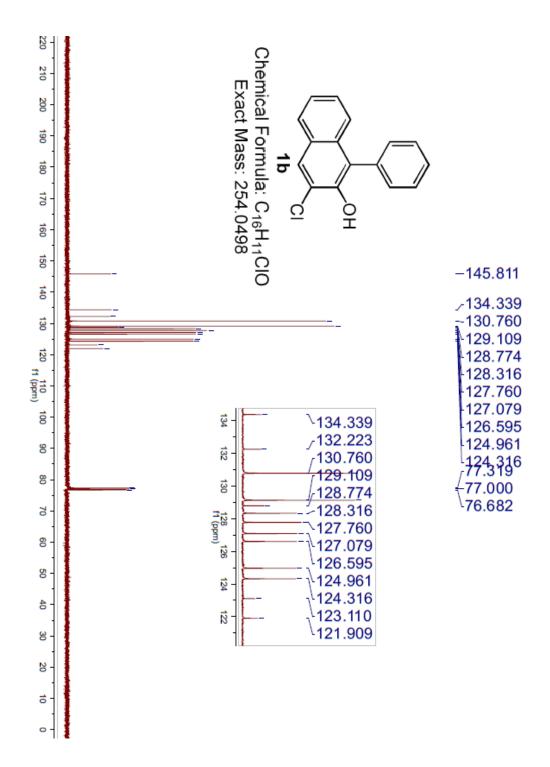

Absolute structure parameter 0.006(5)

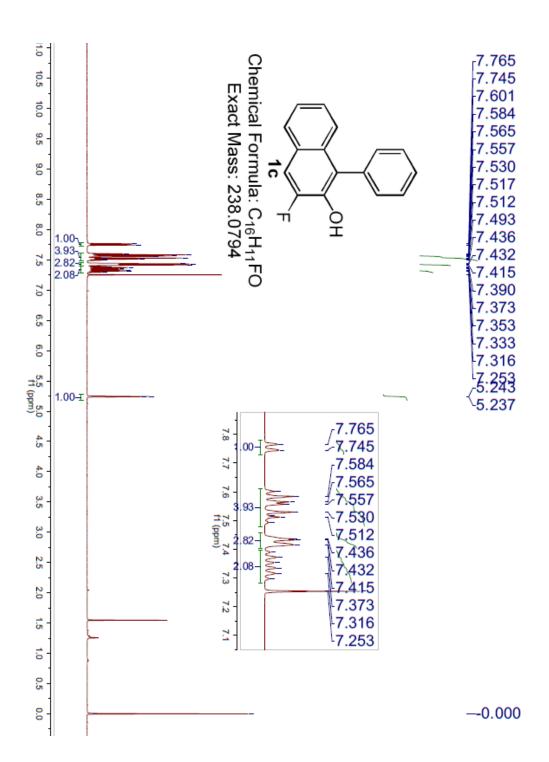

Extinction coefficient n/a

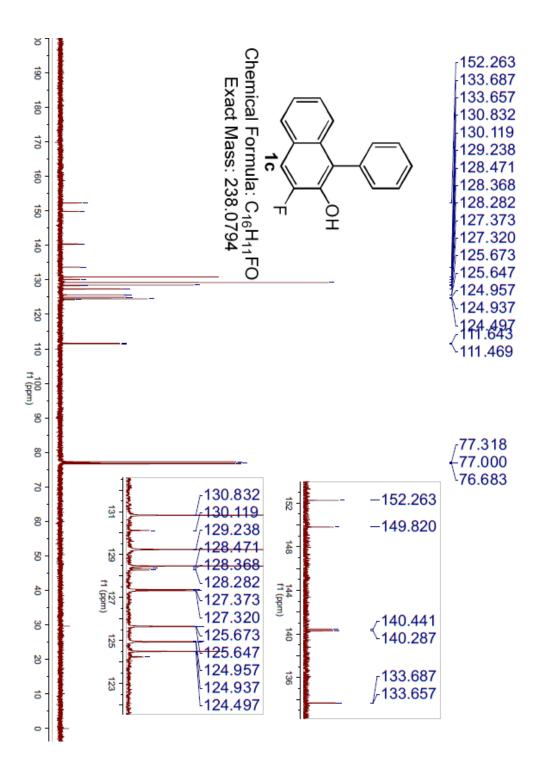

Largest diff. peak and hole 0.790 and -0.481 e.Å⁻³

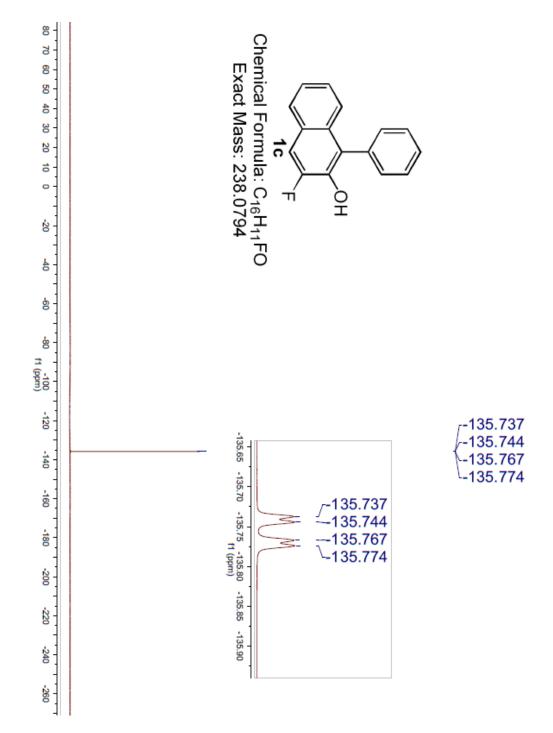

Copies of NMR Spectra and HPLC Chromatographs

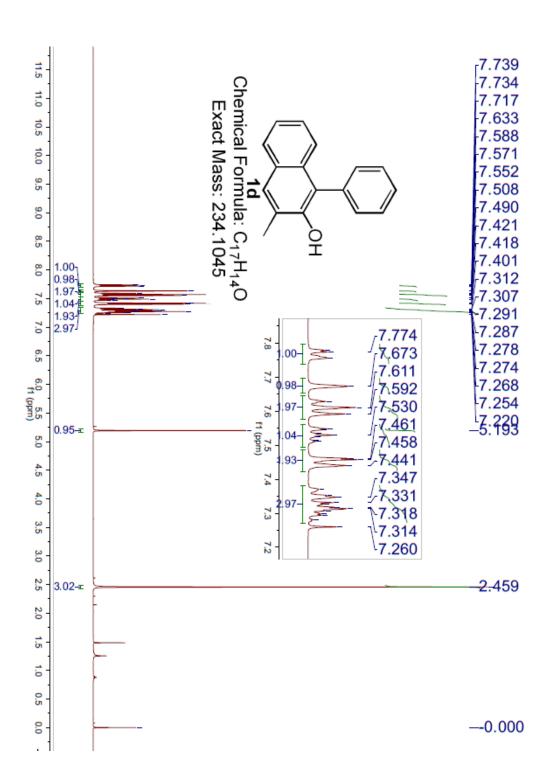


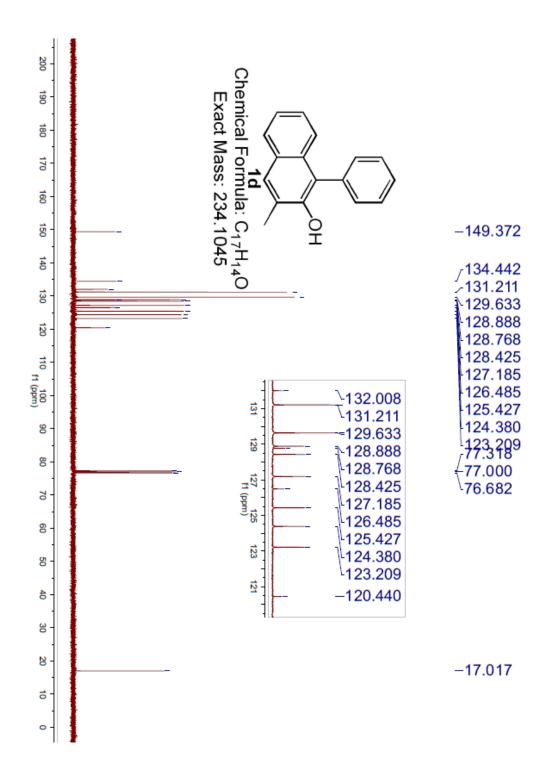


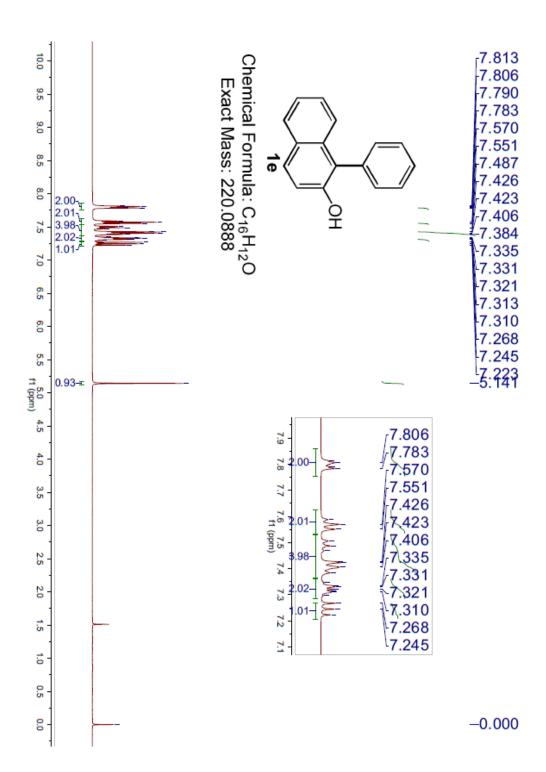


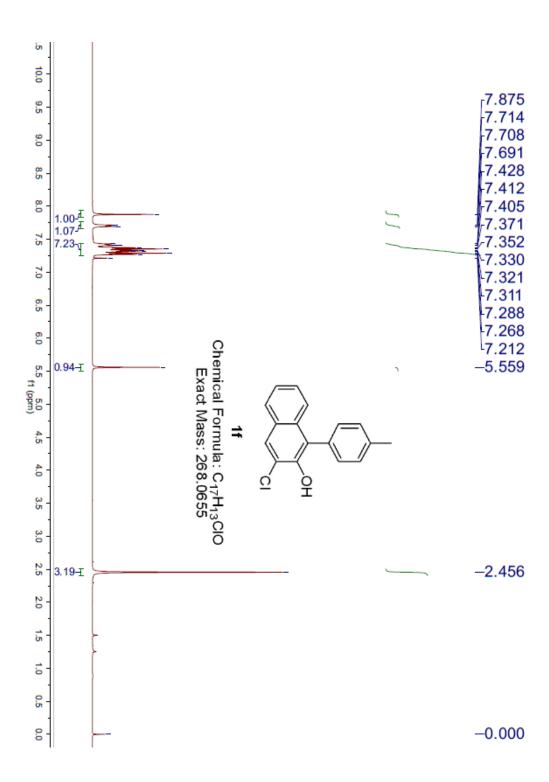


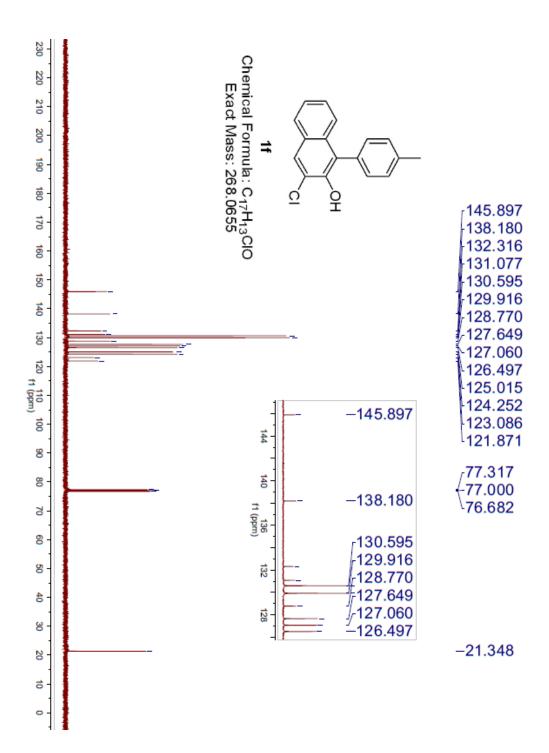


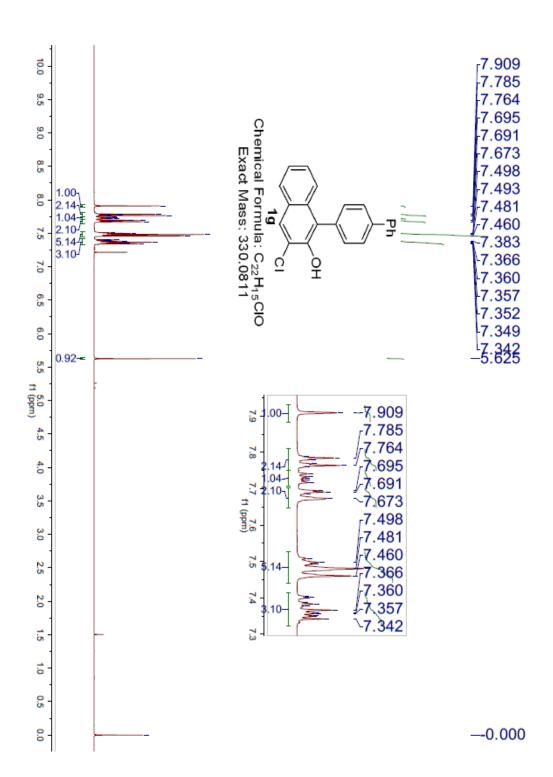


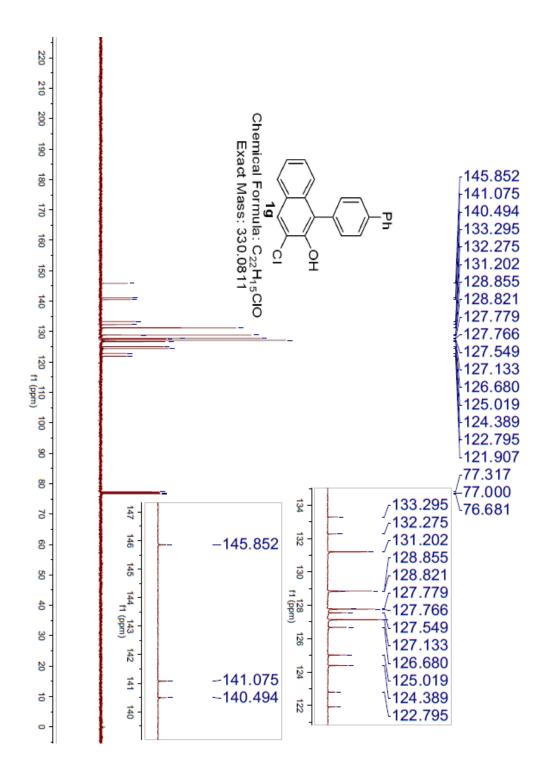


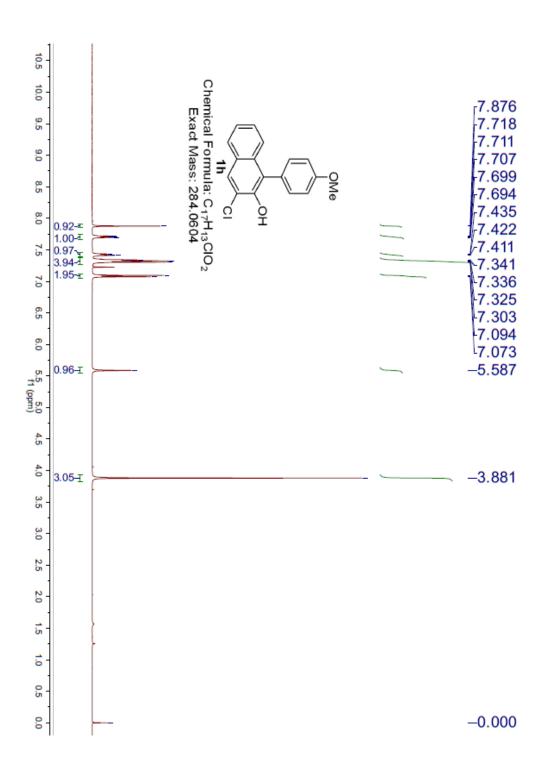


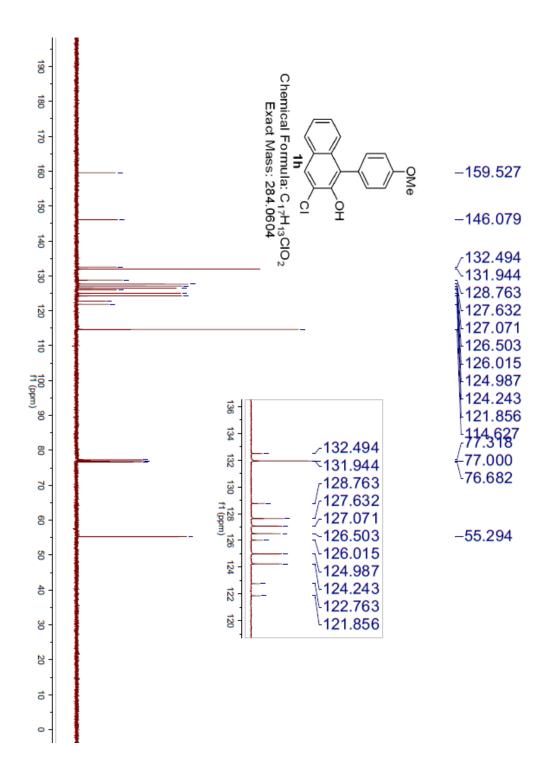


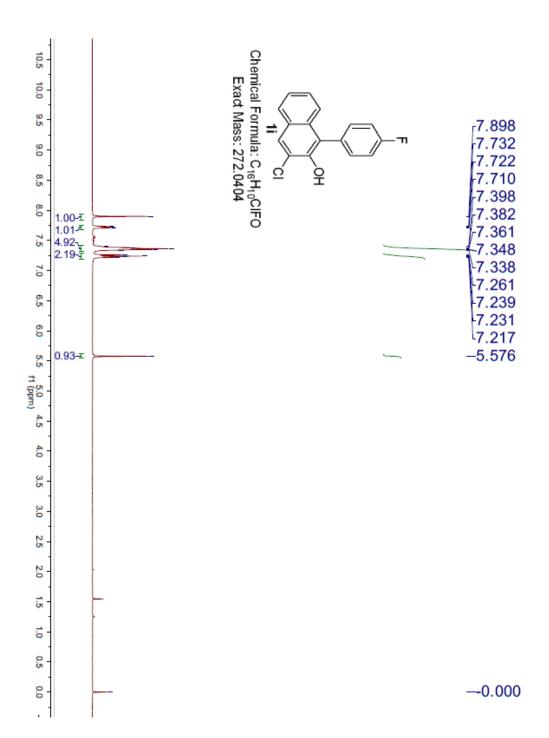


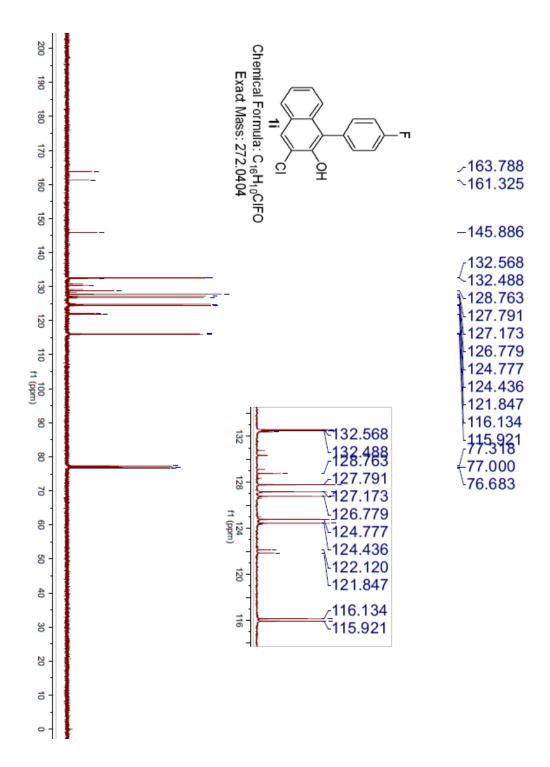


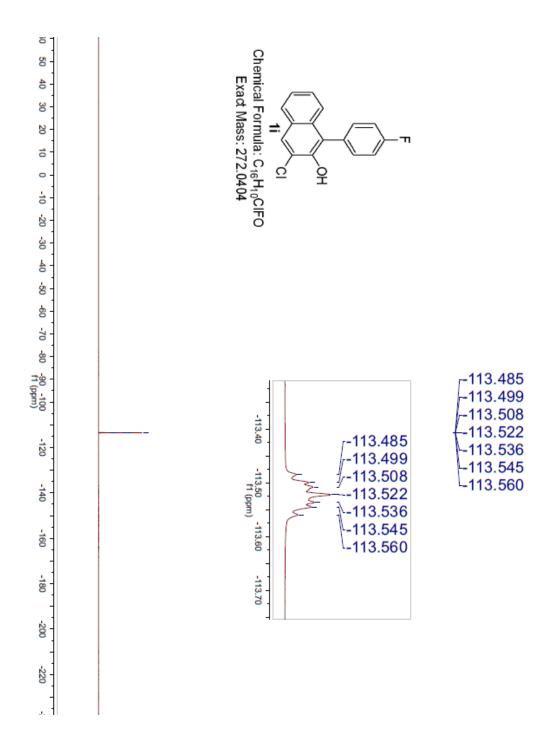


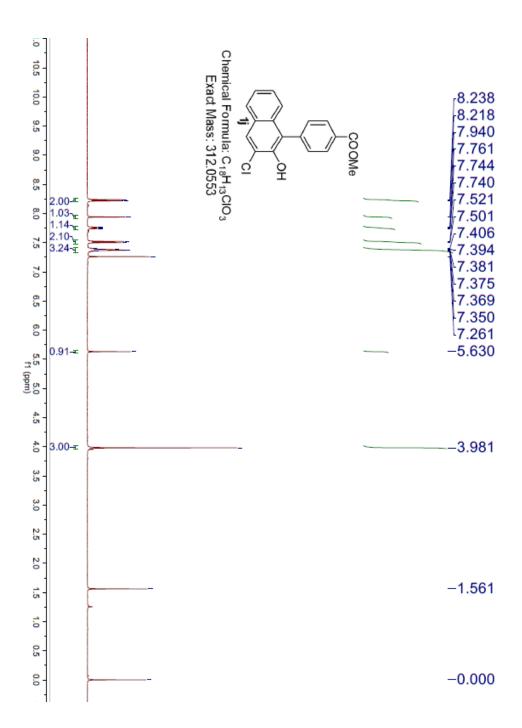


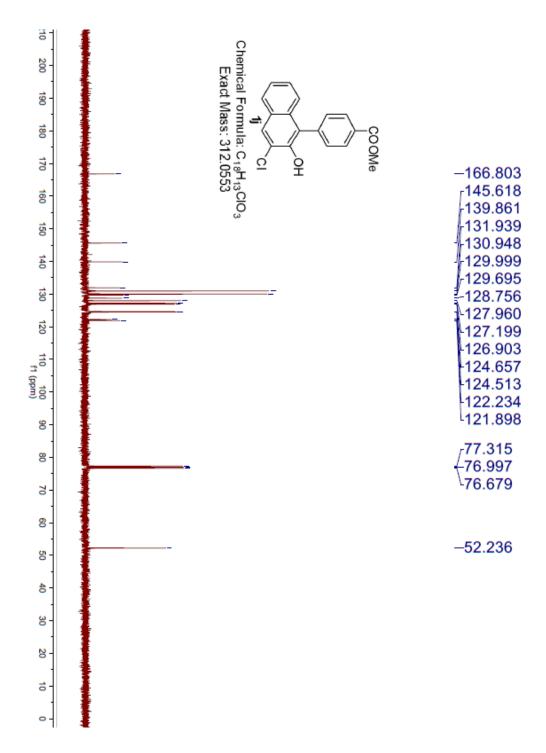


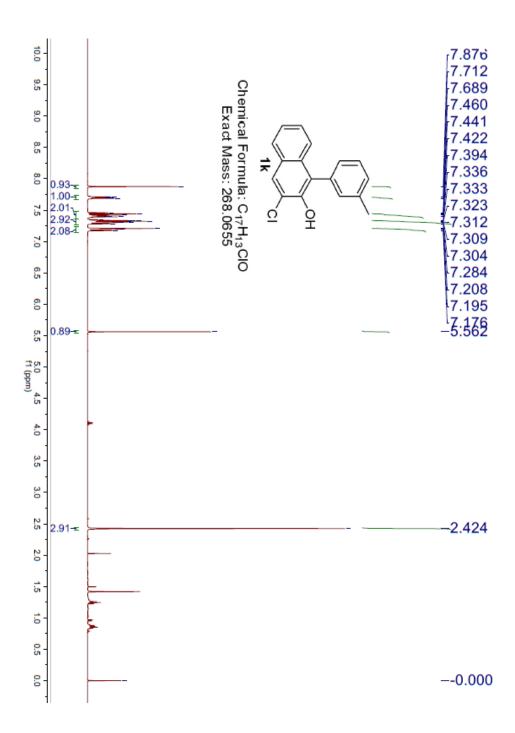


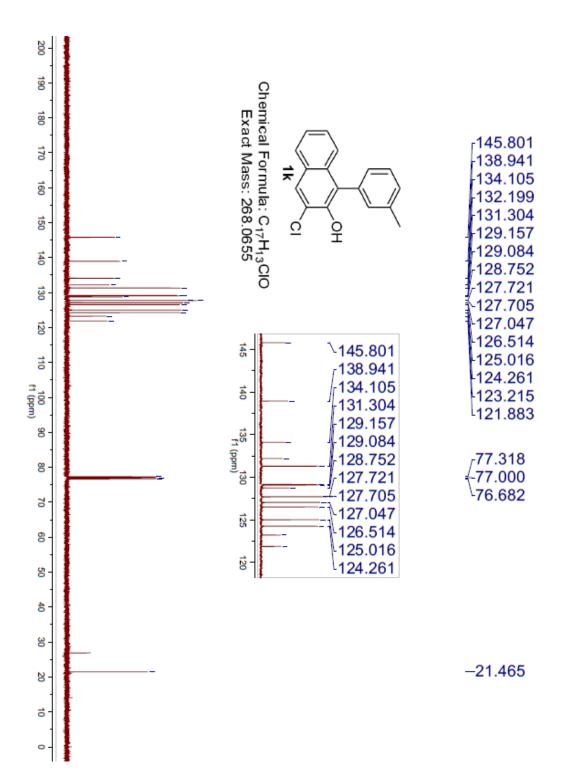


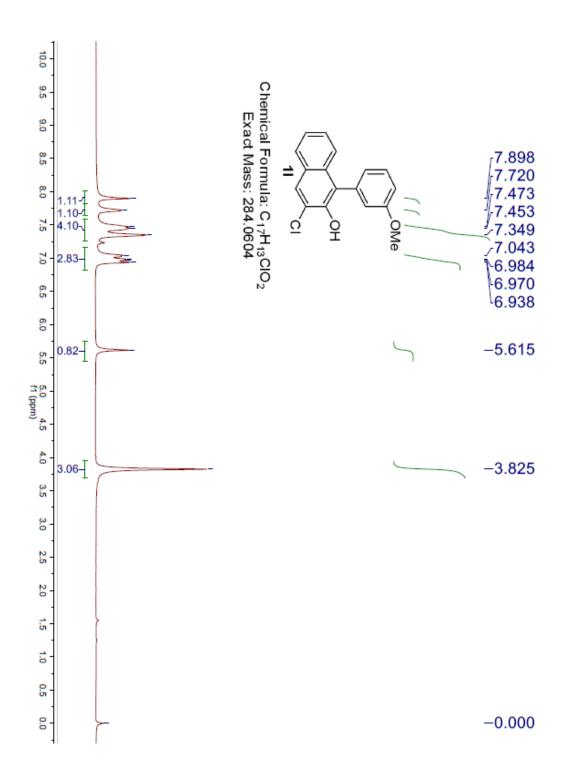


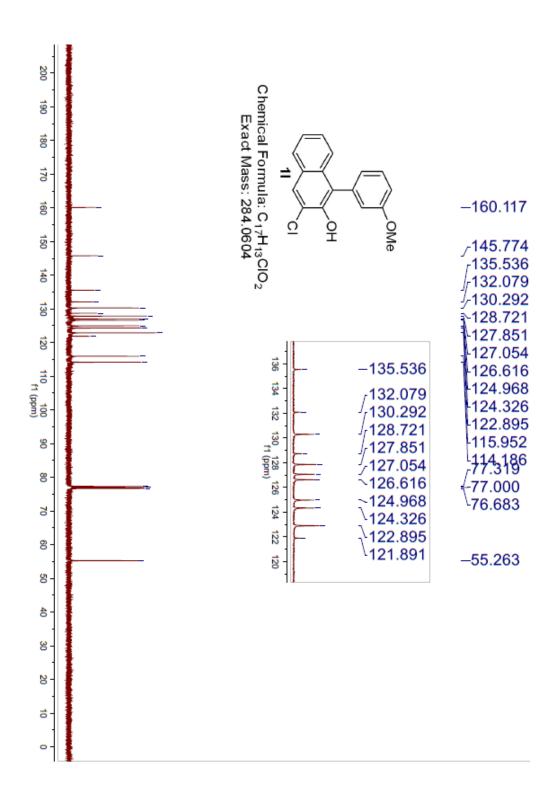


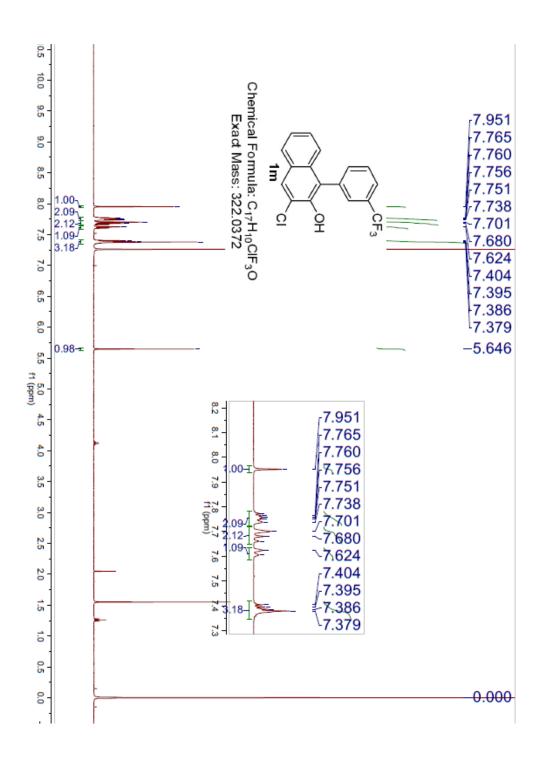


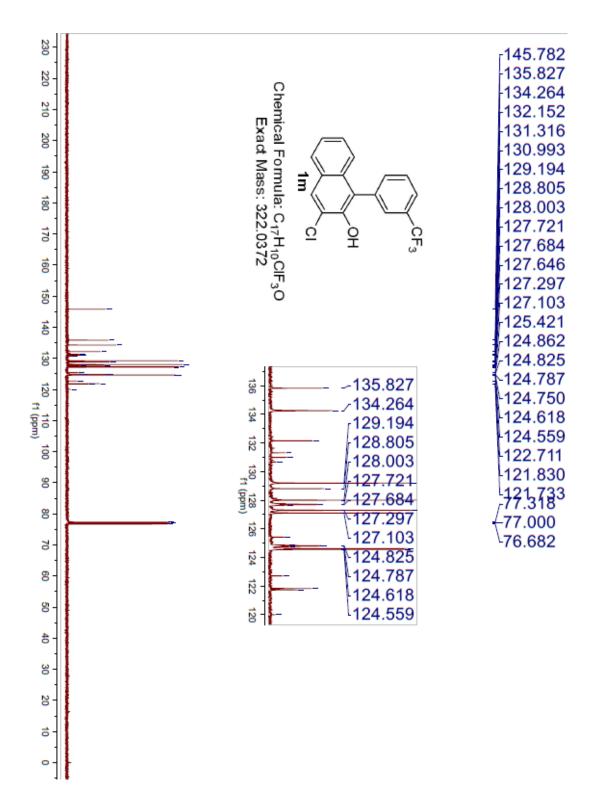


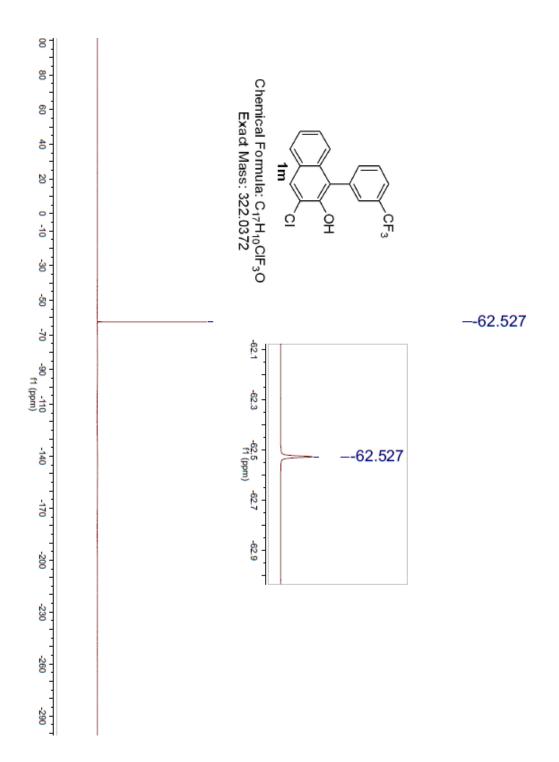


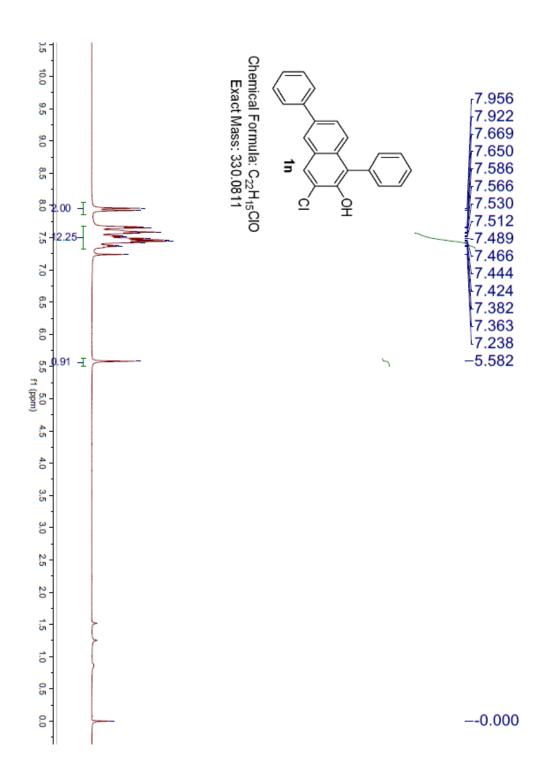


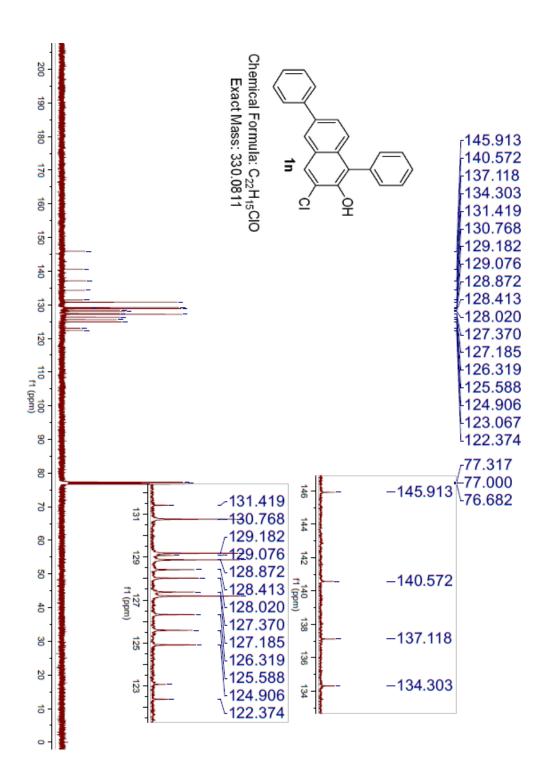


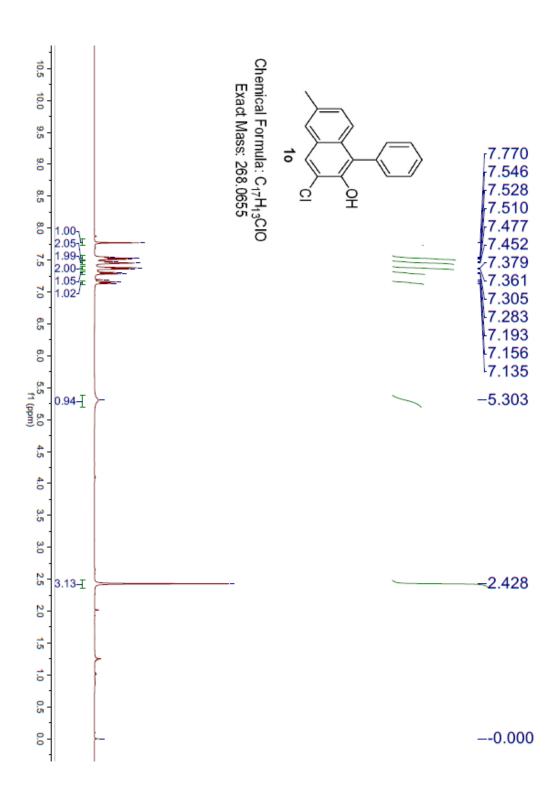


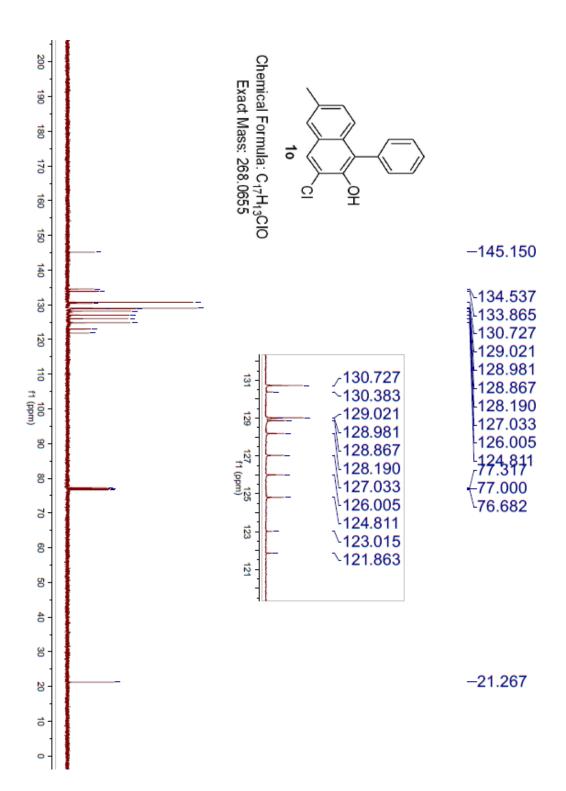


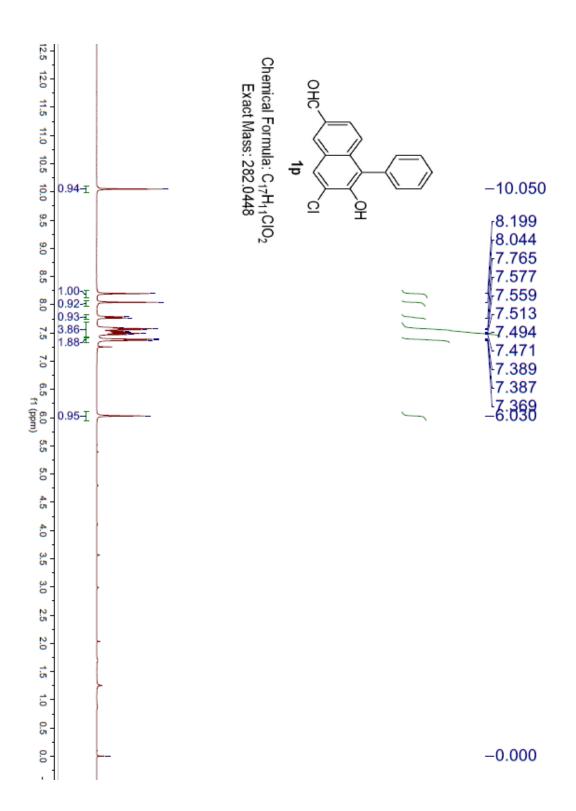


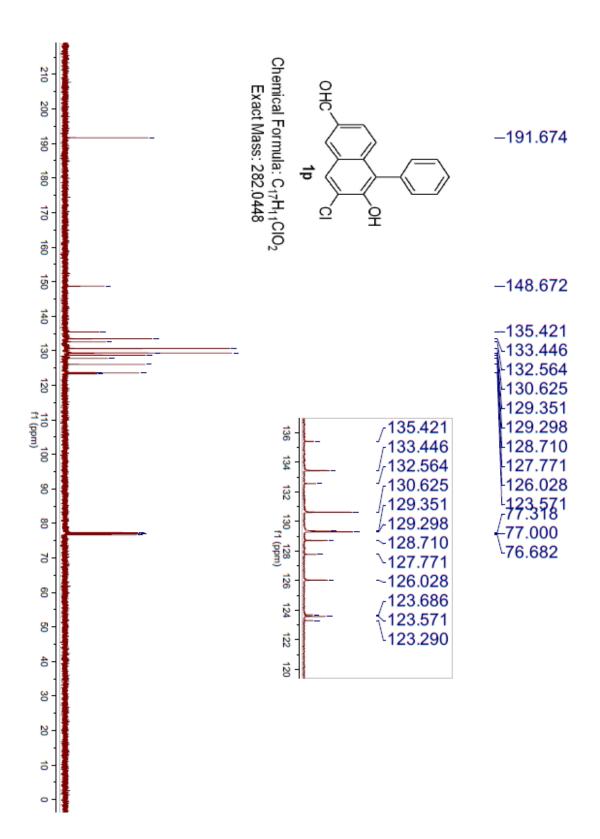


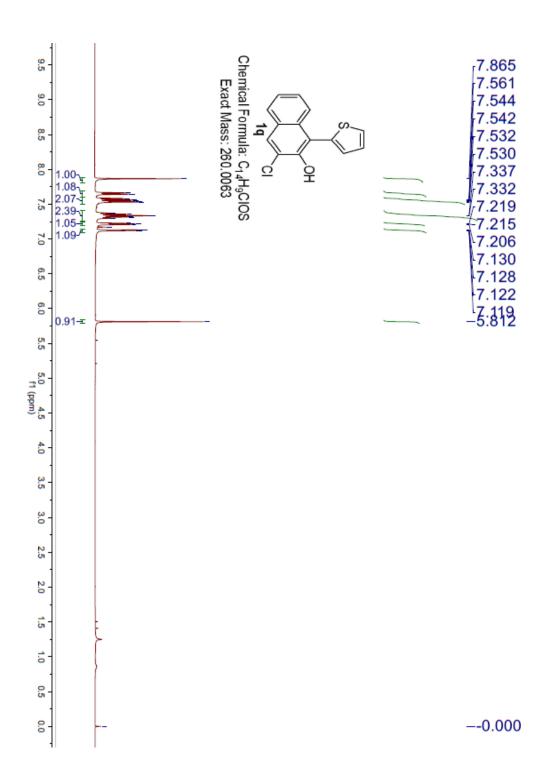


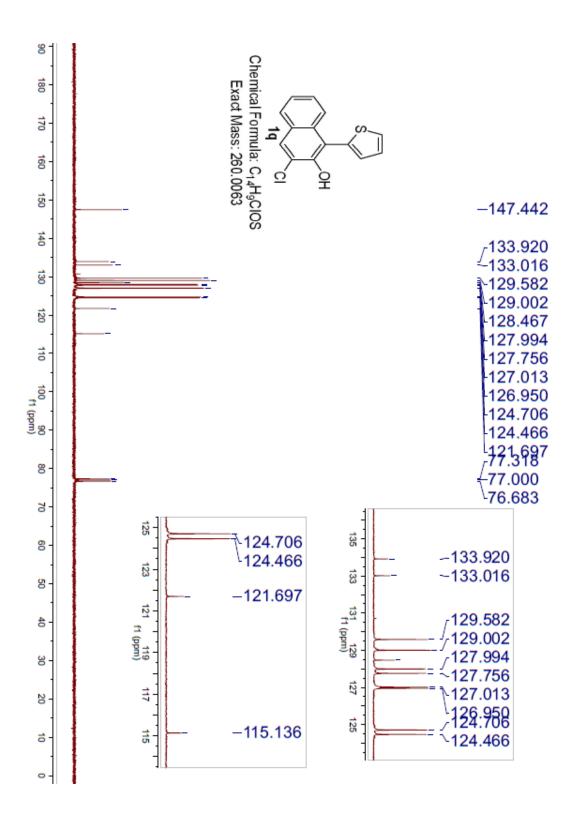


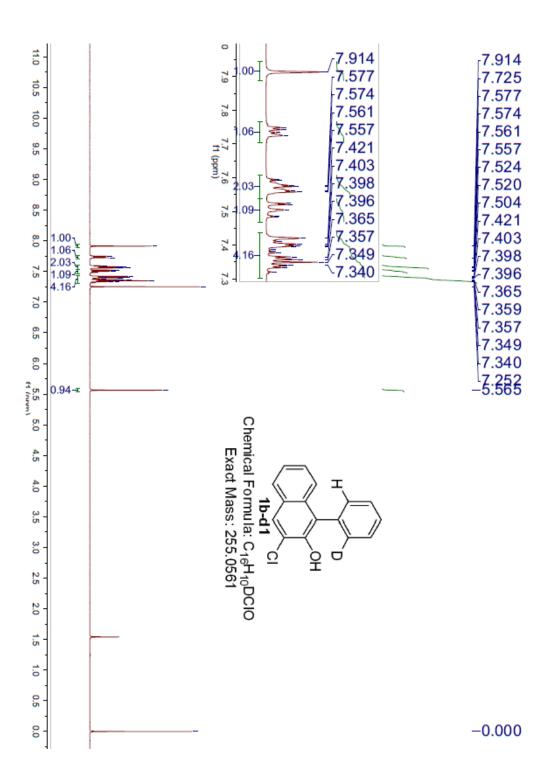


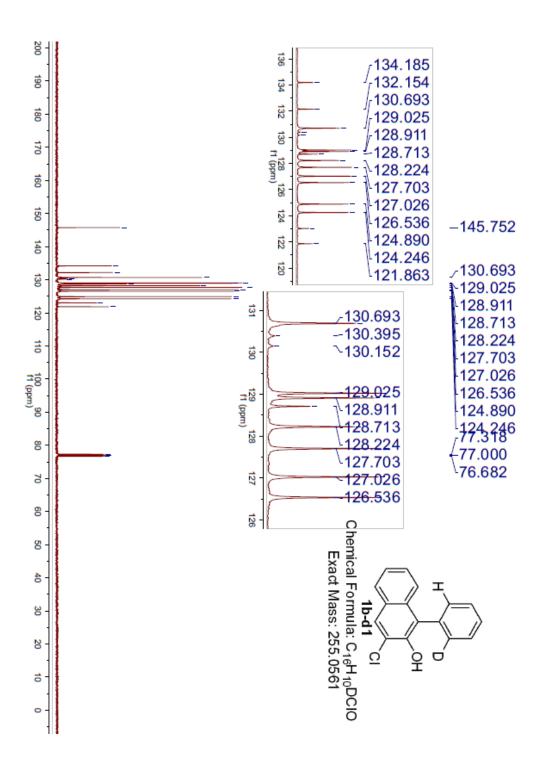


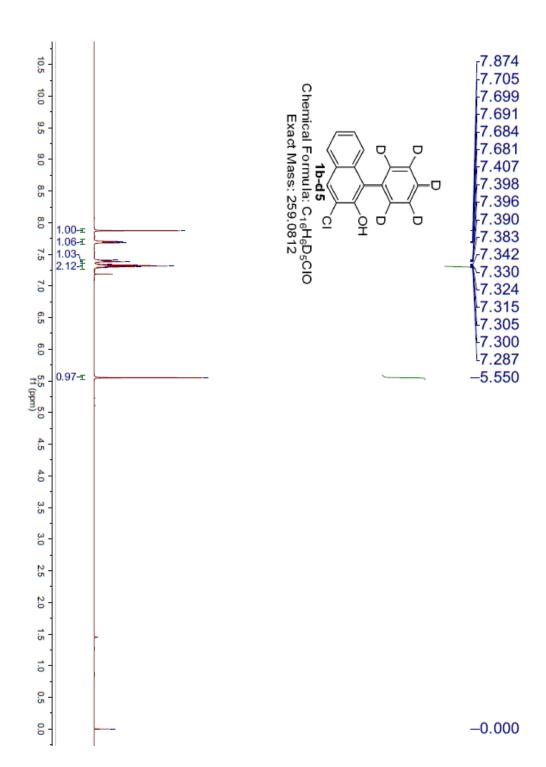


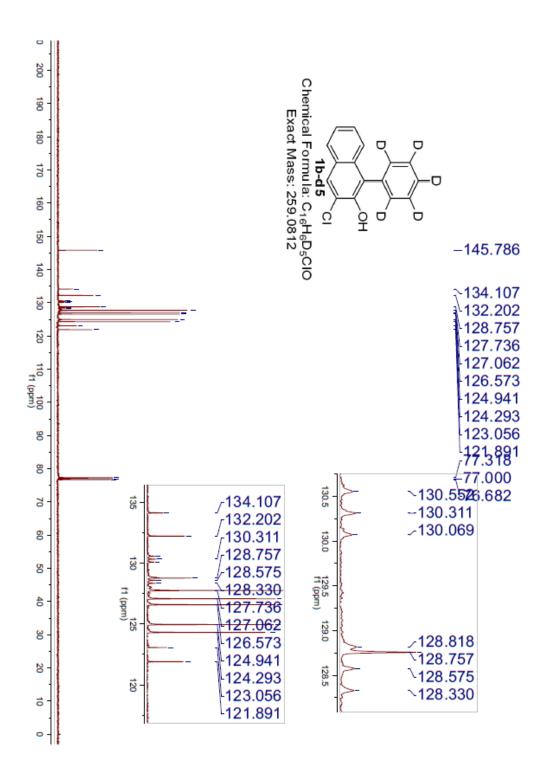


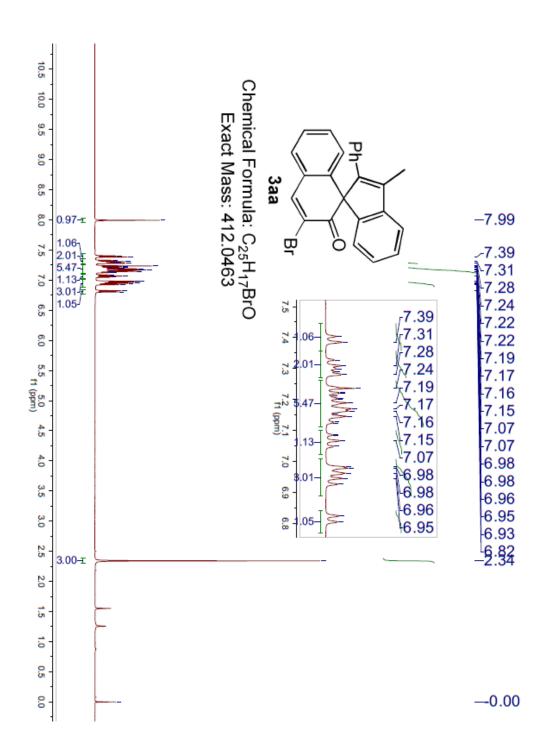


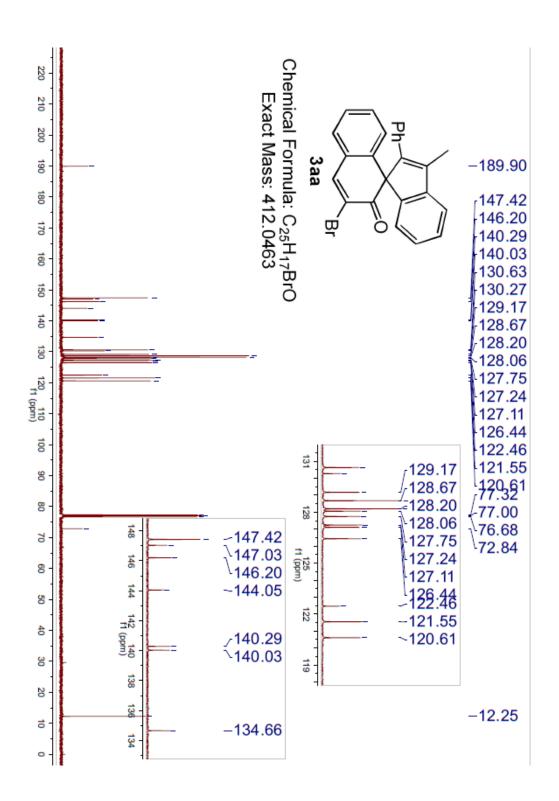


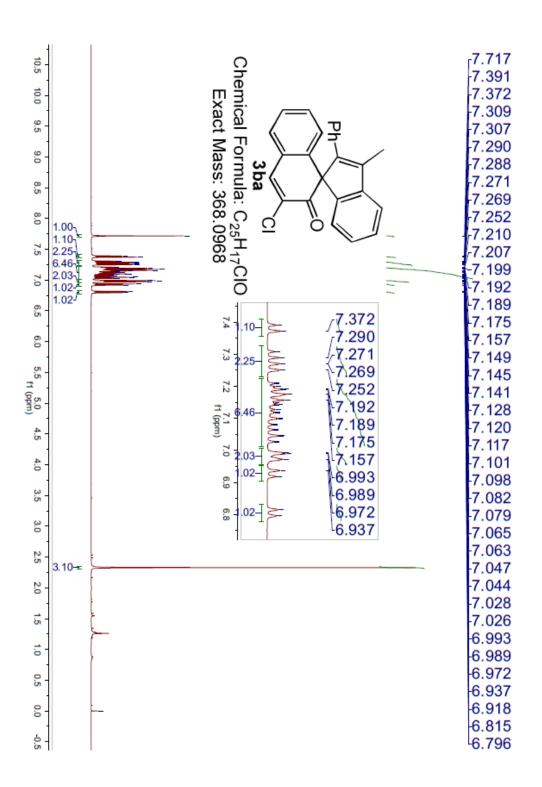


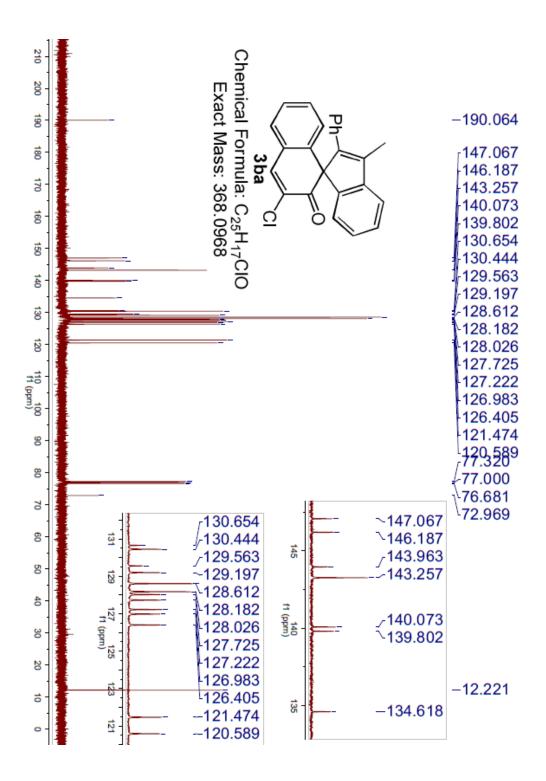


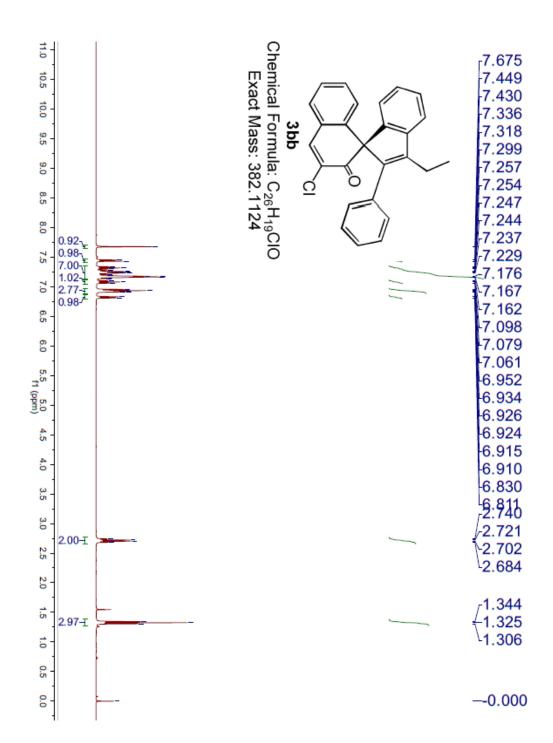


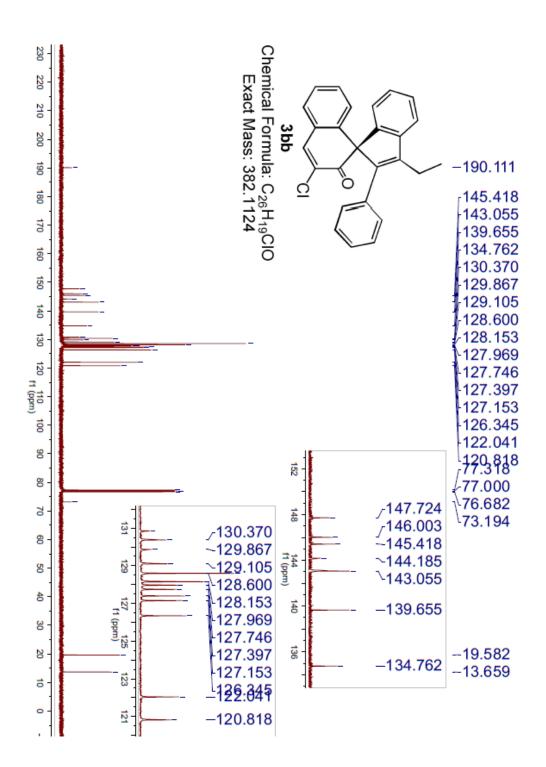


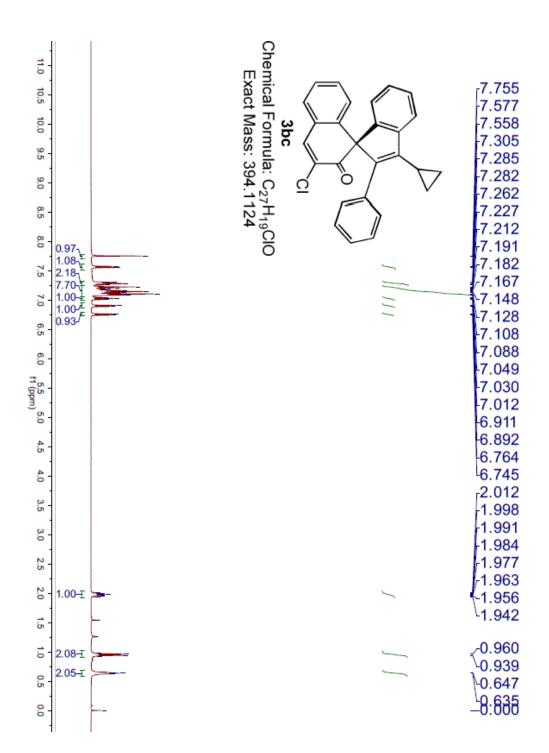


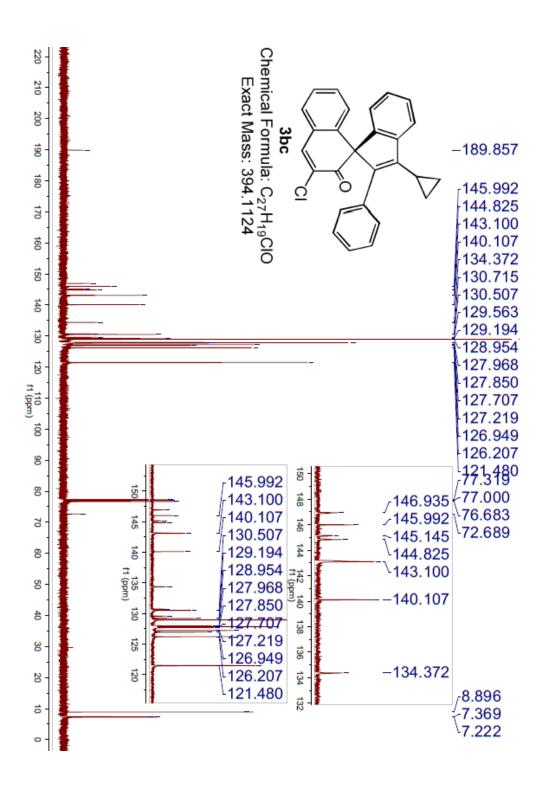


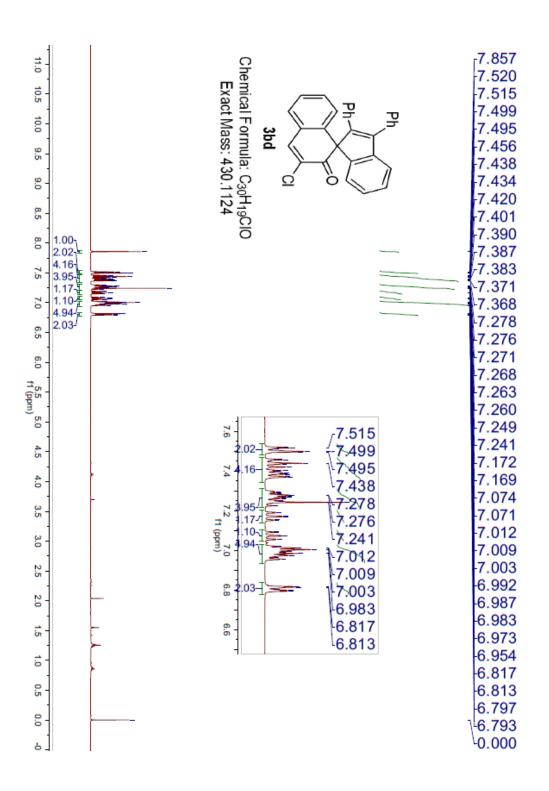


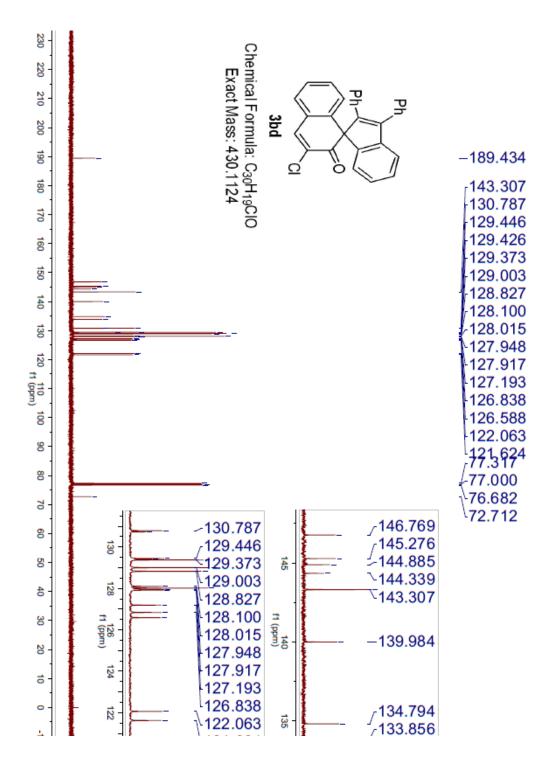


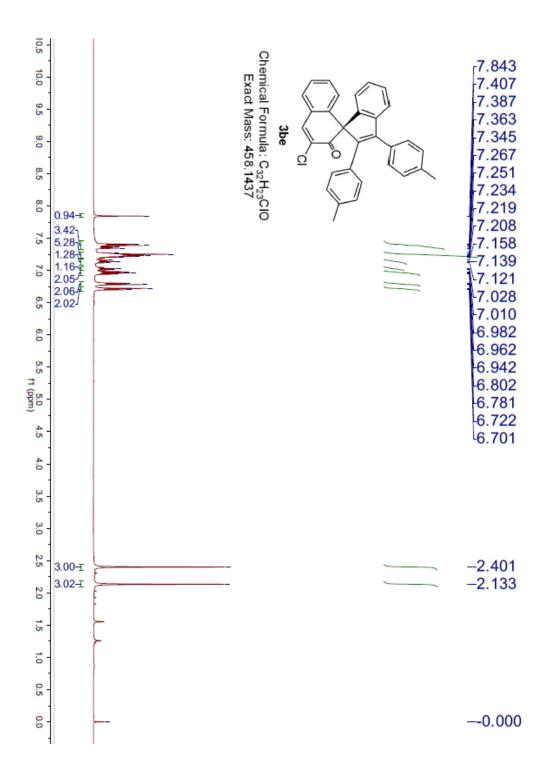


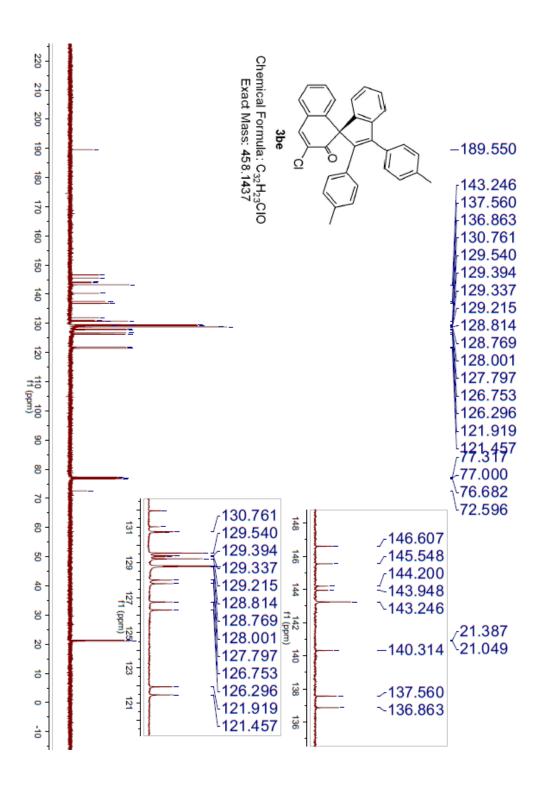


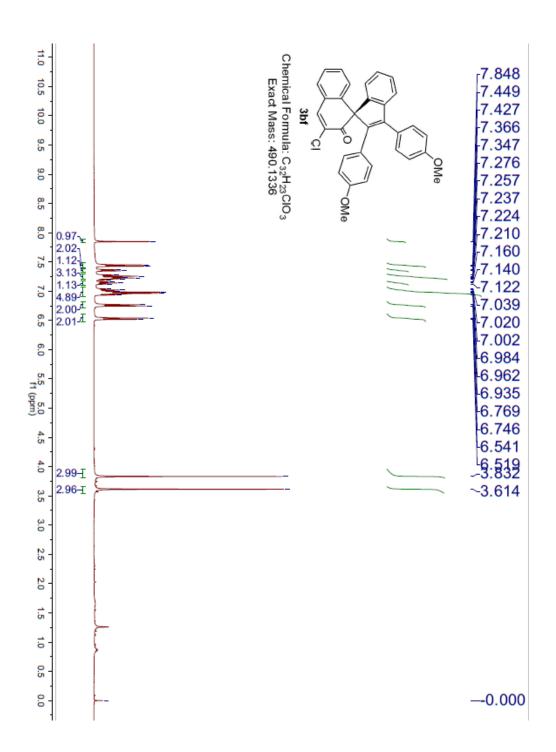


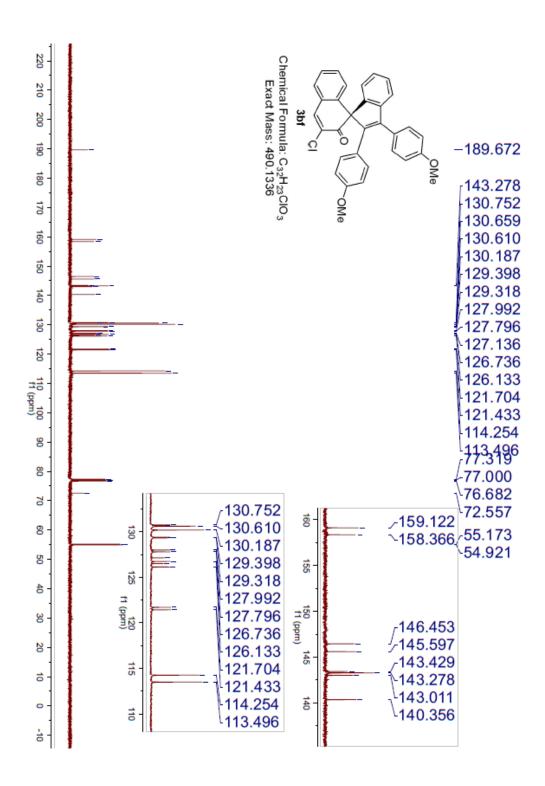


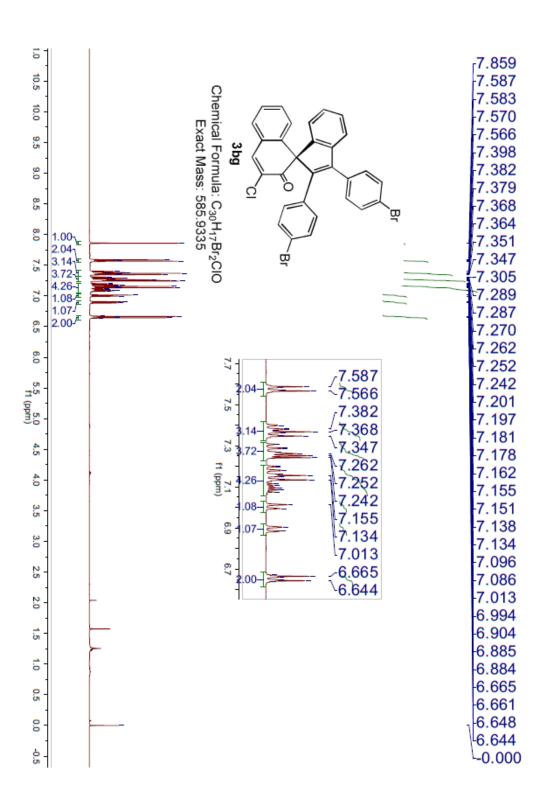


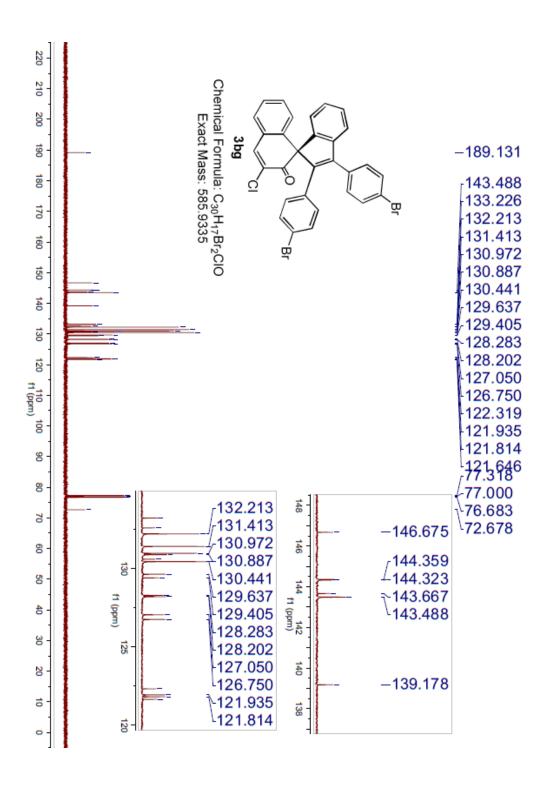


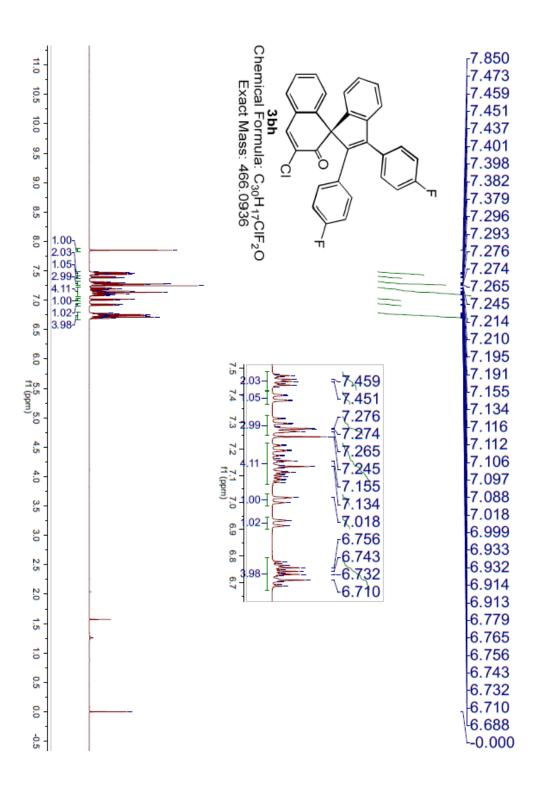


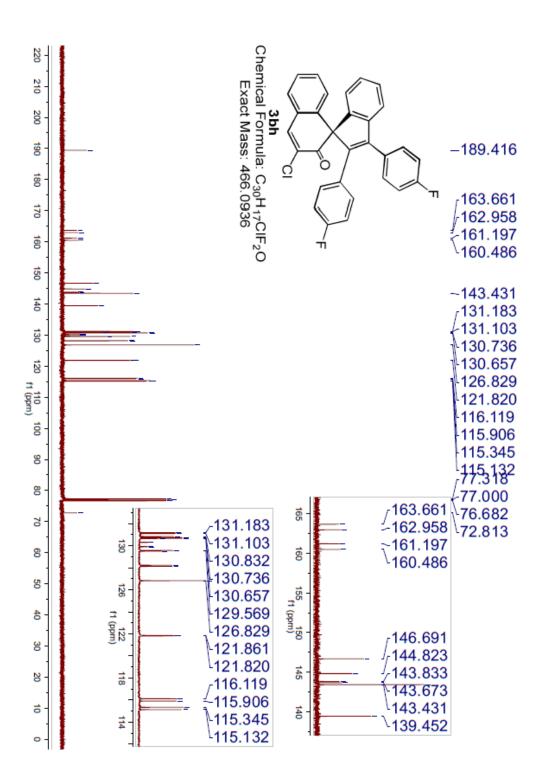


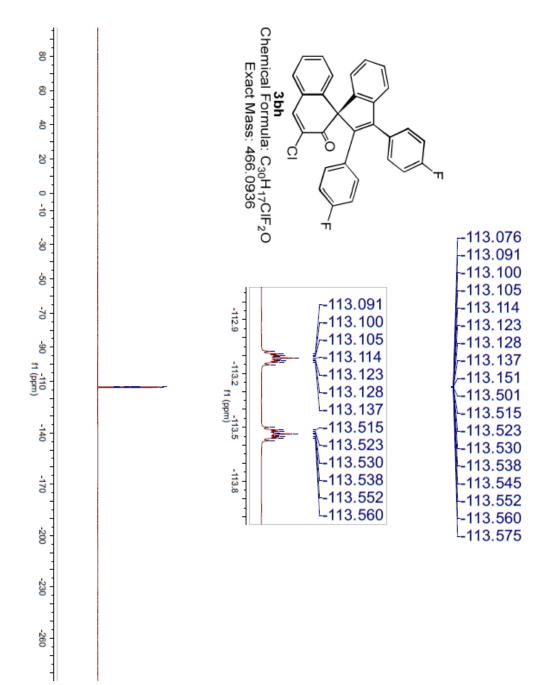


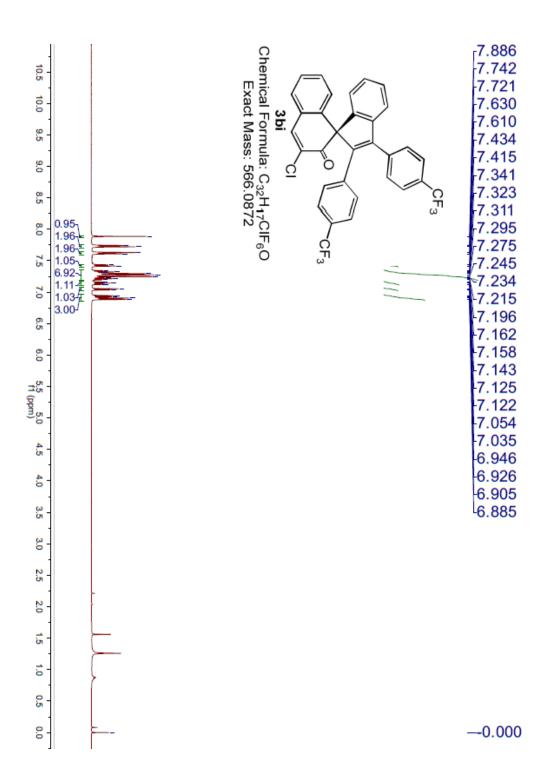


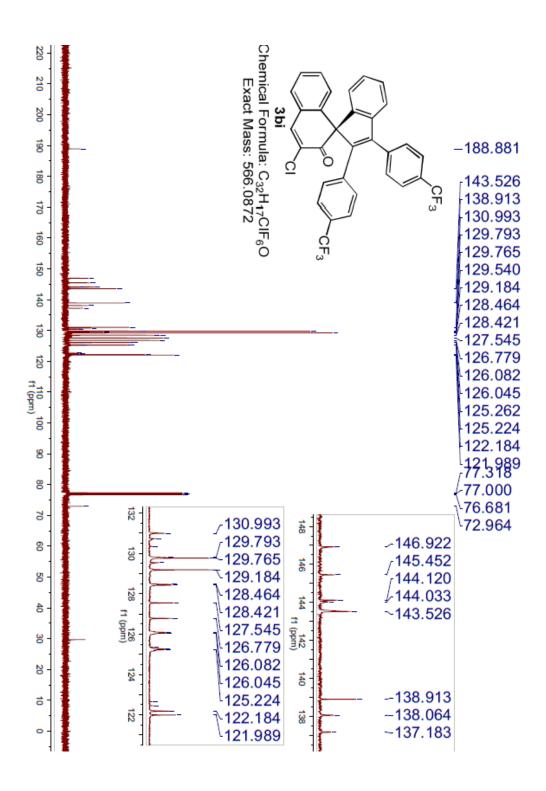


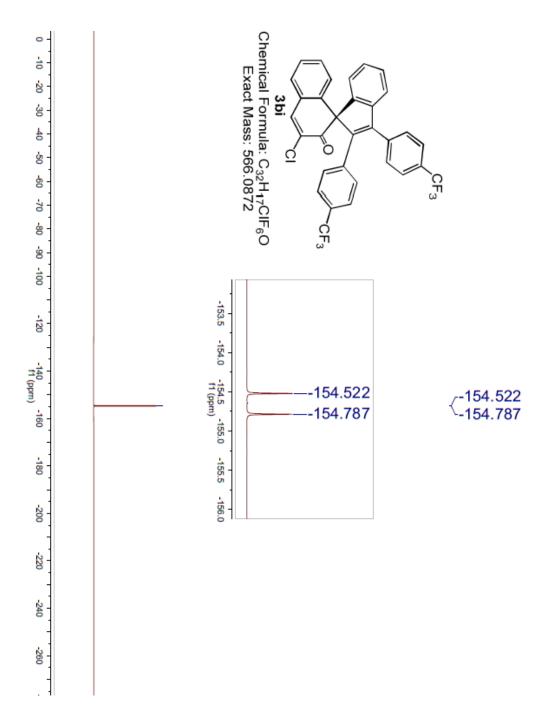


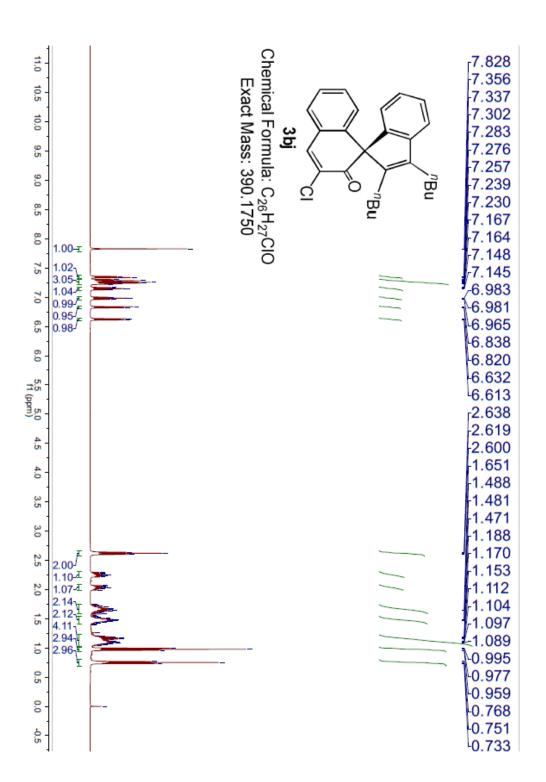


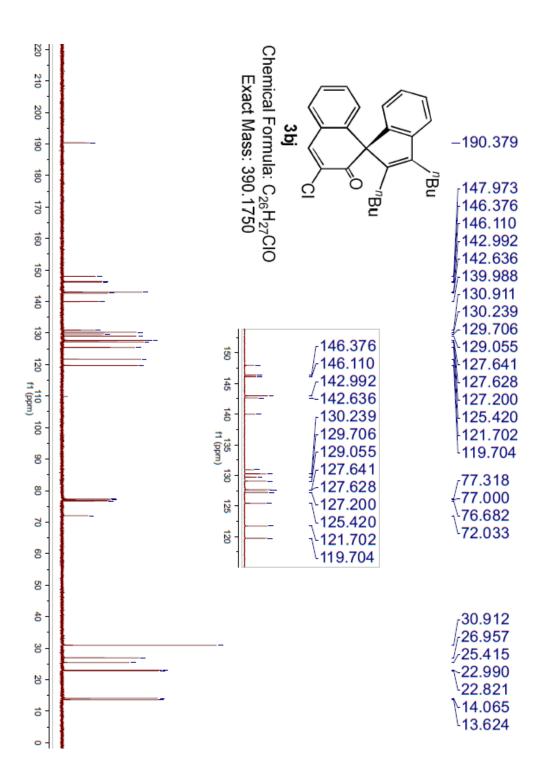


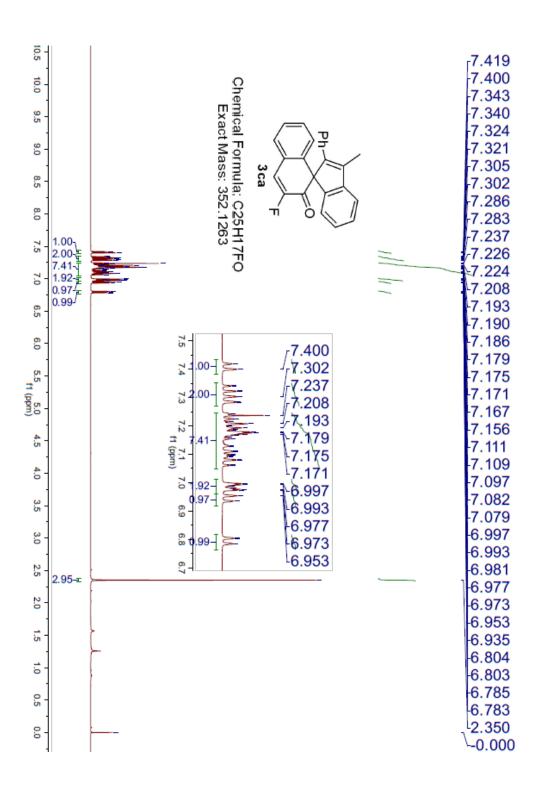


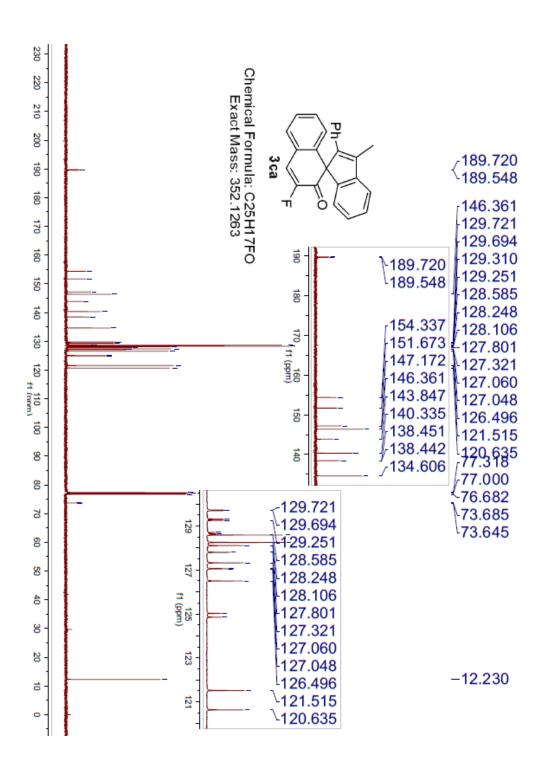


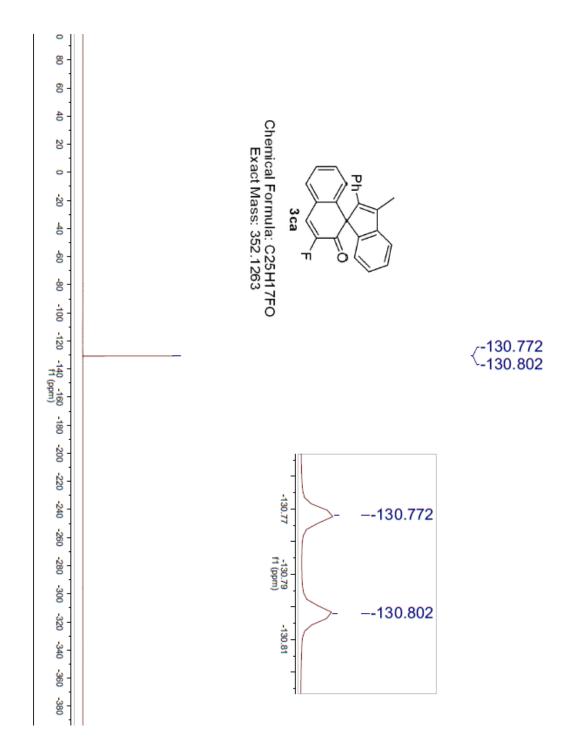


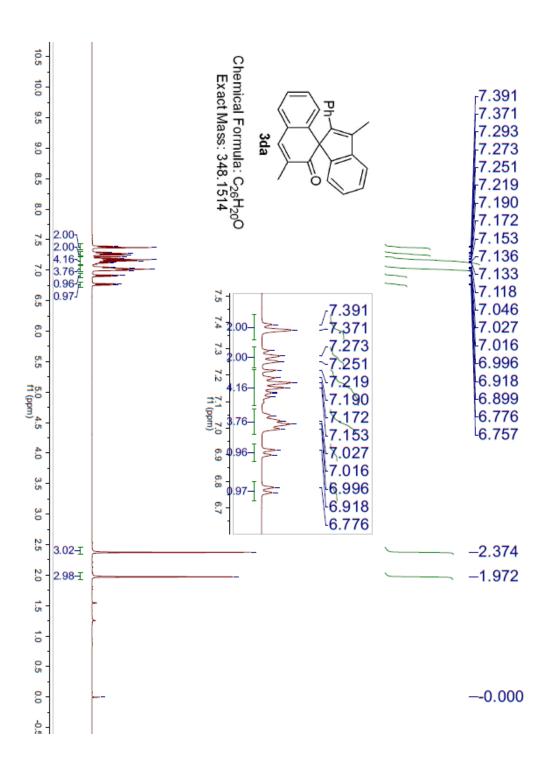


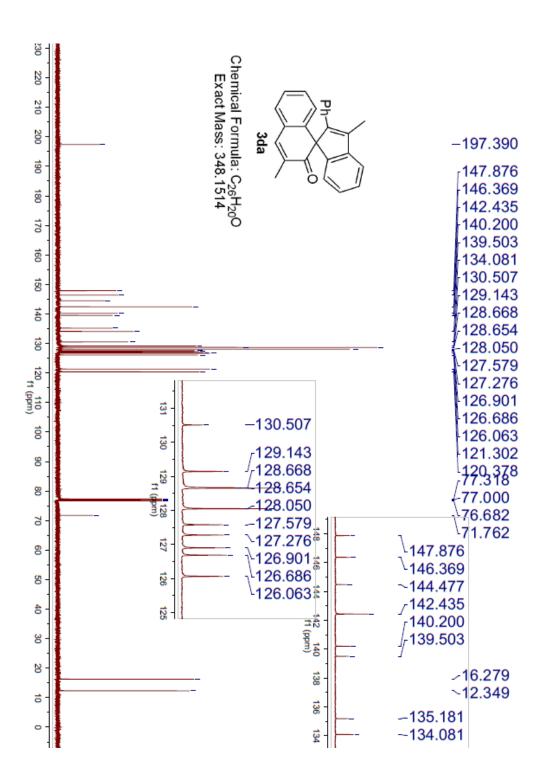


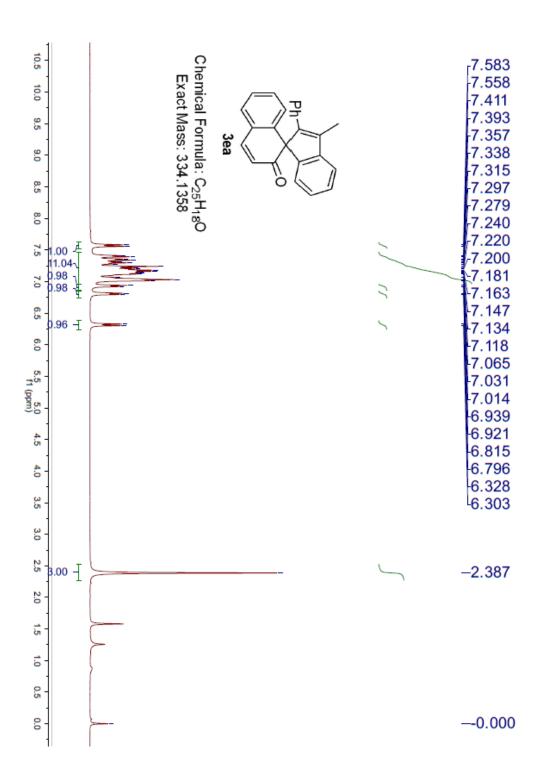


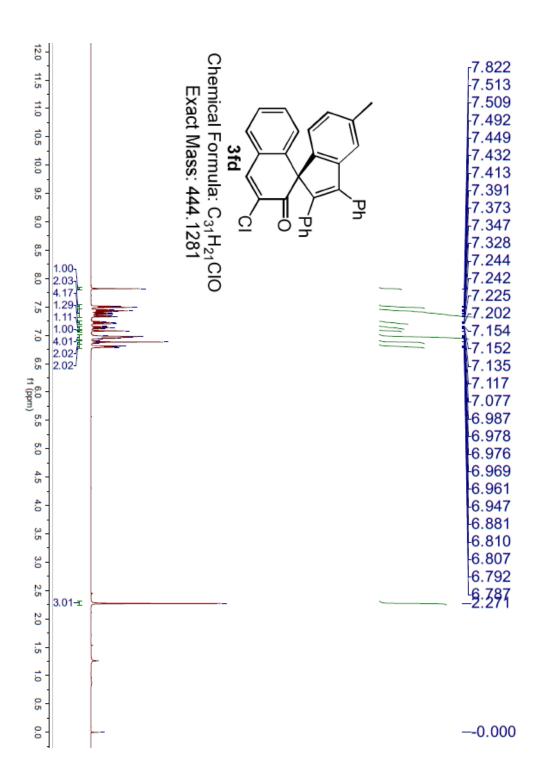


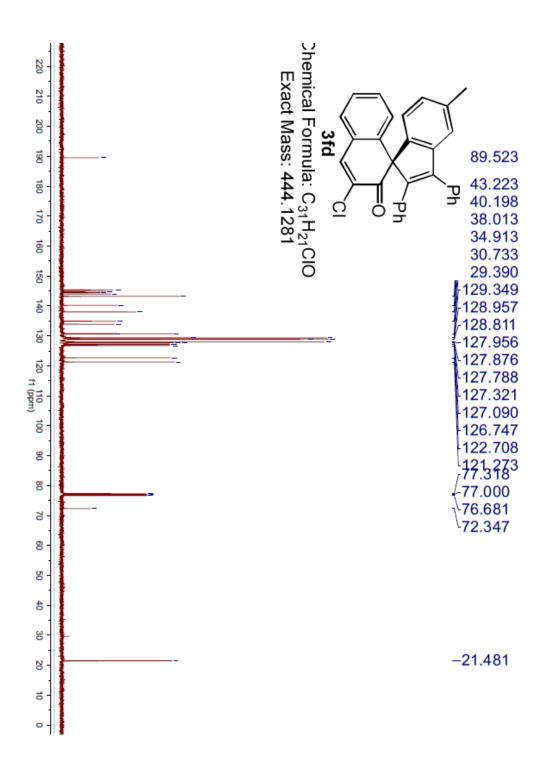


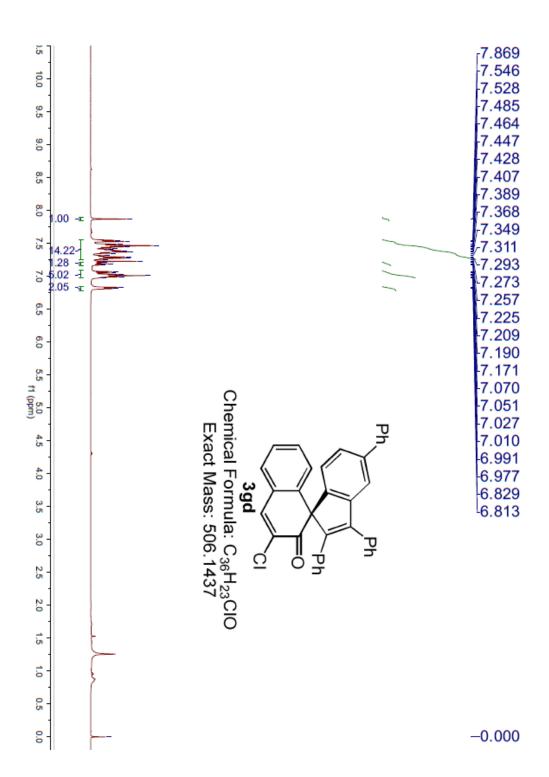


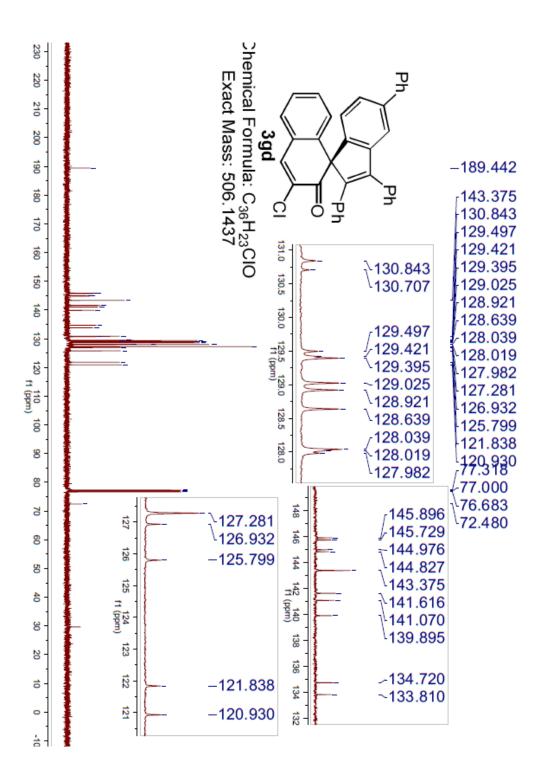


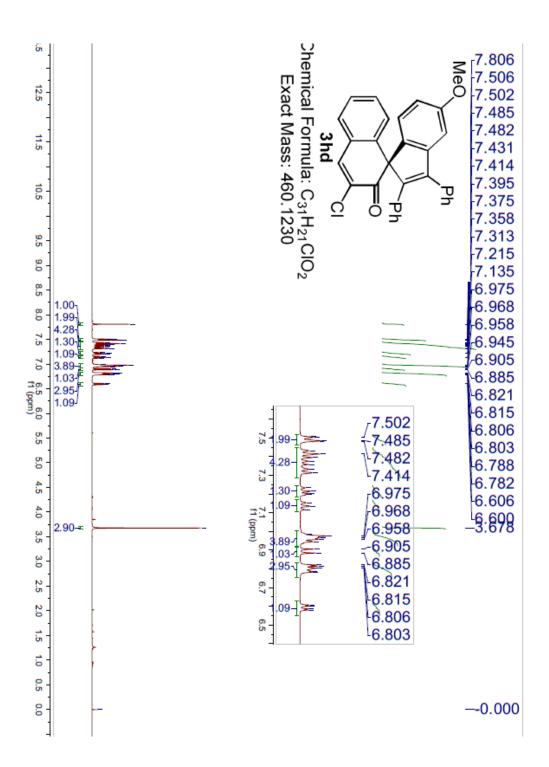


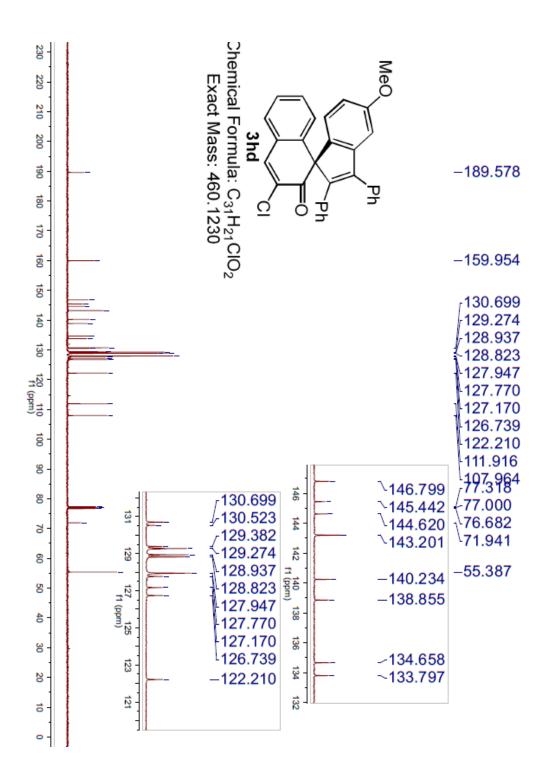


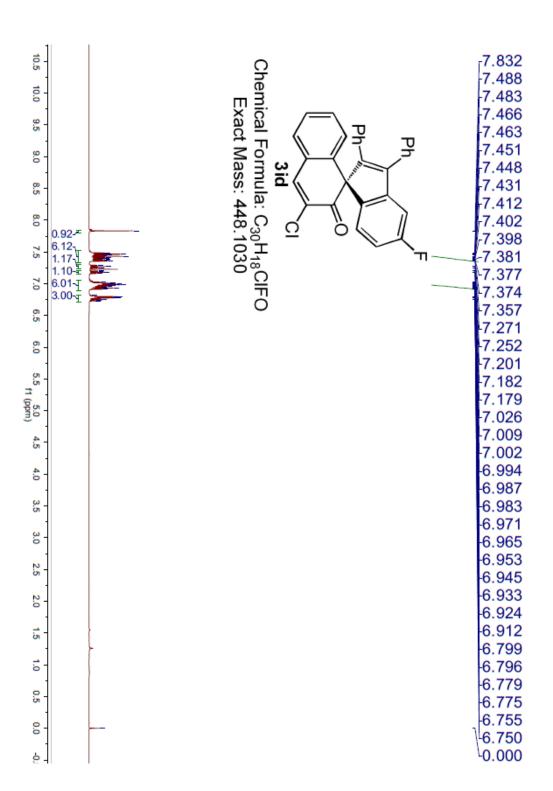


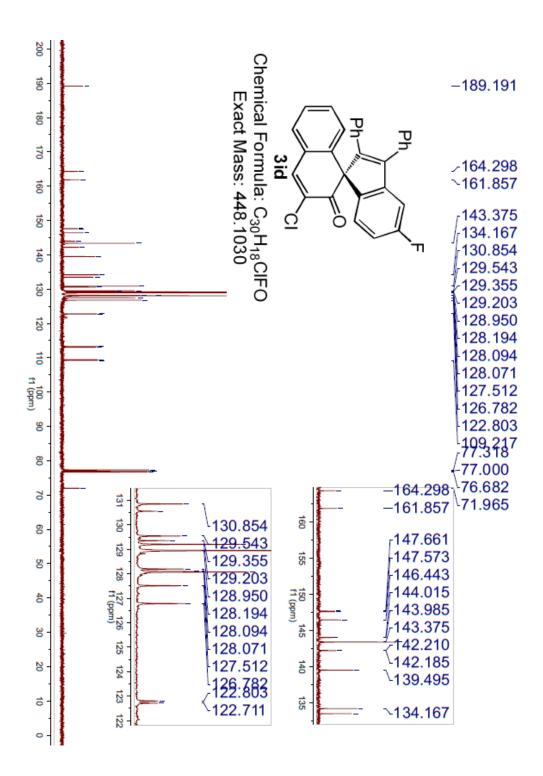


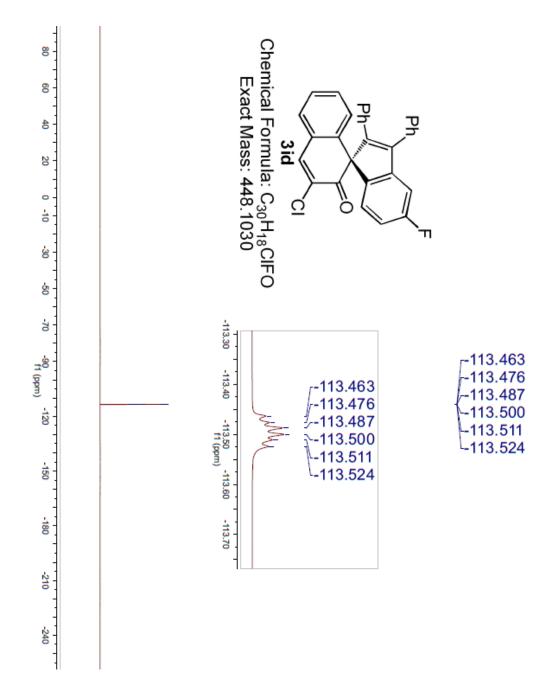


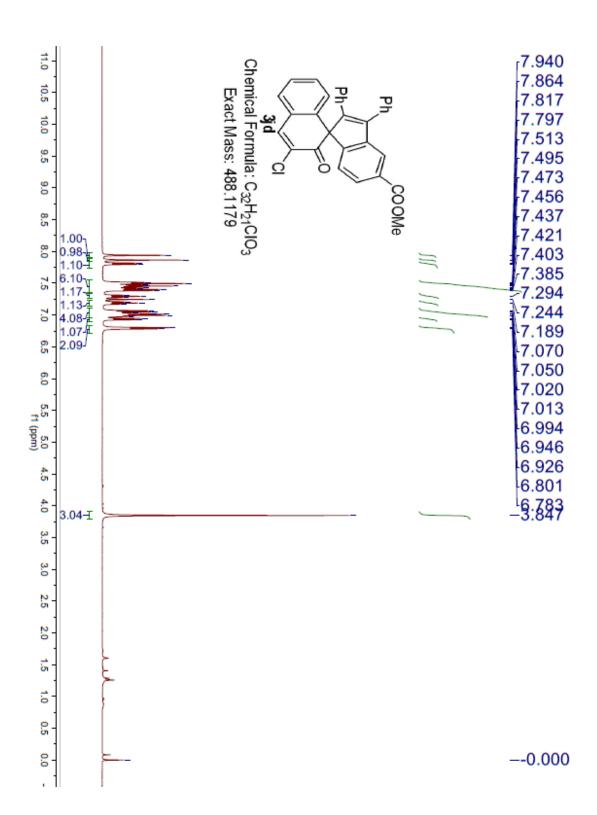


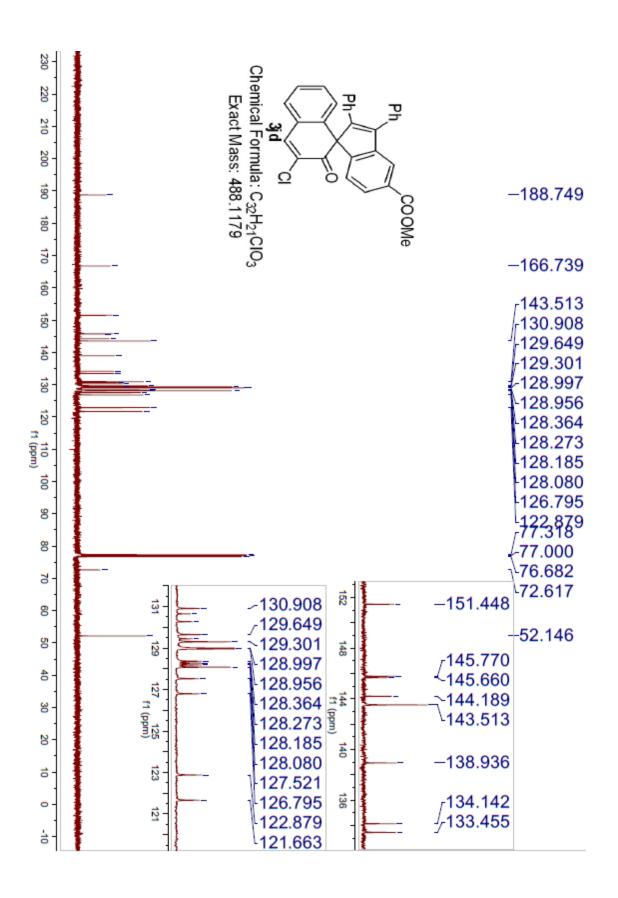


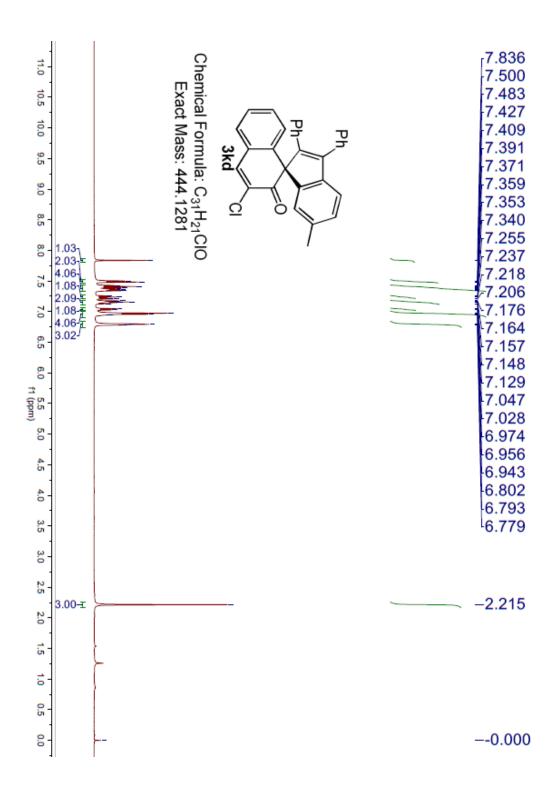


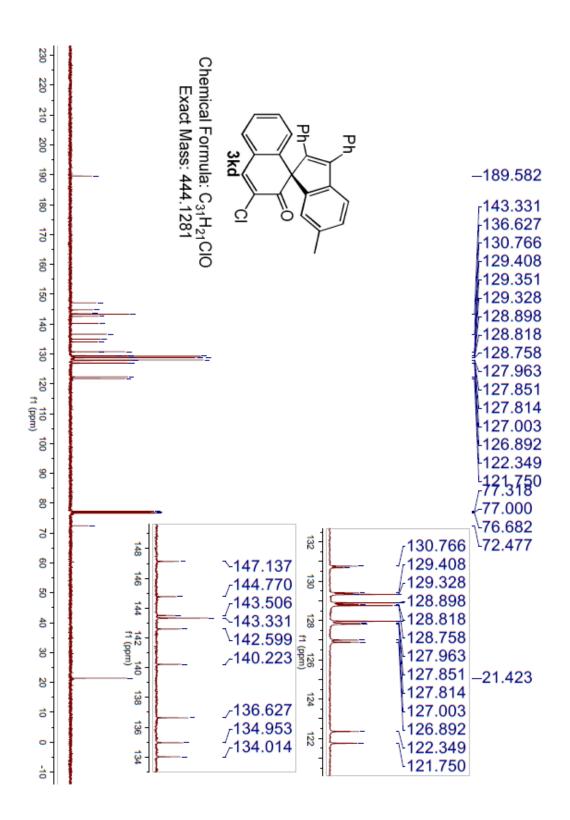


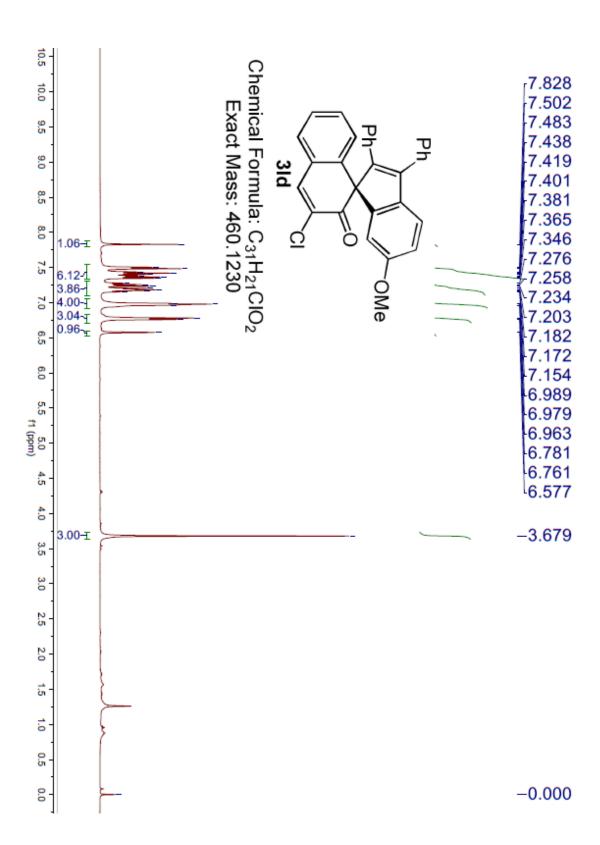


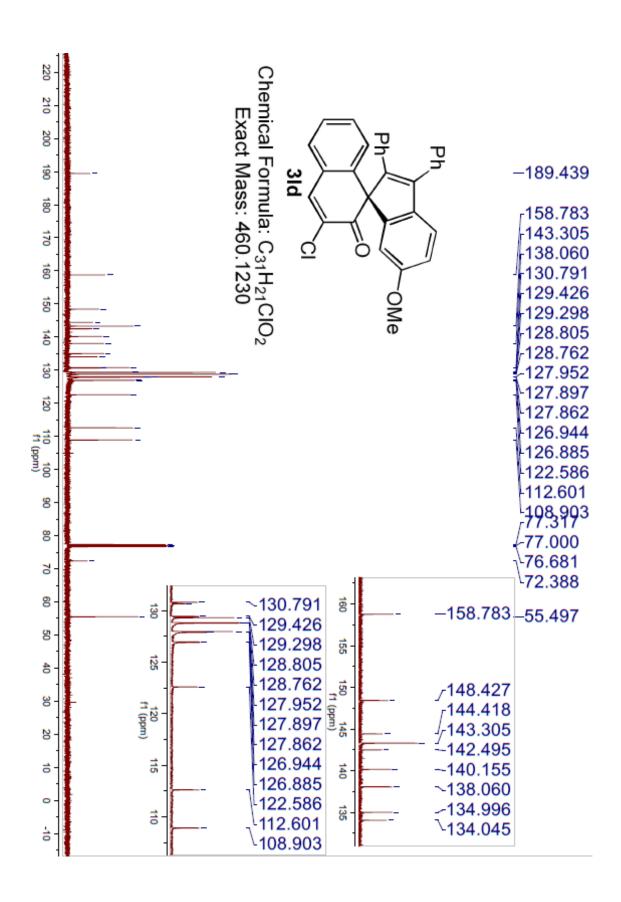


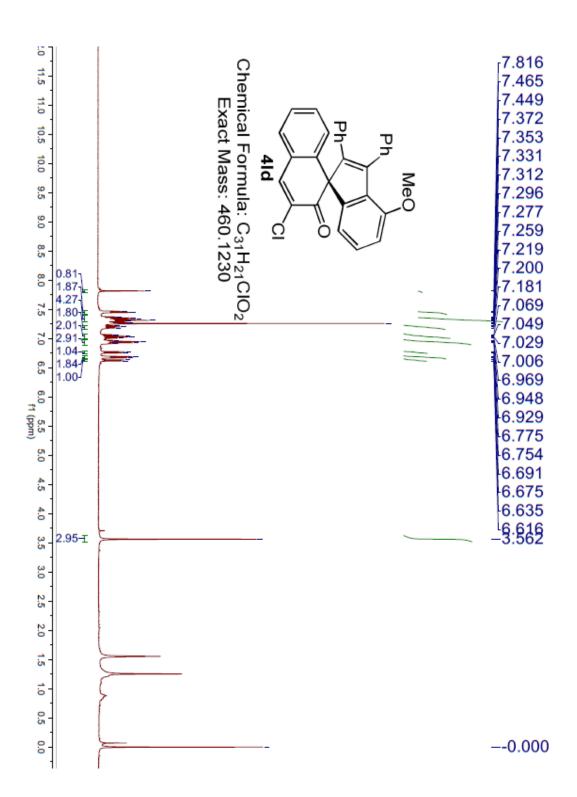


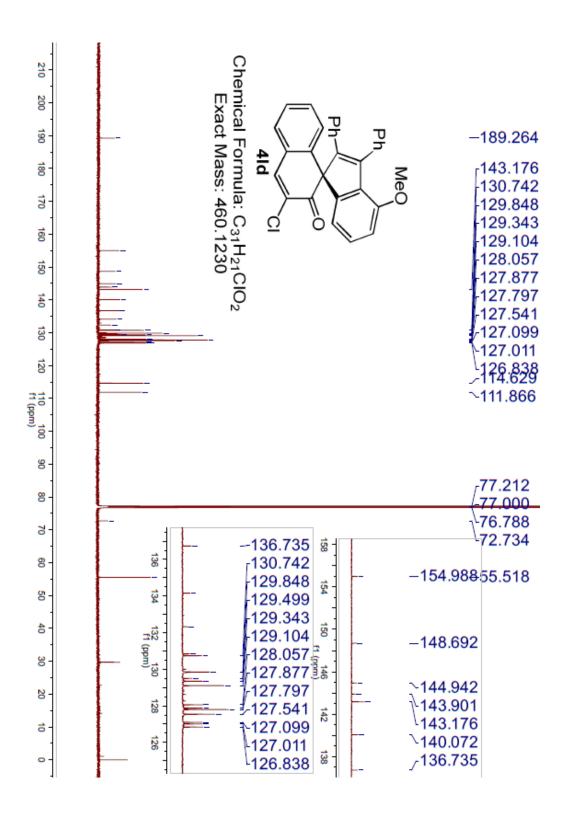


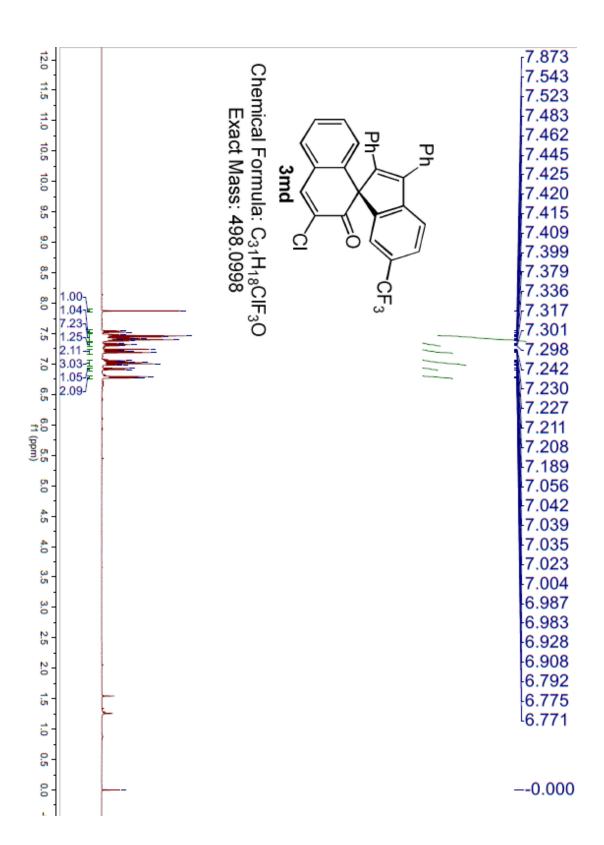


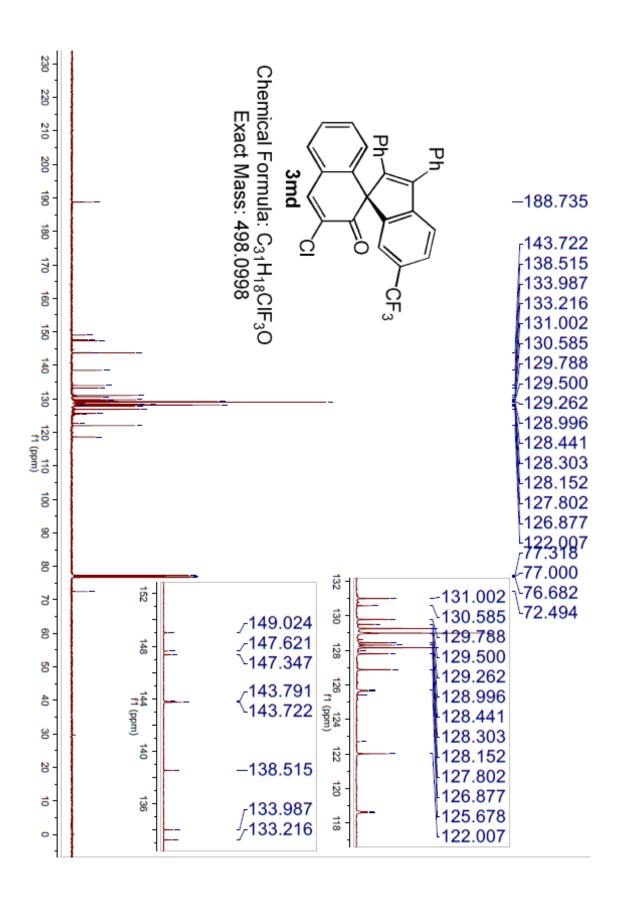


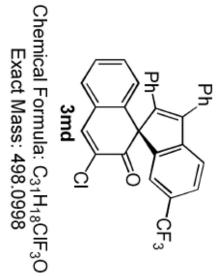


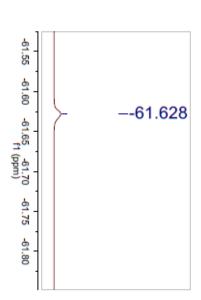


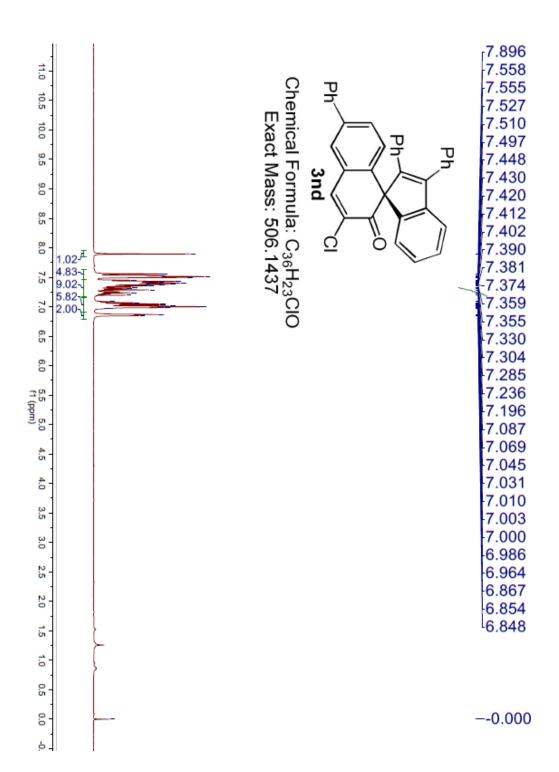


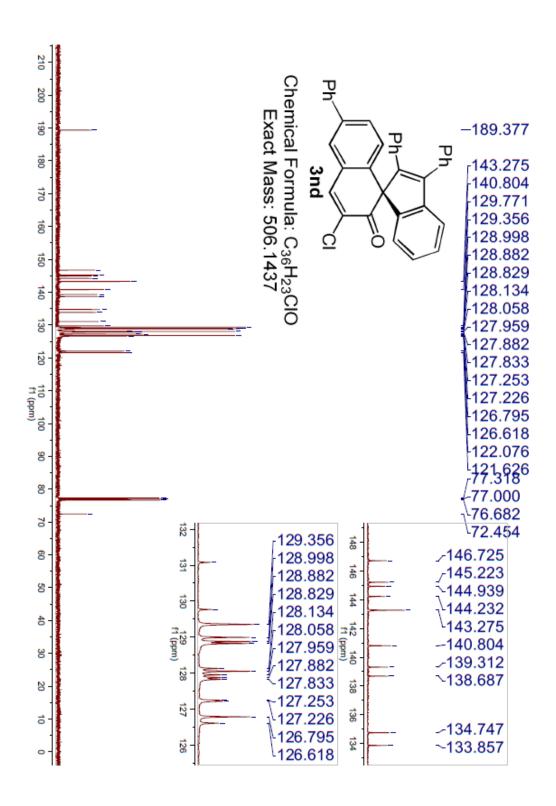


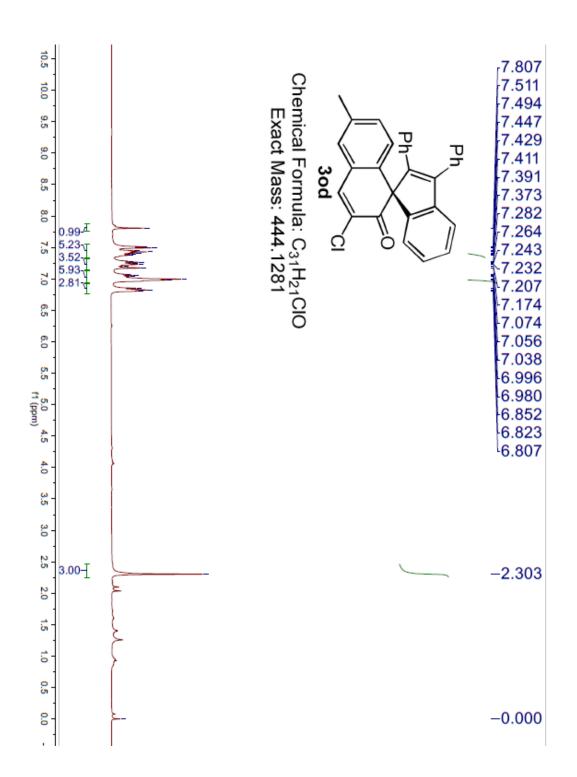


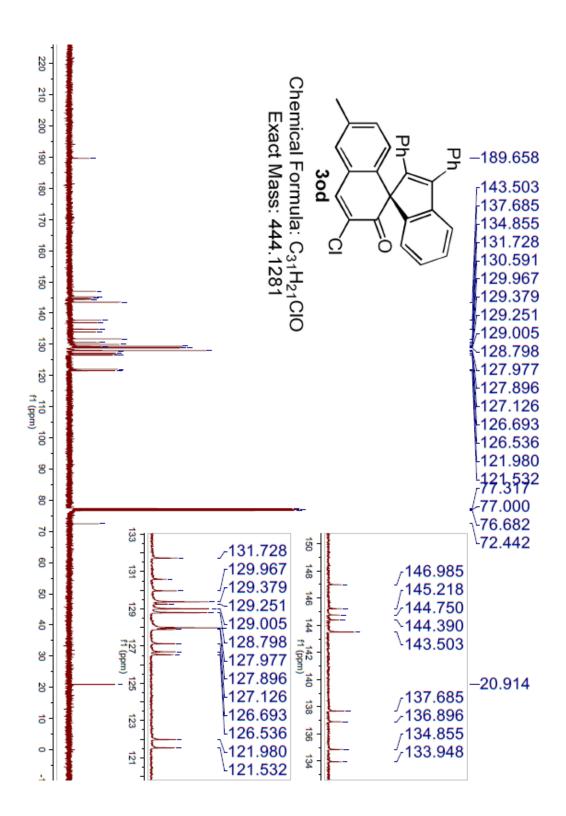


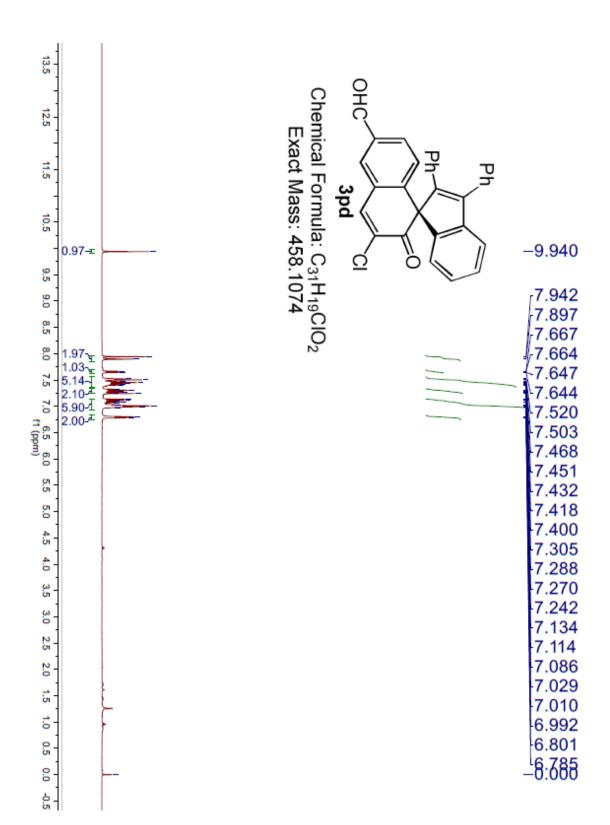


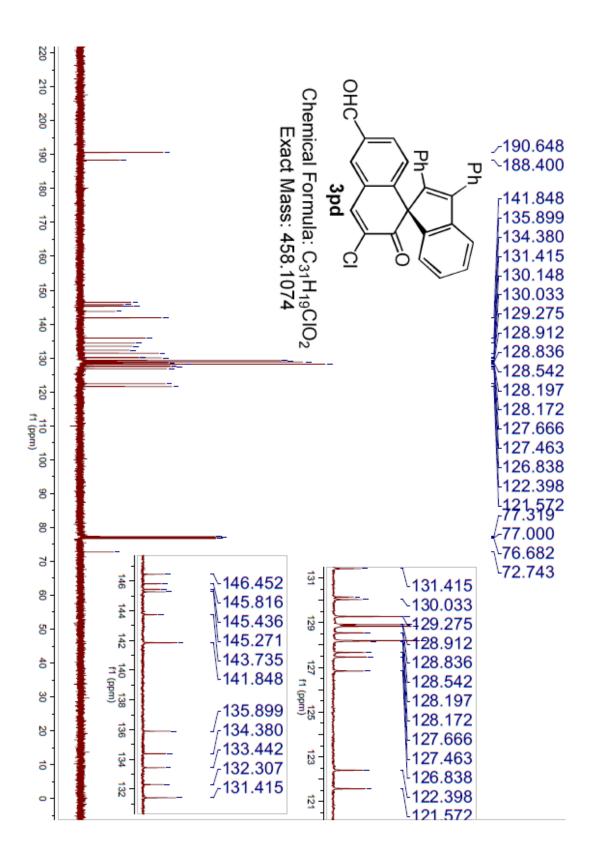


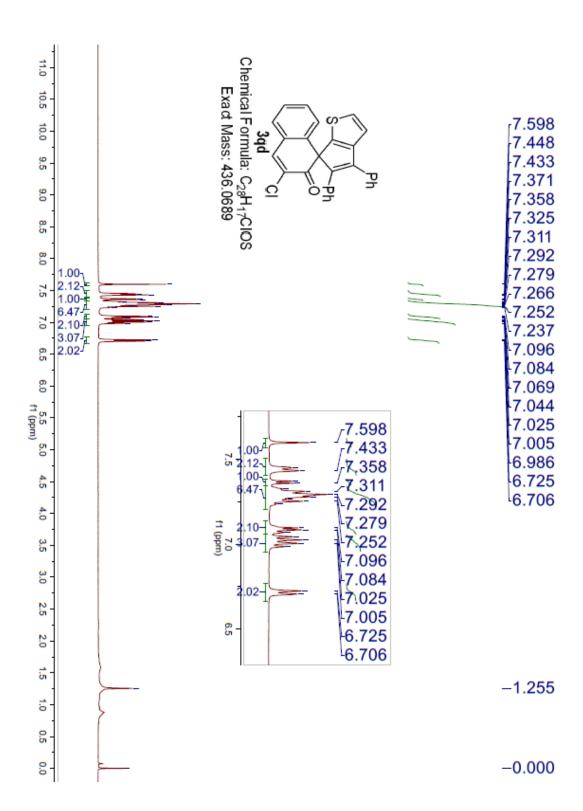


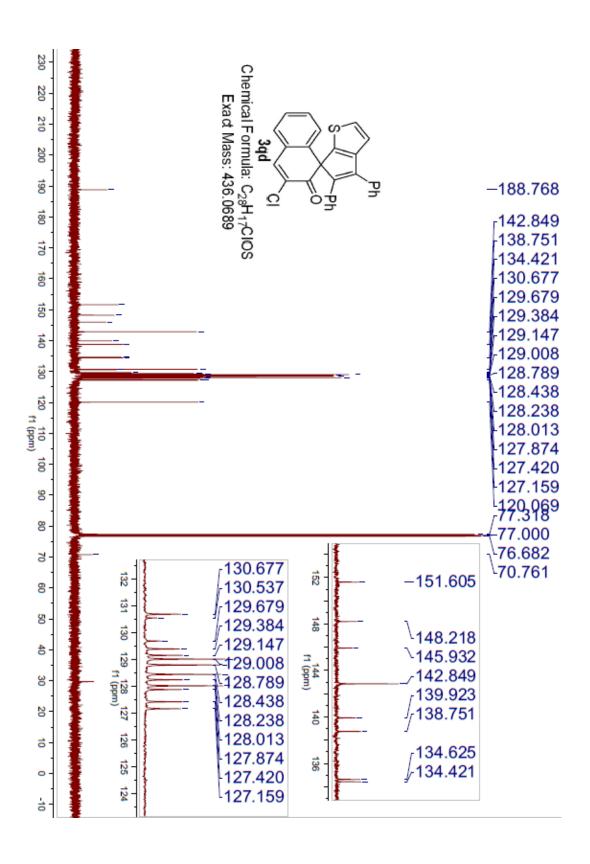


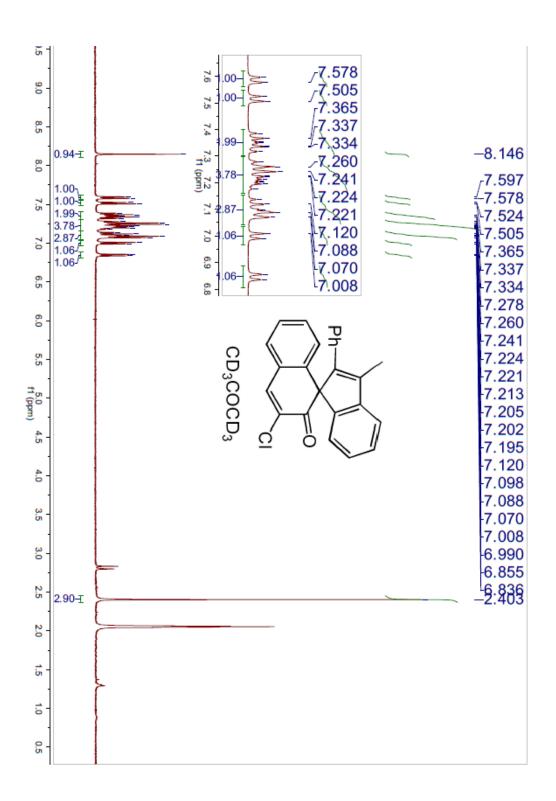

--61.628

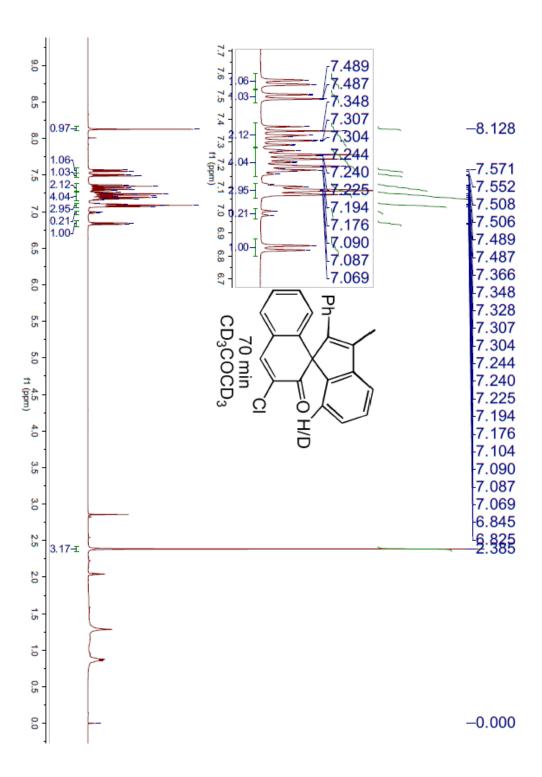


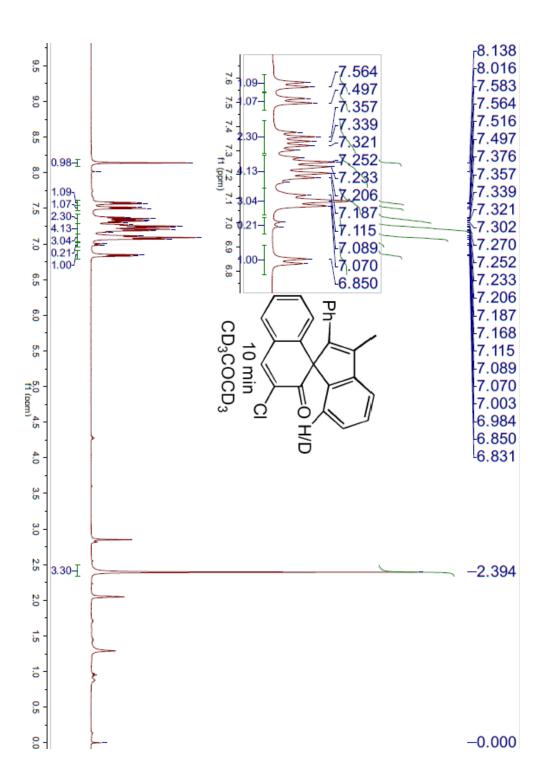


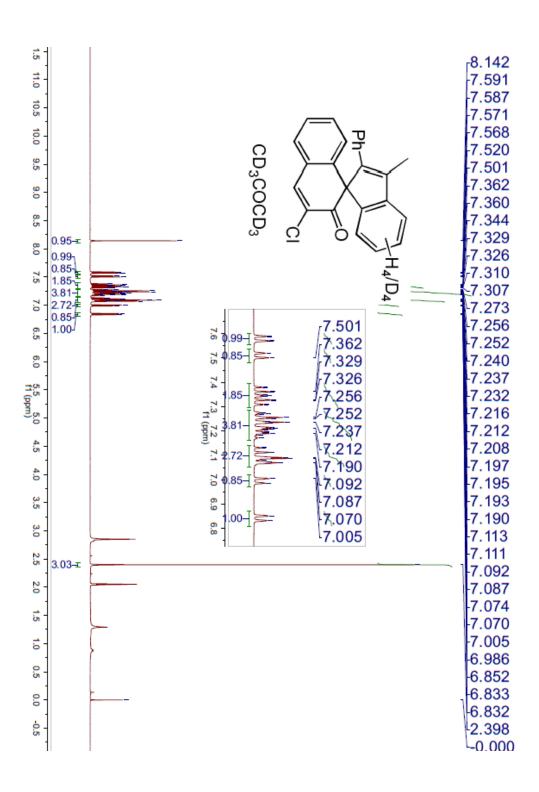


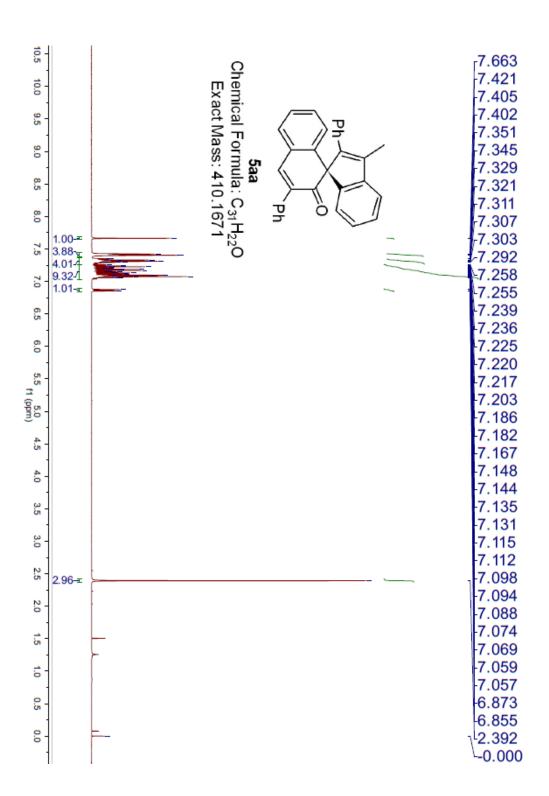


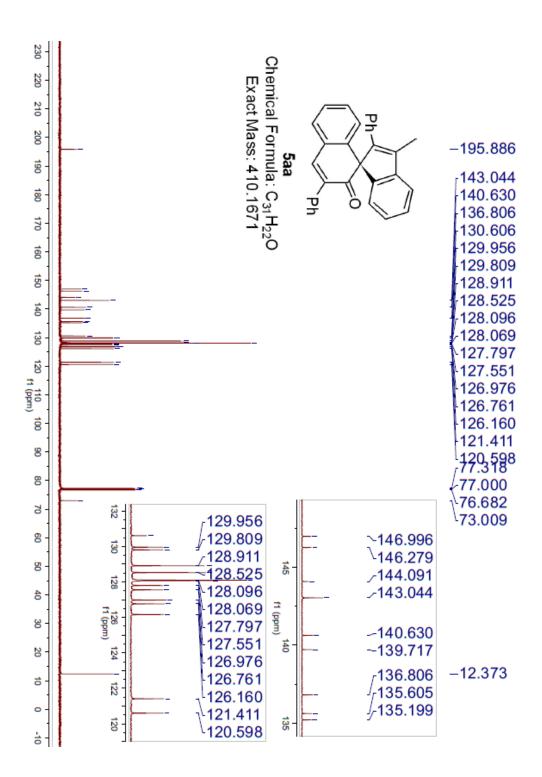


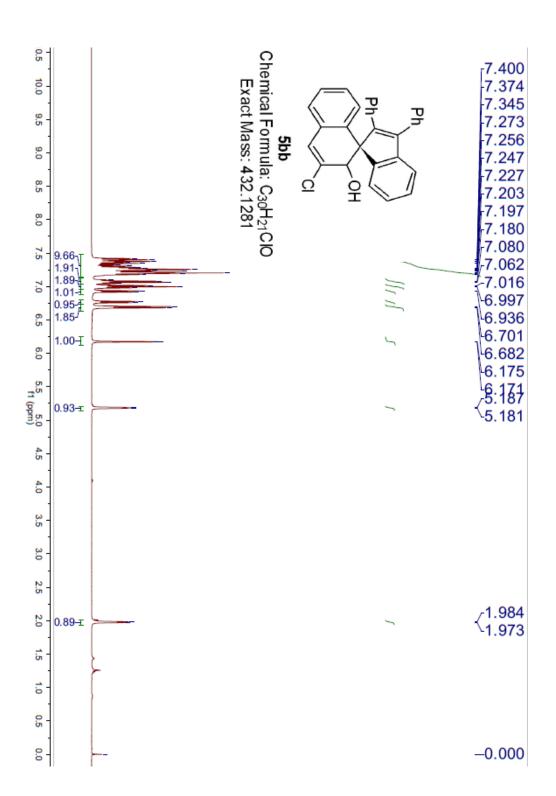


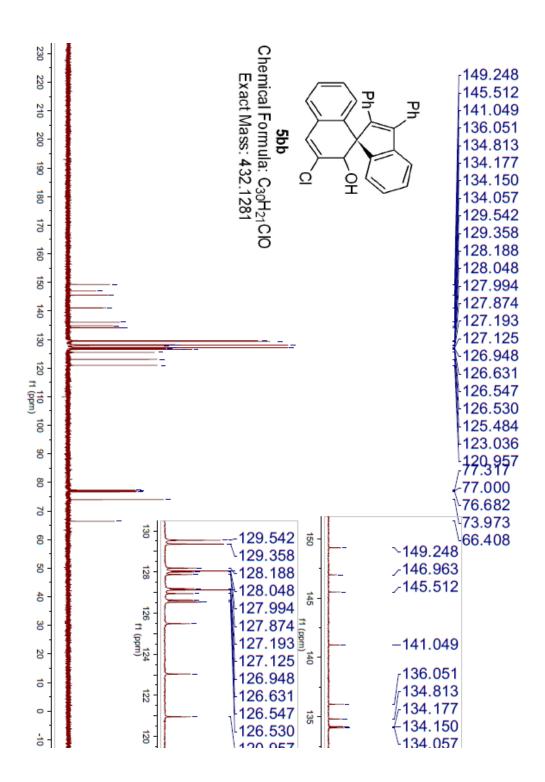


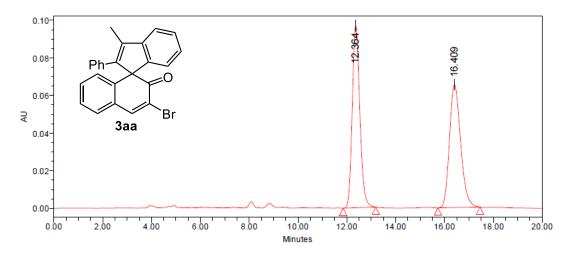


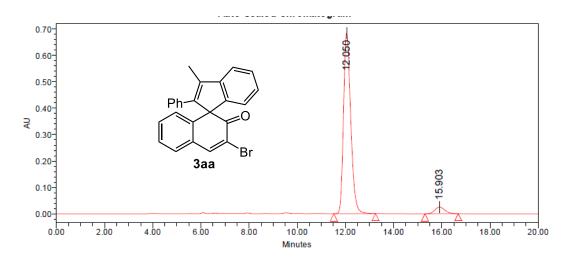


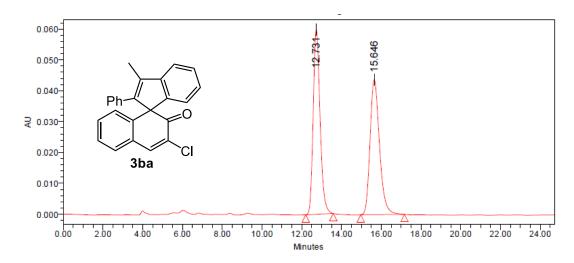


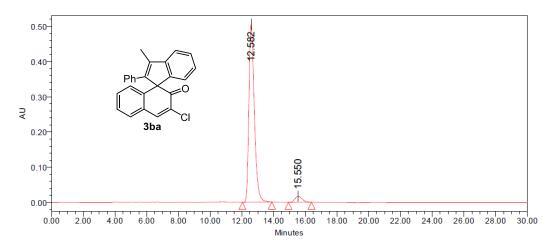


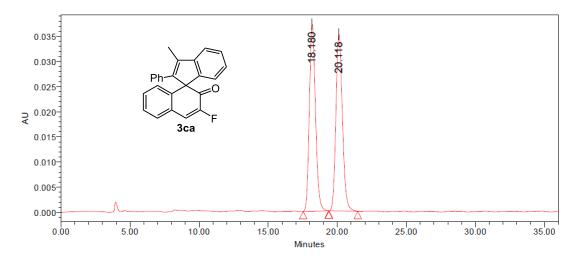


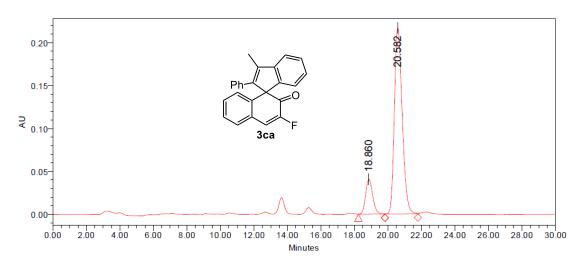


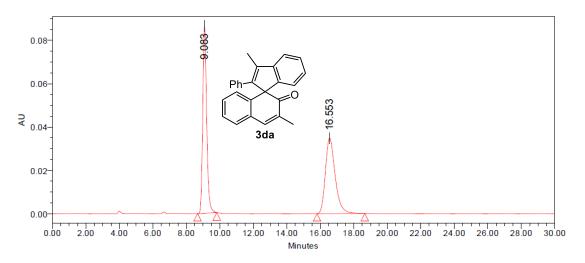


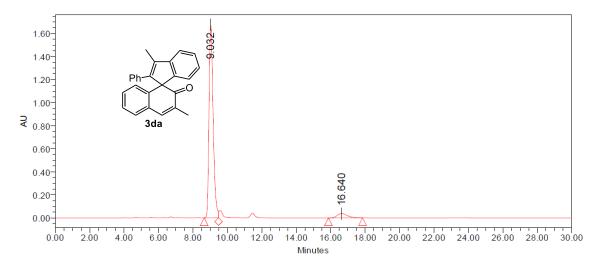


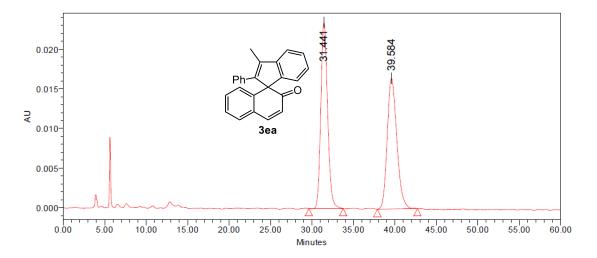

| Peak Results | Name | RT | Area | Height | % Area | | 1 | 12.364 | 2083097 | 96989 | 50.10 | 2 | 16.409 | 2074558 | 65496 | 49.90 |

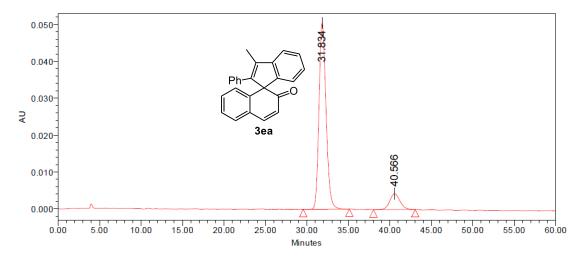

Peak Results					
	Name	RT	Area	Height	% Area
1		12.050	14203815	684099	95.11
2		15.903	730044	25499	4.89

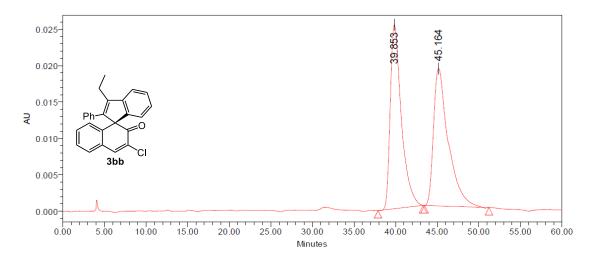

Peak Results						
	Name	RT	Area	Height	% Area	
1		12.731	1433558	59935	49.83	
2		15.646	1443323	43800	50.17	


	Peak Results						
	Name	RT	Area	Height	% Агеа		
1		12.582	12030642	505434	95.73		
2		15.550	537208	17103	4.27		

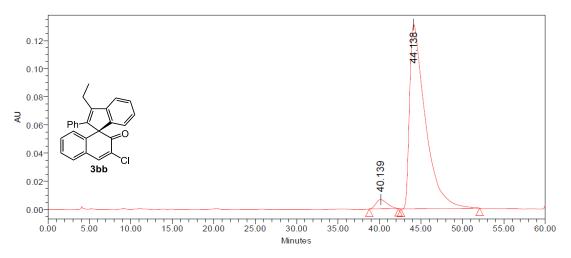

	Name	RT	Area	Height	% Area
1		18.180	1149914	37207	50.00
2		20.118	1150021	35168	50.00


	rountrocure							
	Name	RT	Area	Height	% Area			
1		18.860	1182566	40674	14.37			
2		20.582	7048669	216766	85.63			

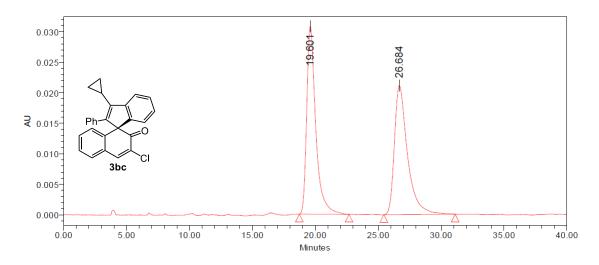

T CUIT TOURTS						
	Name	RT	Area	Height	% Area	
1		9.083	1412916	86457	50.18	
2		16.553	1402851	34823	49.82	


	Name	RT	Area	Height	% Area
1		9.032	27712565	1675591	94.88
2		16.640	1496787	37599	5.12

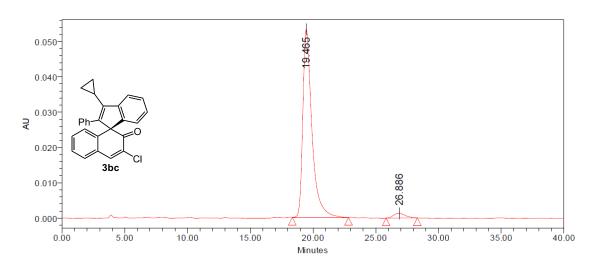
	Peak Results						
		Name	RT	Area	Height	% Area	
	1		31.441	1326367	23463	50.04	
	2		39.584	1324418	16485	49.96	



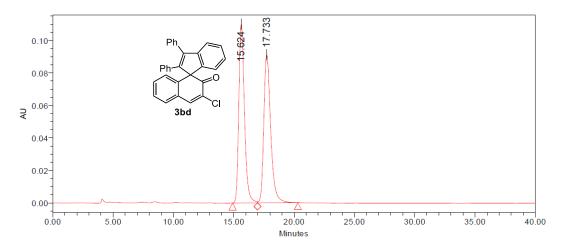
Peak Results						
	Name	RT	Area	Height	% Area	
1		31.834	2979129	50506	89.00	
2		40.566	368343	4278	11.00	


Peak Results Name RT Area Height % Area

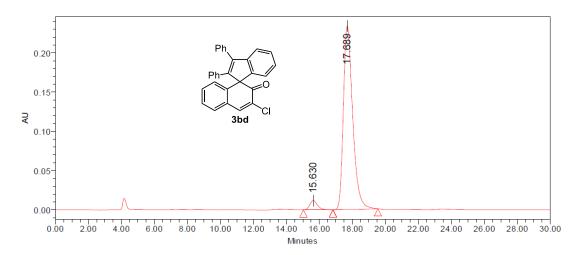
	Ivaille	K i	Alea	Height	70 Alea
1		39.853	2347077	25284	50.21
2		45.164	2327279	18882	49.79


Peak Results

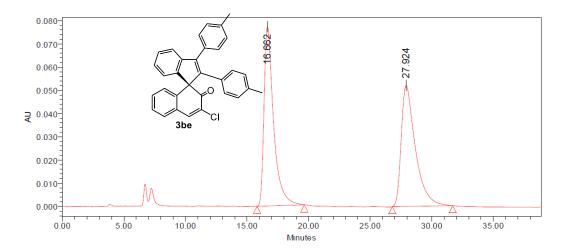
	Name	RT	Area	Height	% Area				
1		40.139	631448	6624	3.51				
2		44.138	17379831	131169	96.49				

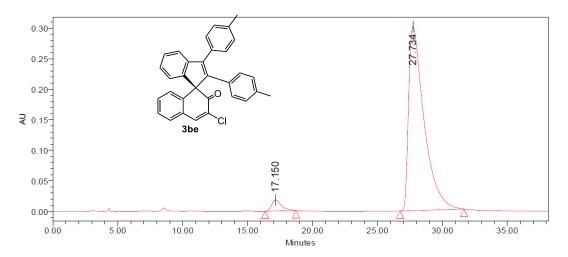

Peak Results Name RT Area He

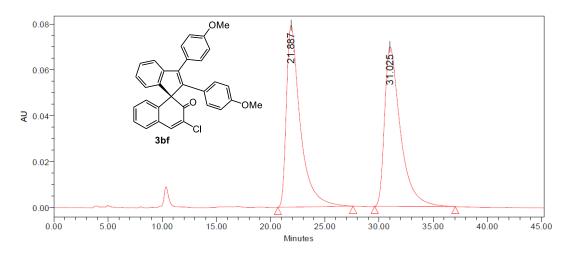
	Name	RT	Area	Height	% Area
1		19.601	1541003	30803	50.20
2		26.684	1528432	21127	49.80

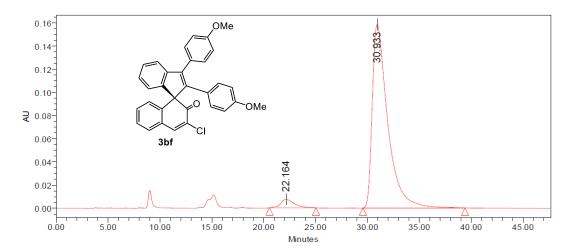


Peak Results

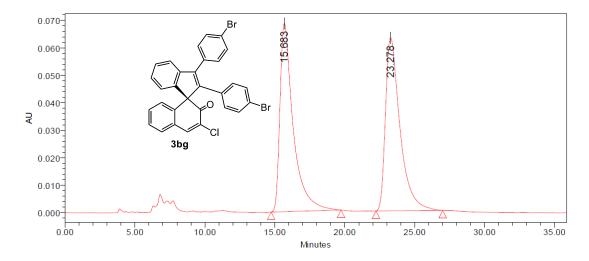

	Name	RT	Area	Height	% Area	
1		19.465	2687122	53276	96.85	
2		26.886	87256	1337	3.15	


Peak Results Name RT Area Height % Area 1 15.624 3578463 110130 49.82 2 17.733 3604795 91162 50.18

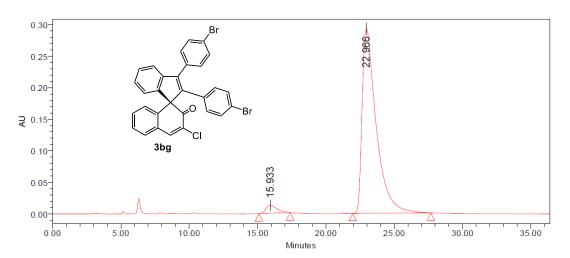

Peak Results						
	Name	RT	Area	Height	% Area	
1		15.630	383736	11865	4.02	
2		17.689	9164351	234042	95.98	


	Name	RT	Area	Height	% Area	
1		16.662	4157293	77206	50.09	
2		27.924	4141871	52047	49.91	

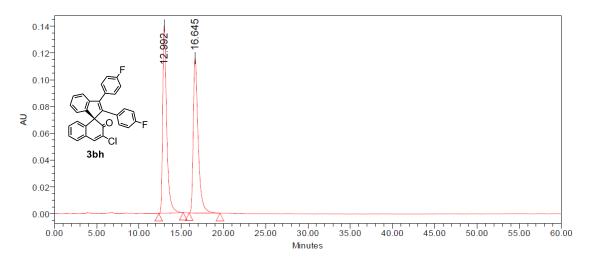
. can nocano						
	Name	RT	Area	Height	% Area	
1		17.150	937445	18138	3.62	
2		27.734	24953906	301491	96.38	

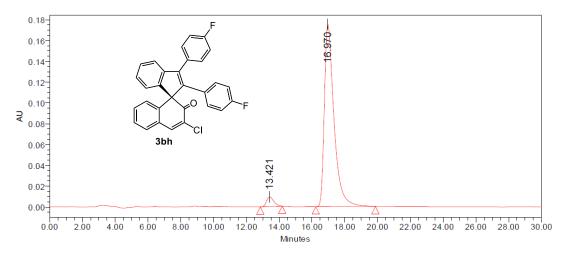


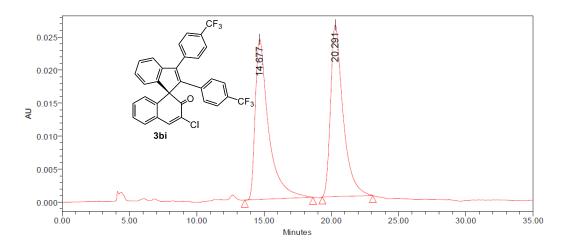
	Name	RT	Area	Height	% Area
1		21.887	7060075	79207	49.94
2		31.025	7076305	69558	50.06



Peak Results

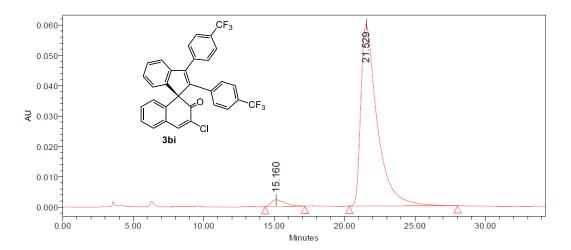

	Name	RT	Area	Height	% Area
•		22.164	663468	7374	3.89
	2	30.933	16385456	158378	96.11


	Name	RT	Area	Height	% Area
1		15.683	4531738	68562	49.92
2		23.278	4546914	63048	50.08

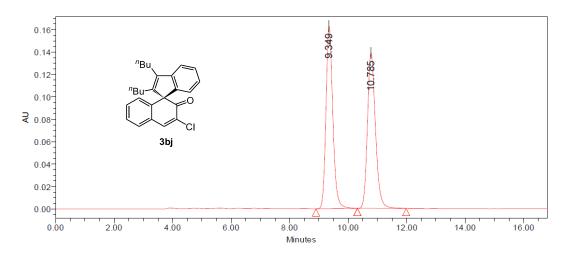

	· · · · · · · · · · · · · · · · · · ·							
	Name	RT	Area	Height	% Area			
1		15.933	720699	12341	3.31			
2		22.966	21044641	292859	96.69			

	Name	RT	Area	Height	% Area
1		12.992	4631143	140632	49.92
2		16.645	4645663	115734	50.08

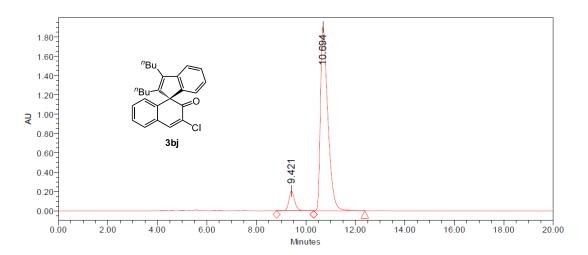
	Name	RT	Area	Height	% Area
1		13.421	289554	9366	3.89
2		16.970	7153291	175267	96.11

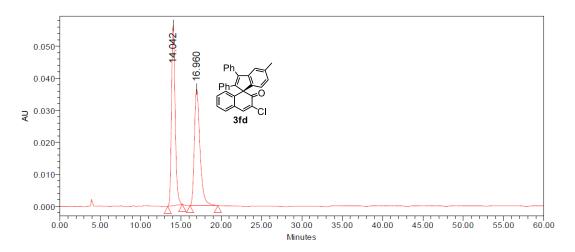


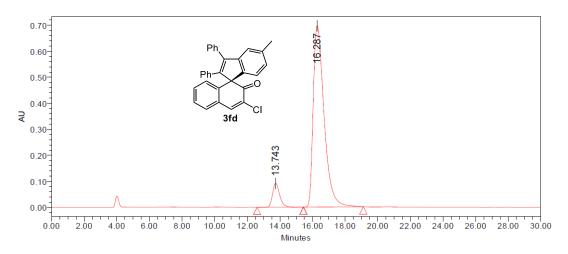
 Peak Results


 Name
 RT
 Area
 Height
 % Area

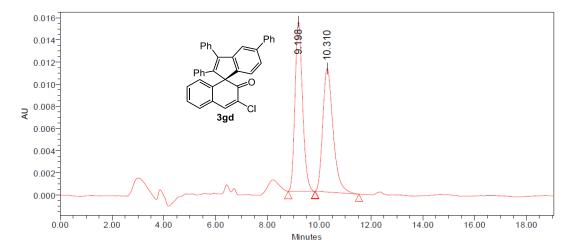
 1
 14.677
 1675777
 24240
 49.91


 2
 20.291
 1681804
 25996
 50.09

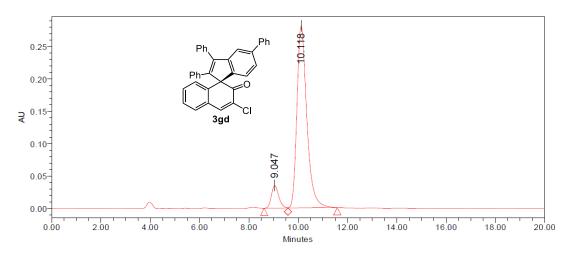

Peak Results						
	Name	RT	Area	Height	% Area	
1		15.160	151467	2207	3.03	
2		21.529	4852417	59826	96.97	


Peak Results Name RT Area Height % Area 1 9.349 2657598 163155 50.20 2 10.785 2636173 138791 49.80

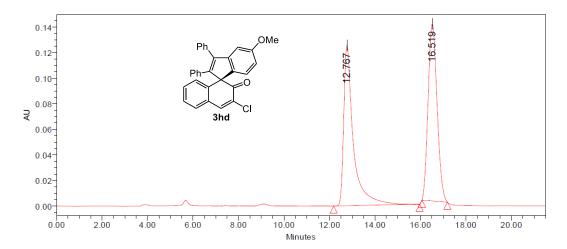
Peak Results						
	Name	RT	Area	Height	% Area	
1		9.421	3318771	205163	7.72	
2		10.694	39652553	1902179	92.28	

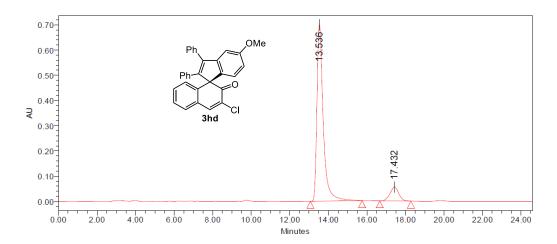


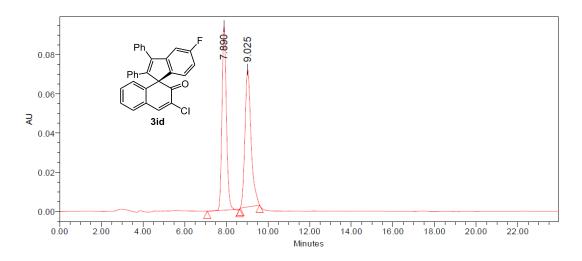
	Name	RT	Area	Height	% Area
1		14.042	1769119	56382	50.14
2		16.960	1759560	36406	49.86

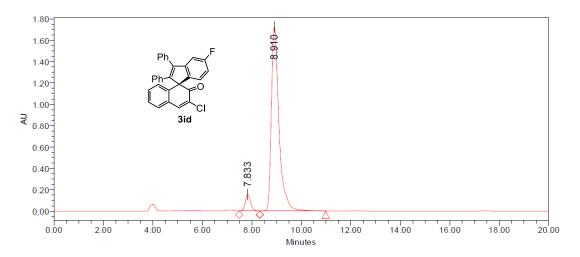


Peak Results

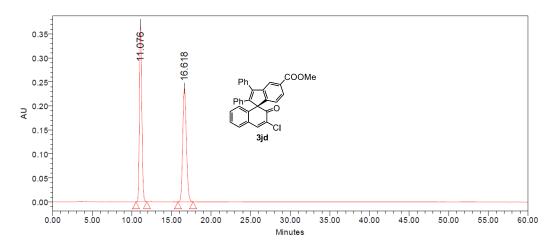

	Name	RT	Area	Height	% Area
1		13.743	2800020	91847	7.98
2		16.287	32278665	697018	92.02


	Name	RT	Area	Height	% Area
1		9.198	310197	15333	50.00
2		10.310	310165	11173	50.00

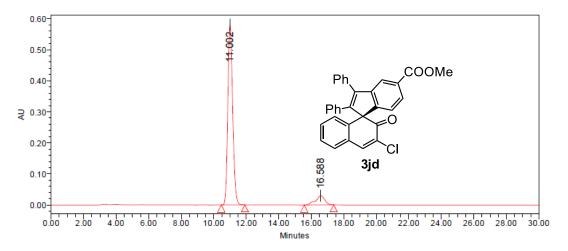

	Name	RT	Area	Height	% Area
1		9.047	722550	34874	8.44
2		10.118	7838037	281317	91.56


	Name	RT	Area	Height	% Area
1		12.767	3677498	125297	49.25
2		16.519	3788977	138376	50.75

	Name	RT	Area	Height	% Area
1		13.536	15937226	700420	90.18
2		17.432	1734727	55363	9.82

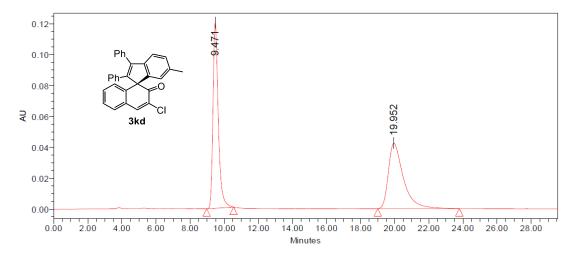


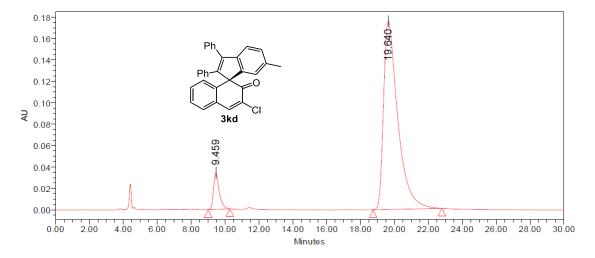
	Name	RT	Area	Height	% Area
1		7.890	1385545	94102	49.24
2		9.025	1428390	70095	50.76


Peak Results

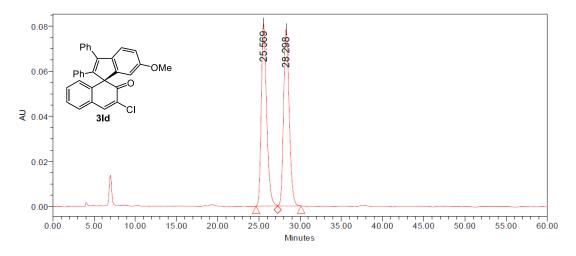
	T out Nosuits							
	Name	RT	Area	Height	% Area			
1		7.833	2328241	155391	5.92			
2		8.910	36998634	1725109	94.08			

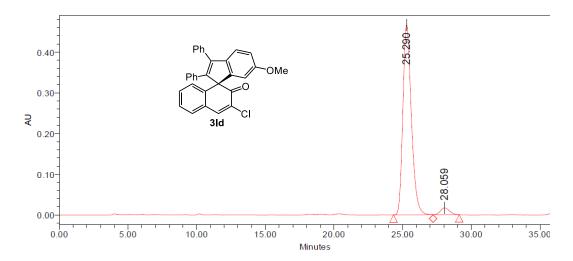
Peak Results Name RT % Area Height Area 11.076 7620995 369659

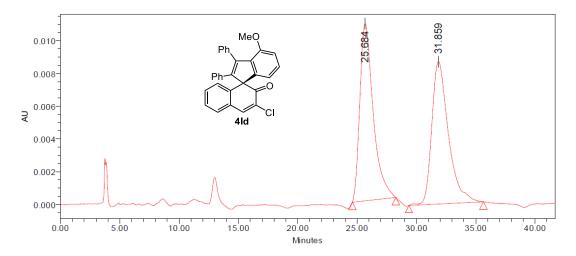

16.618 7638328 236355

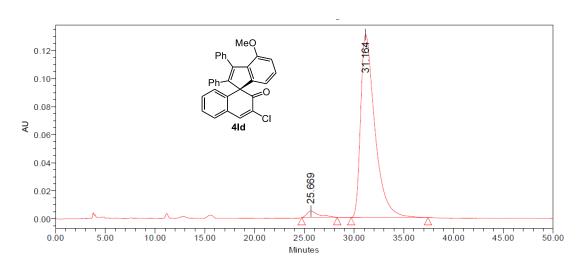

49.94

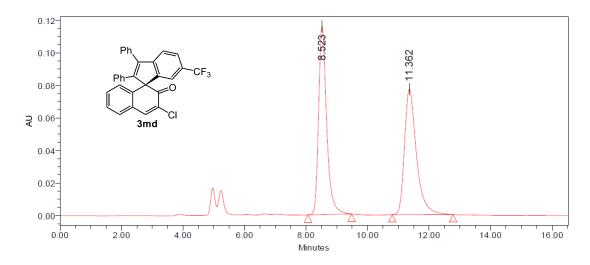
50.06

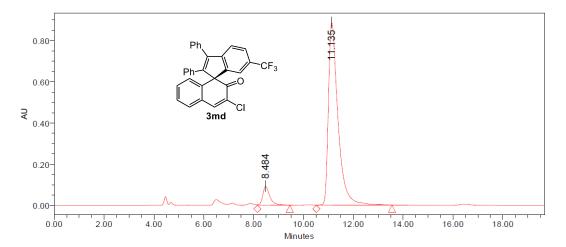

	Peak Results						
	Name	RT	Area	Height	% Area		
1		11.002	12028787	581185	91.24		
2		16.588	1154498	29261	8.76		

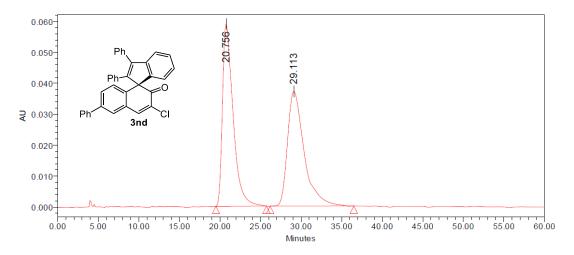

Peak Results Name RT Area Height % Area 1 9.471 2580088 120194 50.07 2 19.952 2572435 42363 49.93


	Peak Results								
	Name	RT	Area	Height	% Area				
1		9.459	796737	34113	7.21				
2		19.640	10259087	175762	92.79				

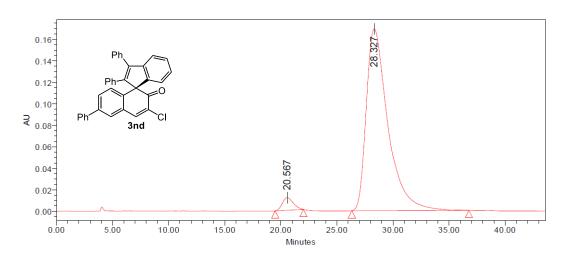

	Name	RT	Area	Height	% Area
1		25.569	3710189	81035	49.92
2		28.298	3721382	78439	50.08


T CUR ROSUITS							
	Name	RT	Area	Height	% Area		
1		25.290	20082534	466735	96.24		
2		28.059	784162	17078	3.76		

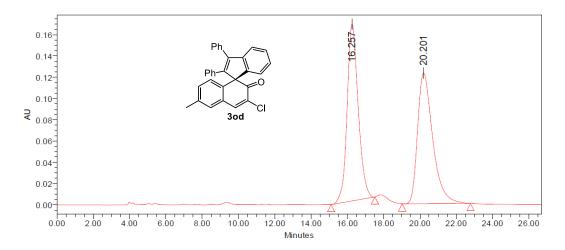

	Name	RT	Area	Height	% Area
1		25.684	848629	10818	50.08
2		31.859	845791	8702	49.92


	i ear itesuits							
	Name	RT	Area	Height	% Area			
1		25.669	397133	4591	2.97			
2		31.164	12995138	130590	97.03			

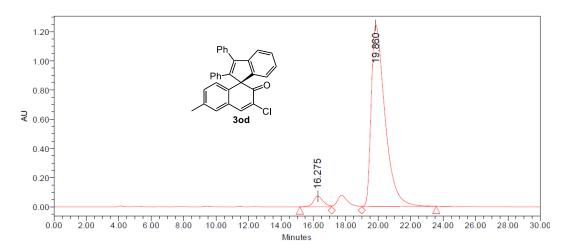
Peak Results Name RT Area Height % Area 1 8.523 2095313 115686 50.30 2 11.362 2070596 77020 49.70



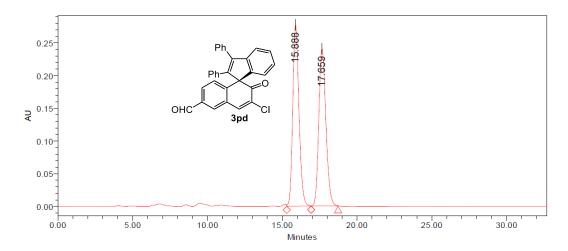
	Peak Results					
	Name	RT	Area	Height	% Area	
1		8.484	1778448	91213	6.99	
2		11.135	23671160	886780	93.01	

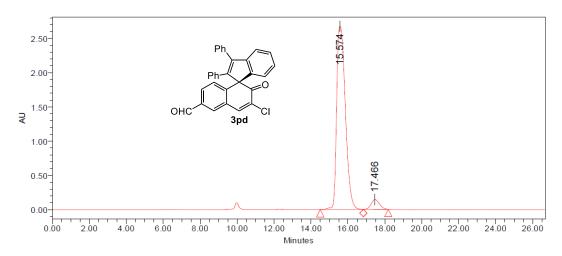

Peak Results

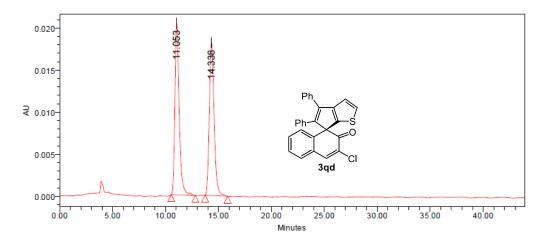
	Name	RT	Area	Height	% Area
1		20.756	5338067	58919	50.32
2		29.113	5270757	37059	49.68



Peak Results

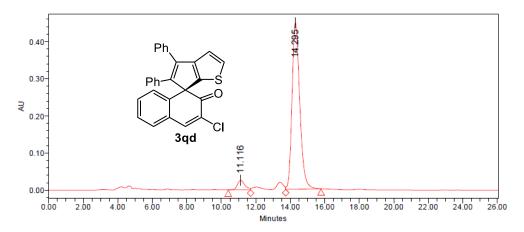

	Name	RT	Area	Height	% Area
1		20.567	794446	11748	3.39
2		28.327	22619814	169043	96.61


	Name	RT	Area	Height	% Area
1		16.257	7056968	166302	49.76
2		20.201	7124065	122984	50.24

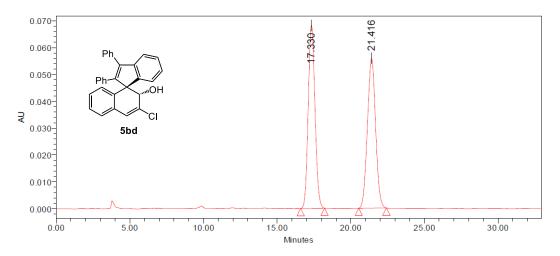

	Name	RT	Area	Height	% Area
1		16.275	3057735	71402	3.99
2		19.860	73481571	1241445	96.01

	Name	RT	Area	Height	% Area
1		15.888	7996752	277258	50.23
2		17.659	7921962	240487	49.77

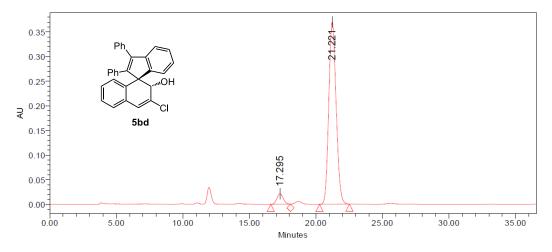
I car results						
	Name	RT	Area	Height	% Area	
1		15.574	87542380	2673266	95.08	
2		17.466	4533561	143287	4.92	

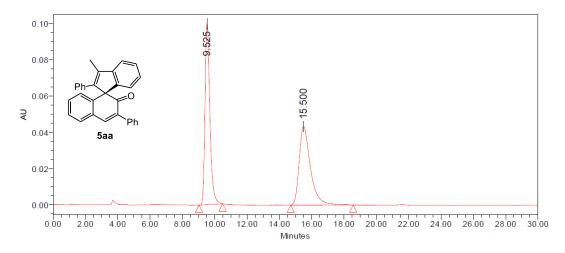


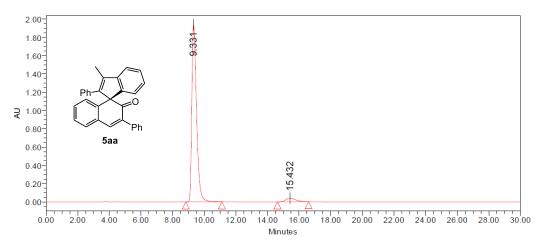
 Peak Results


 Name
 RT
 Area
 Height
 % Area

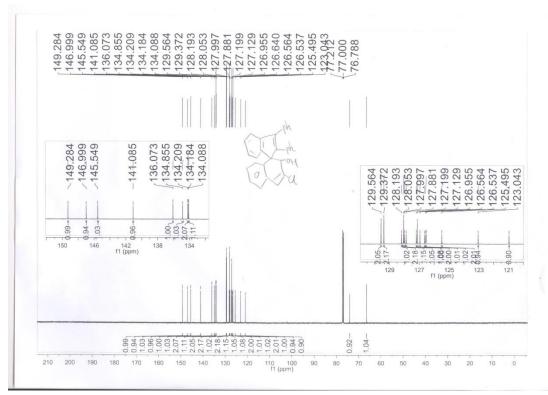
 1
 11.053
 576251
 20410
 50.05

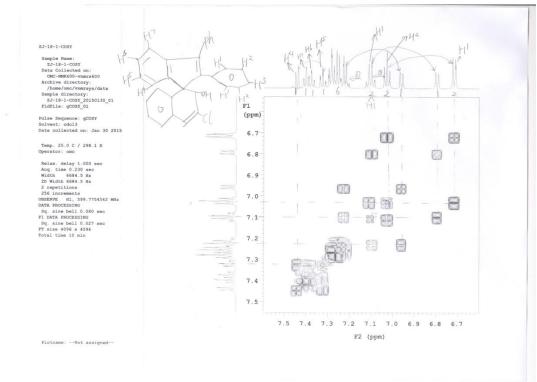

 2
 14.338
 575202
 18176
 49.95

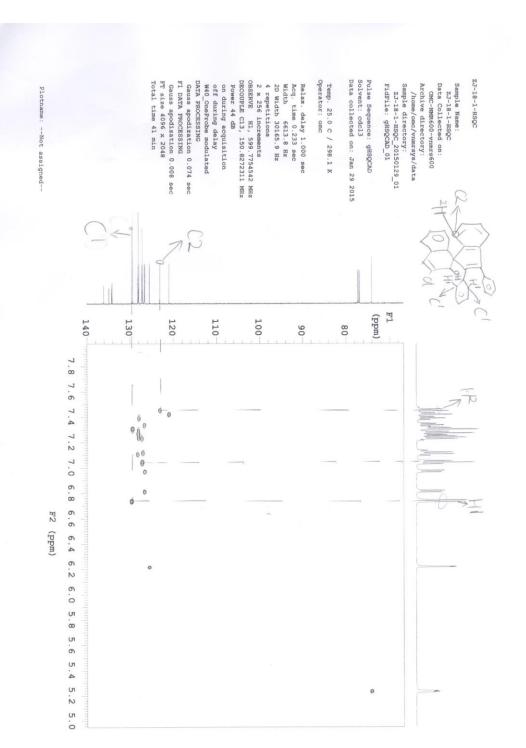

	Peak Results					
1 2		Name	RT	Area	Height	% Area
	1		11.116	770040	25951	5.23
	2		14.295	13959245	448308	94,77

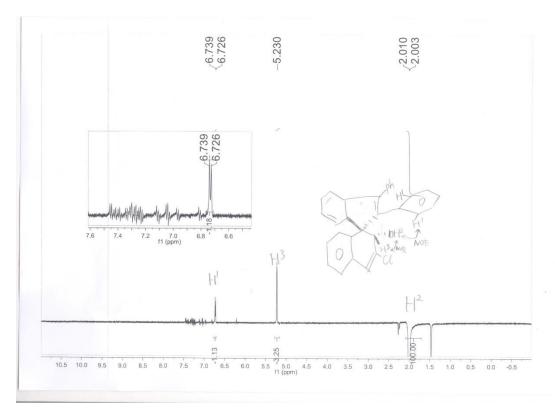

| Name | RT | Area | Height | % Area | 1 | 17.330 | 2168853 | 68151 | 50.23 | 2 | 21.416 | 2149130 | 55805 | 49.77 |

	Peak Results						
1		Name	RT	Area	Height	% Area	
	1		17.295	715406	21241	4.80	
	2		21.221	14195999	370198	95.20	


	Name	RT	Area	Height	% Area
1		9.525	2089251	100023	49.90
2		15.500	2097559	43362	50.10




Peak Results


	I car results							
	Name	RT	Area	Height	% Area			
1		9.331	40270830	1939539	95.93			
2		15.432	1707999	38747	4.07			

Copies of HSQC, COSY, 1D-NOESY of 5bb

