Identification of the Biosynthetic Gene Cluster for the Antiinfective Desotamides and Production of a New Analogue in a Heterologous Host

Qinglian Li,[†] Yongxiang Song,[†] Xiangjing Qin,[†] Xing Zhang,[†] Aijun Sun,[†] and Jianhua Ju^{†,*}

[†]CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China

* To whom correspondence should be addressed. Tel./Fax: +86-20-89023028; E-mail: jju@scsio.ac.cn

Table of contents	Page
Table S1. Deduced Functions of ORFs in the DSA gene cluster	2
Table S2. Analysis of Adenylation Domains in the DSA Cluster	3
Table S3. ¹ H and ¹³ C NMR Data for Compounds 5 and 1 in DMSO- d_6	4-5
Table S4. Primer Pairs Used in PCR Screening of Streptomyces scopuliridisSCSIO ZJ46 Genomic Library	6
Figures S1, S2. (+) HRESIMS/MS Spectra and Fragments of 5	7
Figure S3 . Marfey's Analysis of Acid Hydrolysates of 1 and 5 and Standard Amino Acids of L-Asp, L-Ile, L-Trp, L-Leu, D-Leu, D-Asp, D-Ile and D-Trp	8
Figure S4 . Chiral-phase HPLC Analysis of the Hydrolysate of 5 and Standard Amino Acids of L-Ile and L- <i>allo</i> -Ile	9
Figure S5. HPLC Analyses of the Fermentation Extracts of <i>S. coelicolor</i> M1152 Fed with or without Compound 1 .	10
Figures S6 . ¹ H NMR (500 MHz) Spectrum of 5 in DMSO- d_6	11
Figures S7 . ¹³ C NMR (125 MHz) Spectrum of 5 in DMSO- d_6	12
Figures S8 . HMQC Spectrum of 5 in DMSO- d_6	13
Figures S9. ¹ H- ¹ H COCY Spectrum of 5 in DMSO- d_6	14
Figures S10 . HMBC Spectrum of 5 in DMSO- d_6	15

Protein	Size ^a	Proposed function	ID/SI ^b	Protein homologue and origin
Orf(-3)	474	unknown function	33/45	hypothetical protein (WP_030349674.1); Streptomyces scopuliridis
Orf(-2)	160	transcriptional regulator	97/98	AsnC family transcriptional regulator (WP_030349675.1); <i>Streptomyces scopuliridis</i>
Orf(-1)	233	hydrolase	93/95	hydrolase (WP_030349676.1); Streptomyces scopuliridis
DsaA	305	putative transcriptional regulator	53/67	DF17_03230 (KEF09364.1); Actinoplanes sp. N902- 109
DsaB	270	indole-3-glycerol phosphate synthase	66/78	Z951_06575 (EXU68839.1); Streptomyces sp. PRh5
DsaC	167	putative YbaK/prolyl-tRNA synthetase associated domain-containing protein	66/74	STVIR_5719 (ELS53322.1); Streptomyces viridochromogenes Tue57
DsaD	377	aminotransferase	71/79	STVIR_5718 (ELS53321.1); Streptomyces viridochromogenes Tue57
DsaE	121	isomerase	74/82	STVIR_5717 (ELS53320.1); Streptomyces viridochromogenes Tue57
DsaF	69	MbtH domain protein	71/79	STVIR_5715 (ELS53318.1); Streptomyces viridochromogenes Tue57
DsaG	2642	NRPS (C-A-PCP-C-A-PCP-TE)	57/67	STVIR_5714 (ELS53317.1); Streptomyces viridochromogenes Tue57
DsaH	2255	NRPS (A-PCP-E-C- A-PCP)	44/57	DC60_02735 (KDR59525.1); Streptomyces wadayamensis
DsaI	2377	NRPS (A-PCP-C-A-PCP-C)	44/57	XNR_0983 (AGI87382.1); Streptomyces albus J1074
DsaJ	469	β-lactamase	58/65	STVIR_5710 (ELS53338.1); Streptomyces viridochromogenes Tue57
DsaK	919	ABC-transporter permease	64/77	STVIR_5708 (ELS53336.1); Streptomyces viridochromogenes Tue57
DsaL	226	putative ABC transporter ATP-binding protein	78/87	STVIR_5707 (ELS53335.1); Streptomyces viridochromogenes Tue57
DsaM	403	putative Integral membrane sensor signal transduction histidine kinase	65/77	STVIR_5706 (ELS53334.1); Streptomyces viridochromogenes Tue57
DsaN	219	LuxR family two component transcriptional regulator	81/89	STVIR_5705 (ELS53333.1); Streptomyces viridochromogenes Tue57
DsaO	149	hypothetical protein	41/57	STVIR_5704 (ELS53332.1); Streptomyces viridochromogenes Tue57
DsaP	228	thioesterase	60/73	STVIR_5701 (ELS53329.1); Streptomyces viridochromogenes Tue57
DsaQ	379	catabolite control protein A	85/89	SBD_7924 (EMF50360.1); Streptomyces bottropensis ATCC 25435
Orf(+1)	518	ATP-binding protein	85/89	SSPG_04782 (EFD69142.1); Streptomyces lividans TK24
Orf(+2)	657	inner-membrane translocator	82/87	SACTE_5761 (AEN13550.1); <i>Streptomyces</i> sp. SirexAA-E

Table S1. Deduced Functions of ORFs in the DSA Gene Cluster.

^ain amino acids; ^bID/SI: Identity/similarity.

A-domain	Substrate specific sequence	Predicted substrate	Postulated function
DsaI-A1	DVAMAGMV	No hit	activation of L-Trp
DsaI-A2	DALLMGAV	Phe/Trp	activation of L-Leu
DsaH-A3	DALFMGAV	Phe/Trp	activation of L-Leu
DsaH-A4	DALWMGGV	Val	activation of L-Val/ L-allo-Ile
DsaG-A5	DLTKVGEV	Asn	activation of L-Asn/L-Asp
DsaG-A6	DLLQVGLI	Gly	activation of L-Gly

Table S2. Analysis of Adenylation Domains in the DSA Cluster: Predicted SubstrateBinding Pockets and Postulated Functions.

	Desotamide A (1)		Desotamide E (5)		
Pos.	$\delta_{ m C}$	$\delta_{\rm H,}$ mult. (J in Hz)	$\delta_{ m C}$	$\delta_{\rm H,}$ mult. (<i>J</i> in Hz)	
	Trp		Trp		
1	170.9, C		170.9, C		
2	55.1, CH	4.36, m*	54.9, CH	4.30, m	
3	27.2, CH ₂	3.15, dd (14.5, 4.5)	27.1, CH ₂	3.21, dd (14.5, 3.5)	
		2.99, dd (14.5, 10.0)		2.98, dd (14.5, 10.0)	
2	NH	8.31, d (8.0)	NH	8.33, d (7.5)	
1′	NH	10.82, s	NH	10.84, d (2.0)	
2'	123.3, CH	7.13, s	123.5, CH	7.16, d (2.0)	
3'	109.9, C		110.0, C		
3'a	126.9, C		127.0, C		
4'	117.9, CH	7.51, d (8.0)	118.0, CH	7.52, d (8.0)	
5'	118.2, CH	6.98, t (8.0)	118.3, CH	6.98, t (7.5)	
6'	120.7, CH	7.06, t (8.0)	120.9, CH	7.06, t (7.5)	
7'	111.2, CH	7.32, d (8.0)	111.3, CH	7.33, d (8.0)	
7'a	136.0, C		136.1, C		
	Gly		Gly		
1	168.9, C		169.2, C		
2	43.1, CH ₂	3.90, dd (16.0, 6.5)	43.4, CH ₂	3.89, dd (15.0,5.5)	
		3.29, dd (16.0, 4.5)		3.28, dd (15.0,5.0)	
	NH	7.95, t (5.0)	NH	8.19, t (5.0)	
	Asn		Asp		
1	170.7, C		170.7, C		
2	49.2, CH	4.58, dd, (7.5, 4.0)	49.3, CH	4.55, dd (14.0,6.5)	
3	36.7, CH ₂	2.82, dd (16.0, 5.5)	36.5, CH ₂	2.80, dd (16.0,5.0)	
		2.63, dd (16.0, 5.5)		2.64, dd (16.0,6.5)	
4	171.8, C		171.5, C		
2	NH	7.61, d (7.0)	NH	7.82, d (6.5)	
	NH2	7.62, s	OH	12.28, s	
		7.08, s			

|--|

	Ile		Ile	
1	170.7, C		170.5, C	
2	56.4, CH	4.19, dd (7.0, 4.0)	56.0, CH	4.18, dd (8.0,4.5)
3	35.1, CH	2.02, m	35.1, CH	1.99, m
4	25.5, CH ₂	1.18, m	25.6, CH ₂	1.18, m
		1.27, m		
5	11.3, CH ₃	0.83, t (7.5)	11.4, CH ₃	0.81, t*
3-Me	14.3, CH ₃	0.84, d (6.5)	14.4, CH ₃	0.82, d (6.5)
	NH	8.25, d (7.5)	NH	8.22, d (6.5)
	Leu1			
1	173.2, C		172.7, C	
2	51.6, CH	4.34, m*	51.7, CH	4.34, m
3	39.7, CH ₂	1.45, m	39.9, CH ₂	1.45, m*
4	24.0, CH	1.53, m	24.1, CH	1.54, m
5	21.9, CH ₃	0.84, d (6.5)	22.4, CH ₃	0.83, d (6.5)
4-Me	22.4, CH ₃	0.84, d (6.5)	22.6, CH ₃	0.84, d (6.5)
	NH	8.31, d (5.5)	NH	
	Leu2			
1	171.6, C		172.0, C	
2	50.6, CH	4.37, m*	50.5, CH	4.40, dd (14.5, 7.5)
3	41.4, CH ₂	1.55, m	41.5, CH ₂	1.47, m*
		1.45, m		
4	24.3, CH	1.44, m	24.3, CH	1.46, m*
5	22.3, CH ₃	0.90, d (6.0)	22.4, CH ₃	0.89, d (6.5)
4-Me	22.3, CH ₃	0.90, d (6.0)	22.6, CH ₃	0.90, d (6.5)
	NH	7.66, d (8.0)	NH	

* Resonances overlapped.

Locus	Primer code	Sequences (5'-3')	Length of deduced product
dsaA	dsaAF	GACTCCGTCGCTGAGCATG	377 bp
	dsaAR	TTCCGCAGGTCGATCACATA	
dsaH	dsaHF	GCTCCAGTACTCCAGCTCCGC	506 bp
	dsaHR	TTCGACATGTCGATGGCCG	
orfl	orf1F	TTGCTGCGTGTCGAAGGGAT	595 bp
	orf1R	CCTCCAGATGGTGGGTGATGAA	

Table S4. Primer Pairs Used in PCR Screening of Streptomyces scopuliridis SCSIOZJ46 Genomic Library.

Figure S1. (+) HRESIMS/MS Spectrum of 5.

Figure S2. The (+) HRESIMS/MS Fragments of 5.

Figure S3. Marfey's Analysis of Acid Hydrolysates of **1** and **5** and Standard Amino Acids of L-Asp, L-Ile, L-Trp, L-Leu, D-Leu, D-Asp, D-Ile and D-Trp.

(eternori unterniti)

Figure S4. Chiral-phase HPLC Analysis of the Hydrolysate of **5** and Standard Amino Acids of L-*allo*-Ile and L-Ile.

Figure S5. HPLC Analyses of the Fermentation Extracts of *S. coelicolor* M1152 Fed with or without Compound **1**. (I) control 1, *S. coelicolor* M1152 with supplemental 20 μ L DMSO; (II) control 2, modified Am2ab medium (50 mL) with supplemental 3.0 mg desotamide A (**1**) dissolved in 20 μ L DMSO; (III) *S. coelicolor* M1152 with supplemental 3.0 mg desotamide A (**1**) dissolved in 20 μ L DMSO; (IV) *S. coelicolor* M1152/07-6H; (V) *S. coelicolor* M1152/07-9A; (VI) purified compound **1**; (VII) purified compound **5**.

Figure S6. ¹H NMR (500 MHz) Spectrum of 5 in DMSO-*d*₆

11

Figure S7. ¹³C NMR (125 MHz) Spectrum of 5 in DMSO-*d*₆

fl (ppm)

14

fl (ppm)

