Supporting Information for

${ }^{51}$ V NMR Crystallography of Vanadium Chloroperoxidase and its Directed Evolution P395D/L241V/T343A Mutant: Protonation Environments of the Active Site

Rupal Gupta ${ }^{l}$, Guangjin Hou ${ }^{l}$, Rokus Renirie ${ }^{2}$, Ron Wever 2, and Tatyana Polenova ${ }^{I *}$
${ }^{1}$ Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States; ${ }^{2}$ Van't Hoff Institute for Molecular Science, University of Amsterdam, POSTBUS 94157, 1090 GD Amsterdam, The Netherlands
E-mail: tpolenov@udel.edu

Figure S1. 20.0 T ${ }^{51} \mathrm{~V}$ NMR spectrum acquired at MAS of 40 kHz of wild type VCPO at pH 8.3 purified from (a) E. coli; and (b) S. cerevisiae. The relative intensities of the spinning sidebands are identical for the two spectra suggesting that the vanadate cofactor remains the same.

Figure S2. ${ }^{51}$ V MAS spectrum of VCPO and its mutant at 14.1 T and 21,31 and 40 kHz MAS (a) wild type enzyme at pH 8.3 ; (b) P395D/L241V/T343A mutant at pH 5.0 and; (c) P395D/L241V/T343A mutant at pH 8.3. The arrows indicate the spinning sidebands associated with the second species in the triple mutant.

At 31 and 40 kHz , spinning sidebands originating from the second species can also be observed in the spectra from the P395D/L241V/T343A mutant prepared at pH 5.0
(Figure S2, sidebands marked with an arrow). This comparison of the spectra of the P395D/L241V/T343A mutant at pH 8.3, which clearly exhibits two species, and the mutant at pH 5.0 clarifies the poor agreement between the lineshapes of the numerical simulations and experimental data at these spinning frequencies. It is noteworthy that there is a presence of an impurity species in the mutant sample at pH 8.3 which gives rise to an out of phase resonance near -599 ppm . This out of phase resonance is more easily detectable at 31 and 40 kHz and further makes the characterization of the second species difficult. The origin of this resonance is not understood, and it is always detected in multiple preparations for this enzyme.

Determination of the Relative Orientation of the CSA and Quadrupolar Tensors in VCPO. Magic angle spinning NMR spectra are not only sensitive to the magnitudes of the CSA and the quadrupolar interactions, but also bear information on the relative orientation of the two tensors. It has been shown by us and by others ${ }^{1}$ that numerical simulations of the full spectral envelope including the spinning sidebands from the satellite transitions permit the determination of the quadrupolar and the CSA tensors as well as their relative orientations. For small vanadium(V)-containing inorganic complexes, the spectra containing both central and satellite transitions can be easily obtained using frequency-stepped acquisition or broadband excitation pulses. ${ }^{2}$ Figure S3 shows one such example of a vanadium inorganic complex where the full spectrum using frequency-stepped acquisition can be acquired in approximately 10 hours, and the numerical simulations yielded the accurate NMR parameters. ${ }^{3}$ However, for large biological systems, such as VCPO, where the vanadium constitutes only 0.07% of the sample weight, acquiring a spectrum with full spinning sideband manifold from all satellite transitions, in a frequency-stepped manner, is challenging due to a much lower sensitivity. Figure S4 (left panel) shows the experimental spectrum of VCPO recorded at the MAS 21 kHz along with the numerical simulations. The simulations reveal the entire spectral envelope including the regions where satellite transitions are expected but not observed experimentally due to the limited excitation and detection bandwidth of the NMR probe. Consequently, information regarding the orientation between the CSA and
quadrupolar tensors is difficult to extract in VCPO and, in general, in biological molecules.

Figure S3. An example of ${ }^{51} \mathrm{~V}$ MAS spectra from an inorganic complex, VO(enSAL)TBCat acquired using frequency-stepped acquisition. ${ }^{3}$ (a) A summation of 10 frequency-stepped ${ }^{51} \mathrm{~V}$ NMR spectra acquired 9.4 T and MAS of 17 kHz . Each individual spectrum took approximately 1 hour for acquisition. (b) Simulation of the experimental data using the parameters $\mathrm{C}_{\mathrm{Q}}=5.8 \mathrm{MHz}, \eta_{\mathrm{Q}}=0.95, \delta_{\sigma}=485 \mathrm{ppm}, \eta_{\sigma}=$ 0.25 .

While determination of relative CSA and quadrupolar tensor orientations is challenging for low-sensitivity biological samples, for systems with large C_{Q}, an estimate of tensor orientations can be obtained using fast MAS frequencies. For example, under fast MAS conditions (31 and 40 kHz), both the lineshape and the position of the spinning sidebands are sensitive to the Euler angles for $\mathrm{C}_{\mathrm{Q}}=14 \mathrm{MHz}$ (the value for the P395D/L241V/T343A mutant) but not for $\mathrm{C}_{\mathrm{Q}}=10 \mathrm{MHz}$ (the value for the wild type), shown in Figure S 4 (right panel). As is clear from the Figure, for the Euler angles of (α, $\beta, \gamma)=(0,0,0)$, numerical simulations do not correctly recapitulate either the lineshape or the position of the spinning sidebands for the P395D/L241V/T343A mutant sample, indicating that the two tensors are not collinear. However, if $(\alpha, \beta, \gamma)=(0,30,0)$ are used in the simulations, a shift in the spinning sidebands position of approximately 2.5 kHz is observed under fast MAS frequencies, producing a reasonable agreement between the simulations and the experiment.

Figure S4. Left: An expanded view of $14.1 \mathrm{~T}{ }^{51} \mathrm{~V}$ NMR spectrum of the wild type enzyme at pH 7.3 acquired at MAS of 21 kHz (black) and the corresponding simulation (blue) showing all the satellite transitions that are not observed in the experimental data due to the limited probe excitation bandwidth. Right: Simulations showing the effect of the relative orientation of the CSA and quadrupolar tensors on the position of the spinning sideband for $\mathrm{C}_{\mathrm{Q}}=10$ and 14 MHz . The colored traces are the simulations with Euler angles of $(\alpha, \beta, \gamma)=(0,30,0)$ and the corresponding simulations with the same parameters and $(\alpha, \beta, \gamma)=(0,0,0)$ are the black traces. Simulations were performed at the MAS frequencies of $21 \mathrm{kHz}(\mathrm{a}, \mathrm{b}) ; 31 \mathrm{kHz}(\mathrm{c}, \mathrm{d})$, and; $40 \mathrm{kHz}(\mathrm{e}, \mathrm{f})$. The spinning sidebands marked with asterisks indicate the observable shifts due to the relative orientations of the CSA and the quadrupolar tensors.

Figure S5. An example of a model of the active site considered for DFT calculations.
Gaussian input command line for NMR parameter calculation
\#b3lyp/6-311G(d,p) scf=tight nmr prop=efg
Input Coordinates for VOD44 model:

C	-18.1380	10.7310	-4.8710
C	-18.2600	11.1730	-3.4240
O	-18.6070	12.3430	-3.2080
O	-18.0830	10.3670	-2.4870
C	-20.1770	21.8250	-0.8680
N	-19.1390	21.4180	0.1330
N	-13.9130	19.2810	-0.3730
C	-14.9870	18.5100	-0.4800
N	-15.1500	17.4410	0.3030
N	-15.9110	18.8310	-1.3720
C	-15.5740	15.2240	-2.9790
C	-17.2960	20.7170	-4.5510
C	-17.8620	20.3390	-3.3410
C	-17.4030	19.8440	-5.6320
C	-18.5280	19.1130	-3.2160
C	-18.0630	18.6360	-5.5080

C	-18.6270	18.2720	-4.2970
C	-15.3190	21.9350	2.1930
C	-16.5420	22.3660	3.0040
O	-17.4848	21.5558	3.1994
C	-20.6650	19.5450	3.2950
C	-21.9780	19.4950	2.4900
O	-23.0340	19.8070	3.0070
C	-20.5470	18.3040	4.2150
O	-21.1790	17.1530	3.6550
N	-21.8760	19.1990	1.1950
C	-23.0580	19.0830	0.3430
C	-23.8830	17.8910	0.8040
O	-25.0920	17.9910	0.9380
N	-23.2260	16.7730	1.1040
C	-23.9260	15.5860	1.5730
C	-22.9420	14.4780	1.9510
C	-22.5700	13.5680	0.8210
C	-22.8740	12.2680	0.5940
N	-21.7240	13.9430	-0.2020
C	-21.5200	12.9140	-1.0030
N	-22.2040	11.8860	-0.5410
C	-19.6600	13.3820	3.8000
C	-19.5240	12.4620	2.6140
N	-18.8650	13.1380	1.5040
C	-18.5370	12.5610	0.3570
N	-18.7960	11.2560	0.1400
N	-18.0770	13.3120	-0.6440
C	-16.9840	17.2390	4.1000
C	-17.6420	16.5610	3.1370
N	-16.8630	18.5360	3.6490
C	-17.4220	18.6340	2.4560
N	-17.8990	17.4480	2.1240
O	-17.8380	16.3900	-0.3010
O	-19.2760	18.4650	-0.0560
O	-19.9320	16.0970	1.6040
O	-20.2280	16.3660	-0.8770
O	-19.0970	16.9670	0.5000
O	-20.5650	15.8510	6.2810
O	-19.5680	15.0930	-3.2640
O	18.1320	14.1470	-5.2050
O	-2310	-2.4190	

H	-21.1180	21.9516	-0.3746
H	-20.2664	21.0666	-1.6175
H	-19.4093	20.5559	0.5617
H	-19.0554	22.1268	0.8335
H	-18.2596	21.2997	-0.3281
H	-14.1486	20.2183	-0.6300
H	-14.4557	17.2099	0.9846
H	-15.9664	16.8714	0.2079
H	-16.7291	18.2645	-1.4704
H	-15.7908	19.6400	-1.9474
H	-16.3736	15.5511	-2.3477
H	-15.9700	14.6356	-3.7802
H	-17.7888	20.9906	-2.4955
H	-16.9678	20.1129	-6.5718
H	-18.9596	18.8318	-2.2781
H	-18.1383	17.9803	-6.3502
H	-19.1390	17.3371	-4.2037
H	-15.6396	21.4558	1.2916
O	-16.6141	23.6897	3.5402
H	-21.0920	18.5399	5.1051
H	-19.5037	18.0732	4.2718
H	-20.9491	16.3780	4.1727
H	-19.8363	19.5632	2.6184
H	-23.6515	19.9568	0.5139
H	-22.7096	18.8574	-0.6432
H	-21.4764	18.2824	1.1846
H	-23.4560	13.8637	2.6605
H	-22.0377	14.9767	2.2311
H	-23.5168	11.6533	1.1888
H	-22.2303	10.9746	-0.9516
H	-20.9044	12.9141	-1.8782
H	-24.5727	15.2312	0.7979
H	-22.6406	17.0317	1.8723
H	-20.4061	12.9992	4.4646
H	-19.9475	14.3565	3.4644
H	-18.8714	11.6703	2.9175
H	-20.5182	12.2400	2.2867
H	-18.6444	14.1069	1.6158
H	-19.2413	10.7099	0.8495
H	12.5828	10.8340	-0.7305
H	-0.5250		
H	-1.5138		
H	3.1597		
H			

H	-16.4223	19.2837	4.1458
H	-17.4786	19.5216	1.8611
H	-20.5664	15.4677	-0.8625
H	-19.9648	16.6003	6.2810
H	-20.0586	15.0354	6.2810
H	-18.9678	15.8423	-3.2640
H	-19.0616	14.2774	-3.2640
H	-17.5318	14.8963	-5.2050
H	-17.6256	13.3314	-5.2050
H	-21.7278	16.8303	-2.4190
H	-21.8216	15.2654	-2.4190
H	-16.6268	16.8476	5.0296
H	-13.5852	19.2668	0.5717
H	-18.7230	13.4435	4.3130
H	-19.1049	10.7391	-5.3291
H	-15.0648	16.0755	-3.3797
H	-14.8877	14.6338	-2.4085
H	-16.7905	21.6547	-4.6511
H	-19.8878	22.7474	-1.3267
H	-14.7310	22.7953	1.9499
H	-14.7308	21.2524	2.7701
H	-20.6515	20.4314	3.8941

Example of the vanadate coordinates for some of the models considered:

VOS4			
O	-17.8380	16.3900	-0.3010
O	-19.2760	18.4650	-0.0560
O	-19.9320	16.0970	1.6040
O	-20.2280	16.3660	-0.8770
V	-19.0970	16.9670	0.5000
H	-20.5664	15.4677	-0.8625
VOD14			
O	-17.8380	16.3900	-0.3010
O	-19.2760	18.4650	-0.0560
O	-19.9320	16.0970	1.6040
O	-20.2280	16.3660	-0.8770
V	-19.0970	16.9670	0.5000
H	-20.4669	16.9574	-1.5944
H	-17.0277	16.6908	0.1167

VOD24			
O	-17.8380	16.3900	-0.3010
O	-19.2760	18.4650	-0.0560
O	-19.9320	16.0970	1.6040
O	-20.2280	16.3660	-0.8770
V	-19.0970	16.9670	0.5000
H	-20.4669	16.9574	-1.5944
H	-18.41215	18.8576	-0.2017
VOD34			
O	-17.8380	16.3900	-0.3010
O	-19.2760	18.4650	-0.0560
O	-19.9320	16.0970	1.6040
O	-20.2280	16.3660	-0.8770
V	-19.0970	16.9670	0.5000
H	-20.5664	15.4677	-0.8625

VOT124			
O	-17.8380	16.3900	-0.3010
O	-19.2760	18.4650	-0.0560
O	-19.9320	16.0970	1.6040
O	-20.2280	16.3660	-0.8770
V	-19.0970	16.9670	0.5000
H	-18.4121	18.8576	-0.2017
H	-17.0277	16.6908	0.1167
H	-20.5664	15.4677	-0.8625

VOT134

O	-17.8380	16.3900	-0.3010
O	-19.2760	18.4650	-0.0560
O	-19.9320	16.0970	1.6040
O	-20.2280	16.3660	-0.8770
V	-19.0970	16.9670	0.5000
H	-20.5664	15.4677	-0.8625
H	-17.027	16.6908	0.1167
H	-19.3172	15.6405	2.1831

VOT234			
O	-17.8380	16.3900	-0.3010
O	-19.2760	18.4650	-0.0560
O	-19.9320	16.0970	1.6040
O	-20.2280	16.3660	-0.8770
V	-19.0970	16.9670	0.5000
H	-20.5664	15.4677	-0.8625
H	-19.3172	15.6405	2.1831

H	-18.4121	18.8576	-0.2017

Complete list of all input coordinated used for the calculations are available upon request.

References

(1) (a) Pooransingh, N.; Pomerantseva, E.; Ebel, M.; Jantzen, S.; Rehder, D.; Polenova, T., Inorg. Chem. 2003, 42, 1256. (b) Skibsted, J.; Nielsen, N. C.; Bildsøe, H.; Jakobsen, H. J., Chem. Phys. Lett. 1992, 188, 405.
(2) Schurko, R. W., Acc. Chem. Res. 2013, 46, 1985.
(3) Goncharova-Zapata, O.; Chatterjee, P. B.; Hou, G.; Quinn, L. L.; Li, M.; Yehl, J.; Crans, D. C.; Polenova, T., CrystEngComm 2013, 15, 8776.

