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1. General Experimental Procedures for the Investigation of the 
Several Parameters in the Boronic Acid Catalyzed Amide Bond 
Formation 

 

After identifying the optimal catalyst, (2-(thiophen-2-ylmethyl)phenyl)boronic acid 7f, we 

proceeded to optimize the other reaction parameters including solvent, catalyst loading, 

dehydrating agent and its activation method using a model amidation reaction between benzyl 

amine  and phenyl acetic acid according to the general procedure D for boronic acid catalyzed 

amidation. 

1.1. Solvent screening 

The optimal reaction solvent is dependent on the particular nature of the substrates employed. 

It is therefore preferable to optimize any new combination of substrates using different 

solvents (Table 1).  

Table 1 : Solvent screening using catalyst 7f.a 

 

Entry Solvent Isolated Yield (%) 

1 acetonitrile 0 

2 toluene 36 

3 chloroform 0 

4 tetrahydrofuran 2 

5 dichloromethane 99 

6 1,2-dichloroethane 76 

7 DMF 24 

8 fluorobenzene 53.3 

9  DCM/1,2-DCE 1:1 48 
a Reaction conditions: phenyl acetic acid (75 mg, 0.55 mmol), boronic acid 7f (10.9 mg, 0.05 mmol) and the 

amine (55 µL, 0.50 mmol) were stirred at room temperature (25 °C) for 48 h in dry solvent containing the 

powdered 5Å mol. sieves (1 g). 
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With the new catalyst 7f and the chosen model substrates, CH2Cl2 appeared to be the best 

solvent (entry 5). Toluene (entry 2) and DMF (entry 7) provided low yields whereas no 

conversion was attained using THF (entry 4), Chloroform (entry 3) and acetonitrile (entry 1). 

Moderate yields were obtained using fluorobenzene (entry 8) and 1,2-DCE (entry 6). No 

further improvement was attained using a mixture DCM/1,2-DCE 1:1 (entry 9). 

1.2. Optimization of catalyst loading 

Optimization of the catalyst loading was carried out using the reaction between benzyl amine 

and phenyl acetic acid as a model reaction, 7f as the catalyst, CH2Cl2 as the solvent and 5Å 

powdered molecular activated in Kugelrohr as the drying agent according to the general 

procedure D for boronic acid catalyzed amidation (Table 2). 

Table 2: Optimization of the catalyst loading using catalyst 7f.a 

 

Entry  mol% of 7f    Isolated yield (%) 

1b  2.5  36 

2  5  53 

3  7  62 

4  10  99 
5  20  100 

a Reaction conditions: Phenyl acetic acid (75 mg, 0.55 mmol), boronic acid 7f (2.5 to 10 mol%) and the benzyl 

amine (55 µL, 0.50 mmol) were stirred at room temperature (25 °C) for 48 h in dry CH2Cl2 containing the 

powdered 5Å mol. Sieves (1 g). b Reflux at 45 °C. 

As shown by Table 2, catalyst loadings of 5 and 7 mol% provided moderate yields of the 

amide product 8a (entries 2 and 3 ) whereas a 10 mol% catalyst loading resulted in excellent 

yield of  amide 8a (entry 4) at room temperature. Increasing the catalyst loading did not lead 

to any improvements in terms of the reaction time. 

1.3. Dehydrating agent screening and its activation method 

Another crucial factor in the boronic acid catalyzed amidation is the removal of water from 

the reaction medium as it inhibits the formation of the active reaction intermediates (entry1, 

Table 3). Screening of the different drying agents was performed using the reaction between 
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benzyl amine and phenyl acetic acid as a model reaction, 7f as the catalyst (10 mol %), 

CH2Cl2 as the solvent and 1g of the dehydrating agent according to the general procedure D 

for boronic acid catalyzed amidation (Table 3). 

Table 3: Comparison in the isolated yield of the amide product using different dehydrating 

agents.a 

7f (10 mol %)

drying agent,
CH2Cl2 (0.07 M), rt, 48 h1.1 eq.

CO2H H2N Ph

1.0 eq.

N
H

Ph

O

8a
 

Entry  
 

Drying agent 
 

Activation method 
 

 Isolated 
Yield (%) 

1 none - 0 
2 pwd lab grade MgSO4 µW at Pmax 30 min 0 
3 pwd anhydrous MgSO4 Kugelrohr 3 h at 250 °C <5 
4b B2O3 - 28 
5b B2O3 without 7f - 23 
6 pwd 4Å MS µW at Pmax 30 min 43 
7 pwd 4Å MS Kugelrohr 3 h at 250 °C 50 
8 pwd 5Å MS µW at Pmax 30 min 0 
9 pwd 5Å MS Kugelrohr 3 h at 250 °C 99 

10b pwd 5Å MS / Soxhlet Kugelrohr 3 h at 250 °C 85 
a Reaction conditions: Phenyl acetic acid (75 mg, 0.55 mmol), boronic acid 7f (2.5 to 10 mol%) and the benzyl 

amine (55 µL, 0.50 mmol) were stirred at room temperature (25 °C) for 48 h in dry CH2Cl2 containing the 

dehydrating agent (1g). b Reflux at 45 °C. 

Screening of these different drying agents revealed that 5Å molecular sieves (activated 

powder) using Kugelrohr, ≈325 mesh particle size) was the most efficient dehydrating agent 

for this process with the possibility of their recycling (entry 10). 4Å molecular sieves 

activated either in Kugelrohr or microwave provided moderate yields (entries 6 and 7) while 

almost no conversion was attained with MgSO4 (entries 2 and 3). B2O3 did not lead to any 

improvement in the yield where the same result was almost obtained in the presence or 

absence of the catalyst 7f (entries 4 and 5). 

The optimal reaction conditions were chosen to be 10 mol % of catalyst 7f, 5Å powdered 

molecular sieves (1 g) activated in Kugelrohr, and CH2Cl2 as the solvent. 
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2. Studying the Kinetics of Catalyst 7f with Two Different Carboxylic 
Acids 

 

The progress of the reaction between the two carboxylic acids (phenylacetic acid and 4-

methoxyphenylacetic acid) and benzylamine in the presence of the catalyst 7f was monitored 

using 1,3,5-trimethoxybenzene as an internal standard. The results obtained are shown in 

figure 1. 

 

Figure 1. Comparison between the rate constants of two different carboxylic acids where 8a 

corresponds to the amide product resulting from the phenyl acetic acid and 13a corresponds to 

the one formed using the p-methoxy phenyl acetic acid. 

 

Title: Studying the % NMR yield of the amide products as a function of time. 

This graph clearly shows that electron rich carboxylic acids are much more efficient providing 

a faster reaction compared to the phenyl acetic acid in the amide synthesis. Complete 

conversion was attained after just 2 hours using 4-methoxyphenylacetic acid (13a) while after 

12 hrs with the phenylacetic acid (8a).  
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3. Optimization of the Amide Bond Formation using N- or C-
protected Amino Acids in the Presence of Catalyst 7f 

 

In order to determine the optimal conditions for the coupling of one or two amino acids, a 

model reaction was carried out between (S)-N-Boc-proline and benzyl amine according to 

general procedure E for amide bond formation (Table 4). 

Table 4. Optimization of reaction conditions for the direct amidation of amino acids.a 

 

Entry Solvent 
Catalyst                         
(mol %) 

Temperature  
(°C) 

Isolated 
yield (%) 

1 CH2Cl2 10 65 10 

2 PhF 10 45 26 

3 PhF 10 65 57 

4 PhF 25 45 45 

5 PhF 25 65 92 
a Reaction conditions : (S)-N-Boc-proline (99 mg, 0.46 mmol), catalyst 7f (10-25 mol%) and benzylamine (50.3 

µL, 0.46 mmol) were stirred for 24 h containing the powdered 5Å mol. sieves (1 g).  

 

As we have previously mentioned, non-polar solvents enhance the catalytic activity and tends 

to provide better azeotropic removal of water in the amidation reactions. Therefore, two non-

polar solvents were tested. Fluorobenzene appeared to be the suitable solvent providing better 

solubilization of the starting Boc-proline and much higher yield of the desired amide 33 

compared to CH2Cl2 (Table 1, Entries 1 and 2). In addition, temperature constituted another 

significant factor; decreasing the reaction temperature from 65 °C to 45 °C, led to a large 

decrease in the yield from 57% to 26% (Table 2, Entries 2 and 3).
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4. 1H and 13C Spectra of Aryl Bromides 9  

2-(2'-Bromophenyl)thiophene 9b 
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2-Bromobenzyl(methyl)sulfide 9c 

 



S9 

 

 

 

 

2-Bromobenzyl(ethyl)sulfide 9d 
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2-Bromobenzyl(isopropyl)sulfide 9e 
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2-(2-Bromobenzyl)thiophene 9f 
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3-(2-Bromobenzyl)thiophene 9g 
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1-Benzyl-2-bromobenzene 9i 
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2-Bromothiophene 10 
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(2-Bromophenyl)(thiophen-2-yl)methanol 11 
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(2-Bromophenyl)(thiophen-2-yl)methanone 12  
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2-(1-(2-Bromophenyl)vinyl)thiophene 9j  

 

 



S18 

 

 

 

2-(1-(2-Bromophenyl)ethyl)thiophene 9k  
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2-(1-(2-Bromophenyl)cyclopropyl)thiophene 9l  
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5. 1H and 13C Spectra of Boronic Acids 

[1,1'-Biphenyl]-2-ylboronic acid 7a 
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(2-(Thiophen-2-yl)phenyl)boronic acid 7b 
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((Methyl)sulfide)phenylboronic acid 7c 
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(2-((Ethylthio)methyl)phenyl)boronic acid 7d  
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(2-((Isopropylthio)methyl)phenyl)boronic acid 7e 
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(2-(Thiophen-2-ylmethyl)phenyl)boronic acid 7f  
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(2-(Thiophen-3-ylmethyl)phenyl)boronic acid 7g 
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(2-(Furan-2-ylmethyl)phenyl)boronic acid 7h 
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(2-Benzylphenyl)boronic acid 7i  
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2-(1-(Thiophen-2-yl)vinyl)phenylboronic acid 7j 
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2-(1-(Thiophen-2-yl)ethyl)phenylboronic acid 7k 

 

 



S31 

 

 

 

2-(1-(Thiophen-2-yl)cyclopropyl)phenylboronic acid 7l 
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6. 1H and 13C Spectra of Synthesized Amides 

N-benzyl-2-phenylacetamide 8a  
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(R)-2-phenyl-N-(1-phenylethyl)acetamide 8b 
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N-isobutyl-2-phenylacetamide 8c 
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N-Benzyl-2-(4-methoxyphenyl)acetamide 13a 

 



S36 

 

 

 

 

(R)-2-(4-methoxyphenyl)-N-(1-phenylethyl)acetamide 13b 
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N-isobutyl-2-(4-methoxyphenyl)acetamide 13c  
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N-cyclopropyl-2-(4-methoxyphenyl)acetamide 13d 

 

 



S39 

 

 

 

N-allyl-2-(4-methoxyphenyl)acetamide 13e 
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N-benzyl-2,2-diphenylacetamide 14a 
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N-isobutyl-2,2-diphenylacetamide 14c 
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(S)-2-(4-isobutylphenyl)-N-((R)-1-phenylethyl)propanamide 15b 
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N-benzyl-2- (furan-2-yl)acetamide 16a  
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N-benzyl-2-(thiophen-2-yl)acetamide 17a 
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N-benzylheptanamide 18a 

 



S46 

 

 

 

 

N-hexylheptanamide 19 
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N-hexyl-2-phenylacetamide 20 
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N-(sec-butyl)-2-phenylacetamide 21  
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2-phenyl-1-(pyrrolidin-1-yl)ethanone 22  
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1-(piperidin-1-yl)heptan-1-one 23 
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1-(pyrrolidin-1-yl)heptan-1-one 24 
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1-morpholinoheptan-1-one 25 
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1-morpholino-2-phenylethanone 26 
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N-benzyl-2-(4-methoxyphenyl)-N-methylacetamide 27 
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N-(2-(1H-indol-3-yl)ethyl)-2-(4-methoxyphenyl)acetamide 28 
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2-phenyl-N-((pyridin-3-yl)methyl)acetamide 29 
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N-benzylfuran-2-carboxamide 30 
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N-benzyl-4-iodobenzamide 31  
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N-benzyl-2-hydroxy-2-phenylacetamide 32 
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7. 1H and 13C Spectra of Amides Synthesized from N-Protected and/or 
C-Protected Amino Acids.   

(S)-N-Boc-proline benzylamide 33  
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(S)-N-Boc-phenylalanine benzylamide 34 
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(S)-N-Phenylacetyl-phenylalanine Methyl ester 35 
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(S,S)-N-Boc-Phe-Val methyl ester 36 
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8. HPLC Spectra of Chiral Amides  

(2S)-2-(4-isobutylphenyl)- ((R,S)-1-phenylethyl)propanamide 
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(S)-2-(4-isobutylphenyl)-N-((R)-1-phenylethyl)propanamide 15b 
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(R,S)-N-Boc-Proline Benzylamide  
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(S)-N-Boc-Proline Benzylamide 33 
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(R,S)-N-Boc-Phenylalanine Benzylamide  
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(S)-N-Boc-Phenylalanine Benzylamide 34  
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(R,S)-N-Phenylacetyl-phenylalanine Methyl ester  
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(S)-N-Phenylacetyl-phenylalanine Methyl ester 35 

 

 


